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ON THE INVARIANCE PRINCIPLE FOR
NONSTATIONARY MIXINGALES

By D. L. McLEiss
University of Alberta

In an earlier paper, the author proves an invariance principle for mix-
ingales, a generalization of the concepts of mixing sequences and martingale
differences, under the condition that the variance of the sum of » random
variables is asymptotic to ¢?z where ¢2 > 0. In this note we relax further
the required degree of stationarity, requiring only that the squared varia-
bles properly normalized form a uniformly integrable family, and the par-
tial sums have variances consistent with the Wiener process.

1. Introduction. In [2], the author proves a weak invariance principle for
nonstationary sequences of dependent variables which do not have variances
that fluctuate too wildly. These variables, a hybrid of the notion of martingales
and mixing sequences of rv, are called mixingales. In this note we relax further
the required degree of stationarity, simplify the conditions on the mixing rates
and show that the results continue to hold. This improves on the mixing rates
required by Philipp and Webb (1973).

2. Results. Let{X,,:i=1,2,...,n=1,2,...} be a double array of zero
mean random variables defined on the probability space (Q, &, P). Let k,(7)
be a sequence of nonrandom integer valued, nondecreasing, right continuous
functions on [0, o). We form a random function

(2‘1) Wn(t) = Zipgit) Xn,i

and we wish to show weak convergence of W, to W a standard Wiener process
in the space D[0, co) endowed with Stone’s (1963) topology. Suppose there exists
a double array of positive constants {o%,} such that the following conditions hold
foreach T < oo:

2knts) T

t— s

(a) SUp,<;<r lim sup,,_, o .

2
(2.2) (b) {_X;’_‘, n=12,...,i < kn(T)} is a uniformly integrable set.
g5 ,

(©) maX;g, (r) On,e — 0 as n— oo .

These conditions are sufficient for the Lindeberg condition to hold for the array
{X, .} and are closely related to same.

Often, o2 , is the approximate variance added to a sum by the inclusion of
X, ;: thus in the uncorrelated case, o} ; = EX;; and in the weakly stationary

n,%
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NONSTATIONARY MIXINGALES 617

case (e.g., Billingsley’s (1968) ¢-mixing Theorem 20.1)
% = EXG + 2w EX, X, ;.

We will also require that the sequence {X, ;i=1,2, .. -} constitutes a mix-
ingale (cf. [2], [3]); namely that for some double array of g-fields &, ,, &, 1

n,1°

inZ, a sequence of positive constants $.l0asn—oo,and foralln,i> 1,k =0,

(a) ||E(Xm | "g—jn,i—k)”‘z = Gu0ns and

2.3) (O Xy — EX, | F )l
< ¢4410,;  where [[+]l; isthe Ly Q) norm.
We now introduce our main theorem:
(2.4) THEOREM. Suppose conditions (2.2) and (2.3) are in force and
1 \-%
(2'5) Zl?:l( Z=0F> < oo,

Then the sequence {W,)} is tight in Stone’s topology on D[0, o). Moreover if for
each s < t < u,

(2.6) ElE{(Zfﬁﬁm Xni)zlﬁn,kn(s)} — (u— N—0 as n—oo s
then W, converges weakly to a standard Wiener process.

(2.7) REMARK. (2.5) differs markedly from the usual summability type of
conditions

(2.8) 29 < oo o
However, (2.5) implies (2.8) with 6 = 2 and is implied by (2.8) with 4 < 2.
Thus, as a consequence of (2.5)ng,? - 0asn — co. (Cf. Section 3 for a proof.)

(2.9) CoroLLARY. Let{(X,,, 7. )i =1,2, ...} be a sequence of martingale
differences for each n (so X, is F,, measurable and EX,;| Z,:.)=0 a.s.).
Assume o), = EX?, < oo and k. (f) = sup {j; >i_, on; < t}. Then if X, satisfies
(2.2) (b), (c) where T = lim inf,__ 211 05 and if

(2.10) 2 E(X | ﬁn’kn(s)) —, U —t foreach s<t<u<T,
then W, converges weakly to W on D[o, T).
For the remaining assume each X,; is &, measurable: let
P = SUP §(F oy, 0(Tipym X,i))  and?
U = SUp aA{F , 0(Fiy i X,0))
where the supisover all n, k, J = k 4+ mand where «, ¢ are defined in Section 3

of [2].

1 As remarked in [2], page 170, we may replace &, by o(X%¥_, Xus) and still retain the central
limit theorem.
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(2.11) COROLLARY (¢-mixing). Let {X...} be centered at expectations: Suppose
Opi = || Xouills» B = 2 satisfies 2.2 and the sequence ¢,, = ¢,V m > 0 satisfies2.5.
Finally, assume

(2.12) Var (W, (1) >t foreach t as n— oo.
Then W, converges weakly to a standard Brownian motion process.

(2.13) REMARKs. The same theorem holds for strongly mixing random vari-
ables if 8 > 2 and ¢,1-V¢ replaced by a,,t-V4,

3. Proofs. We will need the following elementary lemmas.

(3.1) LEMMA. Let {(X,, &)} be a sequence of martingale differences (so
E(X,|Z,_,) = 0 a.s. forall n) and assume |X,| < Ko, a.s. for all i, ({o,} is any
sequence of positive constants). Then

E(Z Xt < 10K4( X2, 0,22
Proor. Put

S, = 2. X, v = N, o.
Then:

ES,! = T EX} + 4 3, EX, X 4 6 X, EXPX? + 12 3, EX, X, X2
<4 pay - ES; X;*+ 6 2, ES;‘T_I,/Y].2

where the first term on the majorant side is bounded by 4K* 317_,v,0,* < 4K* 1,
and the second, by 6K* 2 Vie < 6K, [

For the next two lemmas, we drop the subscript  from X, S,; and o,;, and
putS, =2, X;and v,2 = y» o;’. Replacing (6-3) of [2], we have the following

3.2) LEMMA. Suppose X, satisfies 2.3 and $; > 0 for all j. Then for all n,
(3-3) Efmax;<, $7} < 160, {5, (Dh, 470 1.
Proor. Replacing 6.4 of [2] we have, with v,? substituted for n,

(3.4) E{max;_, S} < 40, (3, a;) {ﬁjﬂ + 2 Yo di(a, — a;l, } .

Let a, = ¢, and define q, recursively for k > 1 by:

@, — a;l; = %]:;“
Then
LI S S
it a, a,_1/ \a, [ a, a;_,
so that
1 . 1
of = Hhuga

1 \%
ZI?:O a, é ZI?:O (Zf»:o—;‘) =X, say.
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Finally (¢ + ¢,))/a, < 2a,. Substituting these values in the majorant of 3.4
yields 16v,%x".

3.5) LemMMA. If {X,} satisfies (2.2¢), (2.3), and (2.5), then the set

2
{maxjé,b S,-2 = 1} is uniformly integrable.
Proor. We indicate only the changes to be made in the proof of Lemma 6.5
in [2]. Put
X = X I[X;| < co,]

and U,, Y,, Z, are unchanged. Then

o

2
I=¢y <maxa‘§n 1)12>

k3

)

7 2
II=E <maxjs,, _Z’_>
=T

w

U
Il = E <maxm v’2> :

w

U, is a mixingale (satisfies (2.3)) with mixing functions ¢, = ¢,,,,. Now,

(Bt g7) S S0 ()7 4 D (Tte 55)

1 \-%
= O(mi¢,,) + Z:H(ZLO F>
where by 2.7 and 3.2, m may be chosen so that /Il < ¢/27.
Similarly each Z, is a mixingale with functions ¢, = 1V ¢, and ¢.* replaced by

o2sup;e,(X;*/o?). Therefore by 3.2 we may pick c sufficiently large that 11 < ¢/27.
Finally, by 6.2 of [2] and Lemma 3.1,

E(max;, Y% < 10(4)*(2m + 1)%(4c)*,*
so for fixed (m, ¢) we pick y such that I < ¢/27. []

Verification of the following is a trivial consequence of Billingsley’s Theorem
8.4.

(3.6) LEMMA. Let {W,(¢)} be a sequence of random elements of D[0, 1] such

that

W%(S) _
0

2
{maxt§s§t+5[ W] ;n>N(t,0),0=st < 1,563}
is a uniformly integrable set for some sequence S of 0 approaching 0 and nonrandom
finite valued function N(t, 6). Then {W,} is tight in the uniform topology on D[0, 1].

Proor or THEOREM 2.4. Tightness of {I¥,} now follows from 2.2(a), Lemmas
(3-5) and (3.6), and the fact that the rate of uniform integrability achieved in
(3.5) does not depend on our location in the sequence.
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Convergence to Brownian motion will follow from the verification of (6.7)
of [2] with the upper limit of summation replaced by k — 2 there and in the
definition of U,. Then

U, — 2523 u; W)l
= (max |ug])(k — 2) Zfnite-2 ||E(X, | yf»,kn(t,ﬂ_p) — X2
= O(Xfni'e~2 0,0y, 1, _-i41)
= O(Xfniin—2 Ufu)i‘(Zf=knuk_1>—kn<tk_z)+1 ¢
—0 as n— oo.

The remaining changes required in the proof of Theorem 2.6 of [2] follow
along parallel lines.

PrOOF OF REMARK 2.7. We prove only that (2.5) implies (2.8) with 6 = 2;
the other implication under monotonicity of ¢, (assumed w.l.o.g. cf. [2]) is
trivial.

Under (2.5), the monotonicity implies k(3]%_, 1/¢,%)~* — 0 so for k sufficiently
large,

1 1 1 1 1\t 1\¢ 1\
ZE = * D=0 0.7 = * <Z£=o W) <Zﬁ=o W) = <Z£=o W) .
Thus, > ¢, < oo.

Proor oF 2.9. The L,(Q) convergence of (2.10) follows from Lemma 2.11 of

[4]-
The proof of (2.11) follows the same line as (3.9) of [2].

3.7 LEMMA. Suppose that the conditions of either (2.11) or (2.13) are satisfied.
Then (2.6) holds and Var (W, (f) — W,(s)) —t — s forany s < t.

Proor. It follows from Minkowski’s inequality and (2.2)(c) that

WOl = IWu(s)l2 + 1Wa(t) — W),
and the last term — 0 over any subsequence for which k,,(r) — k,(s) is bounded.
This with (2.12) implies k,(f) — k,(s) > co. Now put U = (W,(f) — W,(s)),
U*= UI(U £ ¢). Now if E;(+) = E(« | F,; -;) and g(c) = ||U — U°||,

I|1£;U — EU||, < 2||U — U*||, + ||E; U — EU°||,
=< 2g(c) 4+ max (2¢,, Sa,)c

by Lemma (3.5) of [2] which, by Lemma 3.5, can be made arbitrarily small for
c and j sufficiently large, the convergence to 0 being uniform in n > N(s, 7).
Now choose d,— 0 such that j, = k,(s) — k,(s — 8,) > co but [|W,(s) —
Wu(s — )|l = Po(ka(s) — k(s — 9,)) (max,o,;) 0. Then if V = W,(s — 4,),
Z = (W,(s) — W,(s —d,))and Y = W,(t) — W,(s),
(3.8) [P0l =IIV+Z+ Y]

= EZ* 4 EV? + EY? 4 2E(VEjn Y) + 2E[Z(V + Y)].
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Using the Minkowski and Schwartz inequalities and the fact that the random
variables satisfy 2.3 with }; ¢,* < oo, we can show

”Ea'nY”z = (Z?:j% ¢i2)é(2fg§cii(s)+l o)t —0 as n— oo.
Moreover, since ¥ and (¥ + Y) are bounded in L,(Q), the last two summands
on the right side of (3.8) converge to 0 as n — co. Thus, taking limits on both
sides, lim,_ ., EY? =t — 5.

Acknowledgment. I am grateful to A. Meir for several helpful comments,
including the proof of (2.7).
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