The Annals of Probability
1977, Vol. 5, No. 4, 601-607

FORMULAS FOR STOPPED DIFFUSION PROCESSES WITH
STOPPING TIMES BASED ON THE MAXIMUM!

By JonN P. LEHOCZKY
. Carnegie-Mellon University

The joint Laplace transform of T and X(T) is derived where X(e)isa
time homogeneous diffusion process and T is the first time the process
falls a specified amount below its current maximum. This generalizes the
work of Taylor. The distribution of the maximum at T is shown to be
exponential for Brownian motion. Formulas for more general stopping
times based on the current maximum are given.

1. Introduction and summary of results. This paper presents a generalization
of the stopping problem introduced by Taylor [5]. The derivation is also more
intuitive than that presented in [5]. Let {X(), r > 0} be a Brownian motion
process with X(0) = 0, drift parameter p, and variance parameter ¢*. Leta > 0
be given and consider the Markov time T = T, = inf {r | M(f) — X(t) = a} where
M(r) = sup {X(u), 0 < u < 1}. T represents the first time the X-process drops a
units below its current maximum. Taylor calculates the bivariate Laplace
transform of X(T') and T and finds

— 0 exp(—(a + 7)a)
HExp@X(T) = 1) = 5o @) — (o & 7) sinh (ad)
with 8 > 0,60 = dcoth(ad) — 7,6 > 0,a < 0, 7 = pfo®,and § = [y + 28/a%)}.

From the above transform, the marginal transforms are calculated as well as
the moments and asymptotic distributions of X(7') and T. It is unfortunate that
Taylor did not point out that the random variable X(7T) 4 a has an exponential
distribution with parameter 2y/(exp(2ya) — 1) or l/a for y = 0 or y = 0 re-
spectively. Using this observation (which is directly obtainable from (3.1) in
[5]), all of the marginal behavior of X(T) or equivalently M(T) becomes obvious
including equations (3.4), (3.5) and (3.6).

In this paper the same Markov time T is studied; however, the underlying
process is allowed to be much more general. The process {X(¢), r > 0} is as-
sumed to be a stochastic process satisfying the time homogeneous Ité stochastic
differential equation

(1) dX(t) = a(X(t) dt + o(X(2)) dW(t), =0

with X(0) = 0 a.s., {W(7), t = 0} a standard Wiener process, and o(x) > 0. It
is further assumed that a(x) and o(x) are measurable and defined for x in [—a, )
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and satisfy the conditions of the existence and uniqueness theorem for stochastic
differential equations, namely there exists a constant K such that for all x, y in
[—a, )
(2) la(x) — a(y)| + lo(x) — o(y)| = K|x — y|

a’(x) + o*%(x) < K*(1 + x?)
(see [3], page 40). The special case a(x) = ¢ and g(x) = o gives the Brownian
motion process considered by Taylor.

The main results of this paper are the following:
I. M(T) is a random variable with distribution function given by

(3)  P(M(T) = x) = exp[— {5 (V(2)/(\:-, D) du)) dz]  for x=0,

with ®(x) = exp(— {¢ 27(2) dz), and y(z) = a(z)/d%(2).
II.
4) E(exp(aM(T) — BT)) = {5 exp(ax — {§ b(z) dz)c(x) dx
where
bo) = SE— QK@) = hz—g'@) g
9(z — a)h(z) — 9(2)h(z — @)
9 (x) — g'(x)h(x)
9(x — a)h(x) — g(x)h(x — a)
and g and # are any two independent solutions of the ordinary differential
equation

C(X) =

PO f7(X) + a@) () = ffix)  for x in [—a, o).
In the special case y(x) = 7 for x in [—a, co) equation (3) takes on the expo-
nential form mentioned earlier,

(5)  P(M(T) 2 x) = exp(—2rx/(exp(2ra) — 1)) 7 #0, x=0
= exp(—x/a) r=0, x=0.

This agrees with the results in [5], but is much more general, because it requires
only the ratio of a(x) and ¢*(x) to be constant, not each of the functions to be
constant. It also shows that M(T) has a surprisingly simple distribution (ex-
ponential (1/a)) for any driftless process (a(x) = 0). The exponential distribution
is intuitively correct in the Brownian motion case, because the spatial homo-
geneity insures M(T) has a memoryless distribution. It is also intuitive in the
a(x) = 0 case, because ¢’(x) affects only the speed of the diffusion, hence M(T)
is still memoryless.

In the Brownian motion case, the functions defined in (4) become g(x) =
exp(—(r — 0)x), h(x) = exp(—(y + 0)x) with 7 = pfo* and & = [;* + 28/0"]},
b(z) = dcoth (ad) — y = 6 > 0. Substitution in (4) and simplification yields
0 exp(—ay)/[0 cosh (ad) — (a + 7) sinh (ad)], « < 6§ for the right-hand side.
Multiplication by exp(—aa) gives Taylor’s result.
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In the next section two lemmas are stated which are used in the derivation.
Sections 3 and 4 present derivations of the main results. Section 5 provides dis-
cussion of possible generalizations.

2. Fundamental lemmas. Let {X(?),# > 0} be a stochastic process taking
values in a possibly infinite interval I satisfying (1) and (2) with initial condition
X(0) = xa.s. and o(x) > 0 both for xin I. Let T, , = inf {t| X(f) = a or b} for
a £ x £ band a, bin I, the two barrier first passage time.

LeEMMA 1. Under the above conditions
P(X(T, ;) = a) = q(a, b, x) = {} ®(2) dz/{} ®(z) dz
P(X(T,,) = b) = p(a, b, x) = (¢ ®(z) dz/\: O(z) dz
where ®(z) = exp(— \z 2y(u) du) and y(u) = a(u)|o*(u).

Proor. [3], page 110.

The next lemma gives the Laplace transform of T, , both unconditionally and
conditional on hitting either a or . While these results are well known (for
example, see [1], Chapter 16 or [2]), a simple proof is presented.

Let g and % be any two independent solutions of the ordinary differential
equation ‘

(6) 30° () f7(x) + a(x) f'(x) = Bf(x) -
LeMMA 2. Under the above conditions
E(exp(—pT, ;)| X(T, ;) = b) = u(a, b, x)/p(a, b, x)
E(exp(—BT.,) | X(Ta,) = a) = v(a, b, x)/4(a, b, x)
E(exp(—BT, ;) = u(a,b,x) + v(a,b,x)

with
wa, b, x) = JOH) = 9@ gy o - IRHB) = 9B
9(a)h(6) — 9(b)h(a) 9(a)h(b) — 9(b)h(a)
Proor. Let {X(f), = 0} be defined by (1) and (2) and integrate (1) to find
(7 X(t) = x + {ia(X(s)) ds + §§o(X(s)) dW(s) .

Let f(x) be any solution of (6) and consider the transformation Y(¢) =
exp(—pr) f(X(2)). Using It6’s lemma ([3], page 24), Y(¢) satisfies

®) dY (1) = f'(X(0)a(X(2)) dW (1)
with Y(0) = f(x) a.s. or '
) Y(1) — f(x) = s exp(—ps)f"(X,)a(X,) dW(s) .

Truncate T, ;, forming v, = T, , A u, replace ¢ by 7, in (9) and take the expec-
tation of both sides. The mean of the right side is 0 ([3], page 29), since the
integrand is bounded for s < T, ,. Let u — oo to find

(10) J(x) = E(Y(T.,)) = E(exp(—BT0,) f(X(To ) -
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Let g and % be two independent solutions of (6). Equation (10) yields two linear
equations
9(x) = q(a, b, x)g(a)E(exp(—T.,,) | X(T,,,) = a)
+ (@, by X)g(B)E(exp(—BT.,) | X(T.;) = b)
h(x) = q(a, b, )h(a)E(exp(—pT,,) | X(T.,,;) = a)
+ P(@, by X)h(D)E(exp(—BT.,) | X(T. ) = b) -

The lemma follows easily by solving these two linear equations.

3. Thedistribution of M(T). To compute P(M(T) = x), partition the interval
[0, x] into n subintervals {[s,;, 5,,,;], 0 < i < n — 1} with 0 = 5,0 < 5,1 < - - -
< Sun = x. Let m, = maxX;c, 4 (S50 — S,;) and assume m, — 0 as n — co.
For {M(T) =z x} to occur, the X(r) process must reach x. Consequently, if
M(T) =z x and M(f) = y for 0 < y < x and some ¢ < T, then the process must
hit y + dy before it hits y — a. As a discrete approximation to P(M(T) = x),
compute P, = P(N7Z {X(?) hits s,,,, before s,, — a}). It will be shown that the
limit as n — co of P, is independent of the particular sequence of partitions
chosen, hence the limit is P(M(T) =z x). Using the strong Markov property and
time homogeneity

P, = [Ii= P(X(¢) hits s,,,, before s,, — a|X(0) = s,,) .
Using Lemma 1 the ith factor in the product is given by p(s,; — @, S,;,1, S,:)-
After some manipulation
limfn—wo P'n = exp [lim'n—»eo ZZI:OI log (1 - P(s'”i —a, S'M'+1’ s%i))] *

As n— oo, m, — 0 and 327} (s, — S,)* — O for k > 2. This indicates that
only the first term in the Taylor expansion of log (1 — u) need be kept. Further,
by the continuity of ®@(z),

limn—wo {Six?“ (D(Z) dz/(s'm?+1 - sm'—) - q)(s'm)} =0.

As n—oo the sum converges to the ordinary Riemann integral
— 5 (@(2)/(V:-o ©(u) du)) dz. This limit is independent of the particular par-
tition sequence chosen which completes the proof of (3).

It is possible that 7' can be infinite valued. This is equivalent to {M(T) = oo}
and

(11) P(T = o0) = exp(— {5 (P(2)/{:-, P(u) du) dz) .
4. Derivation of E(exp(aM(T) — ﬁT)). The joint Laplace transform of M(T)
and T can be calculated by conditioning on M(T) as follows:
E(exp(aM(T) — BT)) = E(exp(aM(T))E(exp(— BT) | M(T)))
= {7 exp(ax)B(exp(— AT) | M(T) = x)fyip,(x) dx
where [y, (x) is the density of M(T) derived from (3). We compute
E(exp(—BT) | M(T) = x) using the discrete approximation technique of Section 3.
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We introduce an arbitrary partition sequence {s,;, 0 <i < n + 1} with 0 =
Sag < vt Sy = X < Sppyp and ey, = 5, — 5, We let m, = MaX,<i<nt1 Enk
and assume m, — 0 as n — oo. Define a sequence of stopping times

T = IDF {7 > 0] X(Sppoy + 1) — X(Spi_)) = €ap OF —a}, 1k<n+1
with S,, = >%  7,,. Each t,, is a.s. finite since a(x) > 0.

In this discrete formulation {M(T) = x} is approximated by {(N5=1 (X(S,z) —
X(S'nk—l) = enk)) n (X(S'rm+1) - X(S'rm) = _a)} = Bn and E(exp(—ﬁT) l M(T) = X)
by E(eXp(—pSuus1)|B,) = E([[12} exp(—fe,) | B,) = E,. The stopping time
Tap41 I8 in the future of S,, for 0 < k < n, and the X-process is time homogene-
ous, thus the strong Markov property can be applied to give

(12) E'n = ?:1 E(exp(—ﬁfm‘) | X(Sm'—l) = sm‘—la X(Sm) = SM)
X E(eXp(—BTunt1) | X(Sp) = X, X(Spnst) = X — a) .

Each of the n + 1 conditional expectations in (12) can be computed by using
Lemma 2. We find
(13) E, = (Ilix U(Sui—1 — @5 Sy, Sni—1))] 117z P(Snics — @, S5, sm:—l)\

X (v(x — a, Sunt1s X)[q(x — a, Sunt1s X))
where p, g, u, and v are defined in Lemmas 1 and 2.

We now let n — oo and show lim,_, E, exists and is independent of the par-
tition sequence chosen. We identify this limit as E(exp(—fT)|M(T) = x). The
limits are taken in the manner outlined in Section 3. We take logs, use m, —
0, and use the continuity of ¢’(x) and #'(x) to show
(14) lim,  TT%, u(S,_, — a, s,,;, Spi—1) = exp(— (¢ b(z) dz)
with

b(z) = 92 = () — bz — a)g'(2)
9(z — a)h(z) — h(z — a)g(z)

Furthermore,
(15) lim, (IT#- P(Snici — @, Sy, Spi-1))q(x — a, Sunt1s X)[Ennp1 = fM(T)(x)
where the limit of the product was calculated in Section 3. Finally,
(16) lim, ., v(x — @, $ppy15 X)/€pnin = €(X)
where ¢(x) is defined in (4).

Each of the limits (14), (15), and (16) is independent of the particular
sequence chosen, hence we have
(17) E(exp(=f2) [M(T) = x) = exp(— 5 b(2) d2)e(x) iz (%) -

Substitution of (17) into the original expression for E(exp(aM(T) — BT)) yields
(4) and completes the derivation.

We comment that conditionally on {M(T) = x}, T is a.s. finite. Nevertheless
T and M(T) can be infinite with the same positive probability, and P(T < oo)
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can be calculated from (4) by setting a = 0 and letting §— 0. The result
agrees with (11).

5. Further results. Given the distribution function for M(T) defined by (3)
one can derive many results including moments and asymptotic distributions.
Since X(T) = M(T) — a, these results can also be derived for X(T). In the case
r(x) = 7, which includes Brownian motion, M(T) is exponential.

The marginal Laplace transform of T can be obtained from (4) merely by
setting @ = 0. The resulting expression for E(exp(—pgT)) is still, however,
formidable. The parameter 8 does not appear explicitly, but instead appears in
g and & which are actually functions of 8. In the Brownian motion case, g and
h are exponential and the dependence on j is easy to deduce. Unfortunately,
the differential equation (6) has, except in the Brownian motion case, non-
constant coefficients, hence except in very special cases there will be no closed
form solution. In the special case o%(x) = o® and a(x) = —px (the Ornstein-
Uhlenbeck process), the solution of (6) involves Weber or Kummer functions
([4], Section 3).

It is theoretically possible to use the Laplace transform for T to derive the
moments of 7. This can be done by differentiation with respect to 8 and letting
B — 0. To carry out this program one must be able to evaluate g(x) = g(x, )
and A(x, f) at B = 0 as well as 9*g(x, B)/98",=, and 0*A(x, B)/0B"|s—- Letting
B — 0 in (6) g(x, 0) and A(x, 0) become solutions of

(18) 30*(x) f"(x) + a(x)f'(x) = 0.
One solution is exponential, the other is constant.
Next, differentiate (6) with respect to 8 and let 8 — 0, to find

(19) 30 () foap(%: B) + @(X)fep(x; B) = f(x, 0) -

This equation can be solved for fy(x, B) which gives the first derivative with
respect to B of g and k. Repetitions of the argument give higher derivatives.
The reader is referred to [5] for information about 7 in the Brownian motion
case.

The derivation used in Sections 3 and 4 to find the distribution of M(T) (or
X(T)) and the joint Laplace transform of M(T) and T can be generalized in two
important ways.

First, one need not assume X(0) = 0 a.s. but can allow X(0) = x a.s. or even
allow X(0) to be a random variable which is nonanticipative with respect to the
process {X(#), ¢ = 0}. It is only necessary to condition on the initial value and
later average over its distribution.

A much more important generalization is to allow other kinds of stopping
times. Instead of stopping when the process falls a units below the current
maximum, one can stop when the process falls u(M(r)) below the current maxi-
mum M(?), thus

T, = inf {¢| M(t) — X(9) Z u(M()}
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Assume #(x) > 0 for x > 0 and, merely for convenience, u(x) is continuous.
The special case u(x) = a was studied in Sections 3 and 4, but all of those re-
sults carry over to T,. We do not repeat the proof but merely state

(20) PM(T,) 2 x) = exp (=5 (D(2)/§:_ 0, D) d) dz)
(21 E(exp(aM(T,) — BT,)) = §° exp(ax — §2 b,(2) dz)c,(x) dx
with

bo(2) = 90 — WENH() — bz — u(z)g'(2)
T 0 = u@)h() — bz — u(@2)e(r)

and
()= JOFE) — gk
9(x — u(x)h(x) — g(x)h(x — u(x))
(T, = o) = P(M(T,) = oo) can be calculated from (20).

In the special case y(x) = y which includes Brownian motion, (20) becomes
(22)  P(M(T,) 2 x) = exp[— {3 2r/(exp (2ru(z)) — 1)dz] 7 % 0

= exp[—{§ dz/u(z)] r=0.
This distribution is no longer exponential if u(z) is not constant.

Markov times T, are of interest in studying stock market rules mentioned in
[5]. Such rules allow one to consider strategies where u(x) = ax + b, that is
one for which a sales decision is made when the price falls a fixed fraction
below the maximum to date rather than a fixed number of dollars below. The
reader is referred to [5] for other possible applications.

Finally we mention that the methods used in Sections 3 and 4 apply to
random walk processes as well as diffusion processes. In this case, M(T) will
be a geometric random variable rather than an exponential random variable
when the transition probabilities are spatially homogeneous.
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