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SOURCE CODING THEOREMS FOR STATIONARY,
CONTINUOUS-TIME STOCHASTIC PROCESSES

By MicHAEL B. PURSLEY! AND ROBERT M. GRrRAY?

University of Illinois and Stanford University

New results are presented on the problem of source coding subject to
a fidelity criterion for stationary, measurable, continuous-time stochastic
processes. The main result is established without an ergodicity require-
ment and for quite general reproduction alphabets. This is then specialized
to ergodic sources to prove a coding theorem for ergodic continuous-time
sources. The approach is to obtain coding theorems for continuous-time
sources from the coding theorem for nonergodic discrete-time sources.

1. Introduction. The two basic theorems of information theory—the channel
coding theorem and the theorem on source coding subject to a fidelity criterion—
have been proved for quite general discrete-time sources and channels. In the
case of continuous-time systems, however, quite general channel coding theo-
rems exist [8], but coding theorems for stationary sources have appeared only
for the special cases of Gaussian processes with average squared-error distortion
measure and block ergodic processes [1]. The principal obstacle to extending
the source coding theorem to stationary ergodic continuous-time sources has
been the fact that if one segments an ergodic continuous-time random process
into functions on intervals of length 7, the resulting processes may not be ergodic.
For nonergodic continuous-time sources, the segmented source is nonergodic
for all values of z. The purpose of this paper is to demonstrate that since the
segmented source is stationary even if not ergodic, the source coding theorem
for stationary nonergodic discrete-time sources [6] can be applied to obtain a
coding theorem for stationary continuous-time sources. We then use this result
to establish a coding theorem for stationary ergodic continuous-time sources.

The most general source coding problem that we consider is the coding of a
continuous-time, stationary, measurable stochastic process with values in a com-
plete separable metric space consisting of a set 4 and a metric p on 4. The
metric p also serves as the measure of distortion between elements of the source
alphabet 4 and elements of the reproduction alphabet Ac A.

An example of the type of stationary, ergodic source that we have in mind is
a source whose output is modeled as a real-valued, stationary, measurable ran-
dom process such as the Ornstein-Uhlenbeck process. If, as in this example,
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CONTINUOUS-TIME SOURCE CODING THEORY 967

A = A = %, thereal line, then the Euclidean distance metric o (u, v) = |u — |
is an appropriate distortion measure.

For an example that illustrates the need for considering random processes
which take values in a metric space, consider the problem of transmitting time-
varying pictorial information over a digital communication system. In this situ-
ation we could take the value of the process at a given instant of time to be a
real valued function of two variables. The value of the function is intensity or
gray-level at a point on the black-and-white two-dimensional image. The alpha-
bet A for such a process could be taken as the space of all nonnegative integrable
functions on [0, 1] X [0, 1] (since the integral of such a function corresponds
physically to the total amount of light from the picture received by an observer).
It is of interest to determine the minimum possible distortion that can be achieved
when this process is transmitted at rate R over a digital communication channel.
We will give conditions under which this minimum distortion can be calculated
from the probabilistic description of the process in terms of an information-
theoretic minimization.

2. Notation and preliminaries. The following notation will be used through-
out the paper. The set of all real numbers is denoted by <2 and the extended
real line is denoted by 2. & is the o-field of Lebesgue measurable subsets of
Fand £ is the o-field of Lebesgue measurable subsets of the finite interval /.
The Lebesgue measure is denoted by m. The sets 4 and A denote the source and
reproduction alphabets which are metric spaces. The source alphabet 4 is a
complete separable metric space under the metric p and A is a Borel subset of A.
The Borel g-field of subsets of 4 and of 4 are denoted by <, and £Z;, respec-
tively. Let Q be the function space A¥; that is, an element » € Q is a function
w: B — A. For each v € 2 let T® be the r-unit shift transformation on Q;
that is, [T°0](f) = w(t +- 7) for each w ¢ Qand t ¢ 2. Let (Q, &, p) be a com-
plete probability space upon which T+ is a measure-preserving transformation
(i.e., Fe & implies T°Fe % and u(F) = u(T°F)) for each r e .Z. In the
terminology of ergodic theory, {77 |z e 2} is a flow. We define the A-valued
stochastic process {X, | # € 2} on the probability space (Q, &, x) by X,(0) = w(¢)
for each w € Q and each re . &. We assume that X, is a measurable mapping
from (Q, &) into (4, <Z,) for each t ¢ &2. Note that according to our defini-
tions, X,(T*(w)) = X,,.(w). We refer to the flow {T°|r e &2} and stochastic
process {X,|t e 2} on (Q, &, p) as a continuous-time source. Since the contin-
uous-time source can be specified by giving only the o-field % and the prob-
ability measure z, we usually denote the source by (Q, ., p). Let & x & be
the completion of the g-field & x .~ with respect to the product measure
p x m. The restriction of w € Q to the finite interval / is denoted by o’ and A4’
is the function space consisting of all mappings x: I — A. The set of all Lebesgue
integrable functions y: I — .2 is denoted by L,(/). The space of all functions
y: I — 2 for which y» is Lebesgue integrable (p = 1) will be denoted by L ().
Finally, Z denotes the set of all integers,
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The source must satisfy certain additional requirements which will be intro-
duced as needed. The first of these is the following measurability property.

(P.1) Therandom process {X, |t € &%} is measurable; that is, if X, (o) is viewed
asa function of the pair (w, ), it is a measurable mapping from (Q x 2, & x &)
into (4, &,).

Property (P.1) implies that for x-almost all @ € Q, X,(w) is a Lebesgue measur-
able function of ¢. This guarantees that the set Q, of all functions w: 2 — 4
which are measurable mappings of (<#, ") into (4, B,) has y-measure 1. This
will in turn assure that a suitable distortion measure can be defined on the function
space A’. We note that condition (P.1) is not very restrictive in the sense that
under quite general conditions, there is a standard extension of a process of the
function space type which is measurable and also of the function space type [4].

A set E ¢ & is said to be r-invariant if u(E A T°E) = 0, where 4 A Bisthe
symmetric difference (4 N B°) U (4° N B). A set E e 5 is said to be invariant
if it is r-invariant for each r € . The flow {T7|7r € &} is ergodic (or metri-
cally transitive) if every invariant set Fe . satisfies u(F)e {0, 1} and it is
r-ergodic if every r-invariant set G € & satisfies ¢(G) € {0, 1}. The flow is said
to be totally ergodic (or block ergodic) if it is r-ergodic for each r ¢ .52. In
general, an ergodic flow will not be totally ergodic. We will say the source
(Q, &, p)is ergodic (z-ergodic, totally ergodic) if the flow {7~ |z € &2} is ergodic
(z-ergodic, totally ergodic).

Given two spaces (2,, %) and (Q,, .%,), a transition probability ([1], [14]) is
a mapping P,: Q, x &, — [0, 1] for which Py(w, +) is a probability measure on
(Q,, &,) for each w € Q, and P,(, F) is a measurable function on (Q,, &) for
each Fe & ,. The term regular conditional probability is often used for such
mappings (e.g., [11]).

A partition .77 of a measurable space (Q, %) is a finite collection of disjoint
sets in % such that the union of all sets in Zis Q. We define the quantity

F(P, Q| F) = Lseo P(B) log [P(B)/Q(B)]
where P and Q are two probability measures on the same space (R, %) and
Fis a partition of (, ). Asusual, we must set 0log (0/u) = 0 forallu = 0

and u log (u/0) = +co for all # > 0 in such definitions. The entropy of P rela-
tive to Q is then defined by
H(P, Q) = sup, (P, Q|7

where the supremum is over all finite partitions of (Q, .57). According to
Dobrushin’s theorem (see [3], Section 2.2 or [17], Theorems 2.1.1 and 2.4.1),
if _# is any algebra of subsets of Q which generates .5 then H(P, Q) is equal to
the supremum of S#(P, Q|5”) over all partitions &’ c A The basic prop-
erties of relative entropy (and of mutual information, since it is a special case
of relative entropy) can be found in [3], [5], [10], [16], and [17]. An important
property that we will need in the sequel is given in the following lemma,
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LemMA 1. Suppose a probability measure P is defined on X:_, (Q;, F ;) by the
iterated integral

P(B) = SQI SQ2 803 I5(0,, @3, @) Py(@,, dw;)Py(w,, dw,)P,(dw,)
where P, is a probability measure on (Q,, ), P, and P, are transition probabilities
on Q x F,and Q, x 7, respectively; and I is the indicator function for the set
Be & x &, x ., Assumethat 5, x 5, is generated by a countable algebra
A of subsets of Q, x Q;. For each w € Q,, define p, on X3_, (Q;, &) by
Puo(C) = Snz SQ3 Io(w,;, @5)Py(w,, dw;)Py(w, dw,)

for each Ce &7, x 7, and let p, be the measure on X3:_,(Q,, F,) for which

Pu(Fa % Fy) = p,(Fy x Q)p,(Q, x Fy)
for Fie &, (i = 2,3). Let P be the measure on X3_, (Q;, &) which satisfies

P(F, x F, x F)) = § 5, Pu(Fy % Fy)Pi(dw)

for Foe &, (i =1,2,3). Finally, Q and Q are the measures on X3_, (Q;, .57,)
which satisfy

O(F, x F;) = P(Q, x F, x F,)

Q(Fz x F;) = Q(F, x Q)Q(Q; x Fy)
for each Fie &, (i = 2,3). Then
) H(P, P) = (o, H(p,, p.)P\(dw)
@ < H(Q, Q).

Proor. The proof of.(1) will be omitted since it can be obtained in a straight-

forward manner from well-known results on conditional information (e.g., [17],

Chapter 3, especially (3.1.5) on page 30). To prove (2) we use the Markov
structure of probability space (X?_, Q,, Xi., %, P) which is derived from the

and

fact that Py(w,, F,) does not depend on w,. We can assume that H(Q, Q) < co
in proving (2) since it is trivally true for H(Q, 0) = oco. The Markov structure
implies H(Q, Q) = H(P, P’) where P’ is defined on X?:_, (Q;, %) by

P'(F, x F, x F}) = P(F, x F, x Q)P(Q, x Q, x F,)

for F,e &, (i =1,2,3). For the proof of this result see Section 2.8 of [3].
Thus H(P, P') < oo and so P’ € P. But this implies H(P, P’) = H(P, P) (see
[3], Section 2.7 or [17], Theorem 3.6.1) which completes the proof.

3. Properties of the time-average distortion measure. The purpose of source
coding is to “compress” a source output process by encoding it with elements
from a finite code book with least possible distortion. Let B c A* be the set
of allowable reproducing functions §: &2 — A. We require that each £¢ B is
a measurable mapping of (<2, ) into (4, &#;). Define B(I) to be the set of
all functions which are restrictions of functions in B to the interval I — 2.
Later, further restrictions will be placed on B to ensure that its members are
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sufficiently well behaved. For arbitrary 4 > 0, a 2-length code book C; is a
collection of finitely many elements of B([0, 2)). Included in all such code books
is the reference function a,: [0, 1) — A defined by a,(r) = a, for each ¢ in the
interval [0, 2), where a, is an arbitrary reference letter in the reproducing alpha-
bet 4. Similarly, we define a,;: I — A by a,(f) = a,foreachreland 4: # — 4
by a(r) = a, for each r. We require d € 8. This implies that a, e B([0, 1)) for
all 2 > 0. If ||C,|| denotes the total number of elements in C, then the rate of
this code book is (47*) log ||C;]|.

For any finite interval / we define a distortion measure g, between functions
in Q, by letting

3 (o, §) = [m(D)]™* §; e[e(?), E(1)]m(dr)
for all w, { € Q). In this definition we are allowing extended real values for the
integral since p is in general not bounded. Although there will be functions
o € Q which are not measurable mappings of (&2, £°) into (4, £Z,), the set of
all such functions must have y-measure zero according to (P.1). We can then
extend g, to Q x Q by defining g,(w, {) = + oo if (0, {) ¢ Q, x Q,. Note that
Ay < B, and any £ ¢ B is a measurable mapping from (2, £) into (4, 5,).
Measurability of the integrand of (3) follows from continuity of p: 4 x 4 — %
and measurability of w and ¢.

Note that (3) can be used to define a distortion measure p, between elements
of A7. If x and y are such elements then set

(4) p1(X, ) = pr(@,, @)
where x(f) = w,(f) and y(r) = w,(f) forall t e I and w,(f) = w,(f) = a, otherwise.
The distortion measure p; is not a metric for 4’ since p,(x, y) = 0 does not imply
x = y and since p,(x, y) need not be finite. However, p, is nonnegative, satisfies
the triangle inequality, and is symmetric. We will refer to either p, or g, as the
time-average distortion measure. In case / = [0, 2) for 2 > 0 we denote p, and
g by p; and g,, respectively.

In order to have a meaningful source coding problem for the process {X, |t e
2} there must exist a reference letter a, € 4 such that

5) o [X(0), a](dw) = p* < oo .
Since p: 4 x A — 2 is continuous, the integrand in (5) is a measurable map-
ping of (2, &) into (&%, £°) for each t € . We have denoted the value of
the integral in (5) by p* which does not depend on ¢ since the process is station-
ary. Note that

(6) p* = (g plo(1), a)(dw) VY ie Z
and that (5) is valid if and only if the process satisfies the following property.

(P.2) For any element a € 4,
) {0 p[X (@), a]u(do) < oo .
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If, for example, 4 = &2 and p = p* then (P.2) is equivalent to the require-
ment that the mean of {X, |t e S} is finite. If we choose a, = 0 for this example
then we have p* = E|X,|, where E denotes expected value with respect to the
probability measure p. If (P.2) is not true, then the average distortion will be
infinite for any code of any (finite) rate. Thus (P.2) is a necessary condition
for a meaningful source coding problem. The stochastic process {Y,|7e #}
defined by

Y. (0) = p[X\(w), a,] VoeQ, Viez®

is a nonnegative real-valued random process which is measurable because of
(P.1) and the continuity of the function p(., a)): 4 — 2. It follows from
Fubini’s theorem that {, o[ X,(»), a,]¢#(dw) is a measurable function of 7 and

®) $o {§1 p[X (@), ag]m(dn}u(dw) = p*m(I) < oo .

For any finite interval I let B(I) be the set of all measurable mappings x from
(1, =£;) into (A4, <#,) for which p,(x, a;) < co. For the special case 4 = 2 and
p = p we have B(I) = L,(I). For any bounded metric p which generates the
usual Euclidean topology on 2, B(I) is the set of all Lebesgue measurable func-
tions on /.

In order toapply the discrete-time source coding theorem of Gray and Davisson
we need a suitable metric space to serve as the alphabet for the discrete-time
source which is obtained by segmenting sample functions of the original con-
tinuous-time source. The next lemma shows that the set B(/) is a candidate for
this alphabet if p, is the distortion measure.

LEMMA 2. The distortion measure p, is pseudometric for the set B(I). The result-
ing pseudometric space is complete and separable.

Proor. Clearly p,(y, y) = O for each y € B(I). The definition of B(/) guaran-
tees that p,(x, y) < oo for all x, y e B(I). The triangle inequality for p, follows
easily from the triangle inequality for p. The proofs of separability and com-
pleteness closely parallel the corresponding proofs for L,([0, 1)), so we omit the
details.

Although p, is not a metric for B([), we can consider equivalence classes of
functions, just as in the case of L,(/), to obtain an appropriate metric space.
Let <Z(I) denote the o-field of Borel subsets of this metric space. In case / =
[0, 2), we use the notation (B;, p;) for the metric space and <%, for its Borel
o-field.

LemMMmA 3. If I is a finite interval and y ¢ B(1),

® §1 p[X (@), y(1)Im(dr) < oo

for p-almost all w. If S: Q — 2 is defined by letting S(w) equal the integral in (9)
when o € Q,, and letting S(w) = + oo otherwise, then S is an extended-real-valued
random variable on (R, ", 1) having a finite expectation ES.
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ProOF. We first note that the random process {V, |t € &2} defined by
V(o) = o[X(0), y()] VYoeQ, VieR

is a measurable random process. This follows from (P.1), the definition of B(J),
and the continuity of p: 4 x 4 — .22 with respect to the product topology on
A x A. In particular V(o) is a measurable function of ¢ for all w in the set Q,,.
Therefore, (9) follows from (8), the definition of B(I), and the triangle inequality.
The finiteness of ES then follows from (5), the fact that y e B(/), and Fubini’s
theorem.

LemMA 4. For each H e <%(1),
{weQy,|o’eH}e & .

Proor. It suffices to consider sets H which are open balls in (B(I), p;). Let
e > 0 and y e B(I) be arbitrary and let H = {x e B(I)|p,(x, y) < ¢}. The proof
is completed by noting that

{weQy|o’e H} = {0 e Qy|{; o(w(r), y(t))m(dr) < em(I)}
which is % -measurable by Lemma 3.

LEMMA 5. The set I of all sample functions w € Q for which ' € B(I) for each
finite interval I satisfies & — Q,, L e &, and u(Z) = 1.

Proor. That X c Q, follows fromthe fact that for any open subset G contained
in A4, o7(G) = U2 _.. »;"(G) where w,= 0! “*V7, Hence w € Z implies v, € B([ir,
(i + 1)7)) for each i € Z which implies w € Q,,. For each positive integer j let

Qy ; = {0 eQy|§;,p[X(0), a)Jm(dt) < oo}

and note that £ = N7, Q, ;. Lemma 3 guarantees that Q, . e .5 for each j so
X e . According to (8),

$i-s.51 o[ X (@), ap]m(dr) < oo

for g-almost all w so u(Q, ;) = 1 for each j. Thus g«(Z) = 1.

An important property of the set X is that @ e Z if and only if wli=¢+00 ¢
B([iz, (i + 1)7)) for each ie Z. Thus, X can be regarded as the set of all doubly
infinite sequences - - -, ®_;, ©y, ®,, - - - where o, = 0!*"**Y” and we can write

2 = X&_. B(it, (i + 1)7)) .

Since each x e B([0, r)) has a unique replica x; e B([ir, (i + 1)r)) defined by
x,(f) = x(t — ir) for t e [ir, (i + 1)7), then we can also view X as the set B.Z of
all doubly infinite sequences of elements of B,. It is important to note, however,
that X does not depend on 7 since w!* “+V° ¢ B([ir, (i + 1)) for all i if and only
if for each 1 > 0, 0" "+Vb ¢ B([i4, (i + 1)4)) for all i.

The only restriction that we have placed on B thus far is that the reference
function d: .2¢ — A defined in Section 2 must be an element of B and that each
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¢ e B must be a measurable mapping from (&2, ) into (4, <#;). We must now
add two requirements. The first requirement is as follows.

(P.3) The set B is such that
(10) B([0, 2)) ¢ B([0,2) V1>0.

For instance, B might be the set of all measurable mappings &: (%, &) —
(4, ) which satisfy
V2 0(£(2), agym(dr) < oo

for all finite intervals /. For this example, any £ € B will automatically be a
measurable mapping of (2, ) into (4, &,) so that B([0, 1)) < B([0, 2)); fur-
thermore, if 4 = 4 then B([0, 1)) = B([0, 1)) for all 2 > 0. Since B([0, 2)) rep-
resents functions which must be reproduced at the decoder, a more reasonable
choice for B would be the set of all measurable mappings ¢ for which the restric-
tion &7 is a simple function for each finite interval /. If A is dense in A, then
for this choice of B, B([0, )) will be dense in B([0, 1)). For any B satisfying
(10), Lemma 2 guarantees that B([0, 1)) is a separable pseudometric space. The
second requirement is that B have the following property.

(P.4) For any real numbers 4 and 7 such that 0 < = < 2,
B((0, 1)) = B(0, 7)) x (=, 2)) .

That is, y € B([0, 2)) if and only if y can be regarded as a pair of functions (y,, y,)
such that y, € B([0, 7)) and y, is a translated version of an element of B([0, 2 — 7)).

Note that the two examples given in the previous paragraph also satisfy (P.4).
However, suppose we take B to be all continuous functions & : % — A for which
{; 0(&(?), ap)m(dt) is finite for each finite interval /. In this case we still have
B([0, 7)) < B([0, 7)) x B([r, 1)) but there are functions y, € B([0, 7)) and y, e
B([r, 2)) for which lim,__ y,(f) # y,(z) so that y = (y,, y,) & B([0, 7)). Since this
function y = (y,, y,) is defined by y(¢) = y,(t) for 0 < ¢ < = and y(r) = y,(r) for
7 < t < 4, it must be right continuous, however, so that we can enlarge B in
this example to conform to (P.4).

As in the case of the source alphabet, we can form equivalence classes of
elements of the pseudometric space (B([0, 4)), p,) to obtain the reproducing
alphabet space (B,, p,) which is a separable metric space. We let B, be the
Borel o-field of subsets of the metric space (B;, p,). If 2 = nr for some positive
integer n, we identify the measurable space (B,”, k%c’r”), which is the n-fold pro-
duct space formed from (8,, %), with the space (B,, Z,). This follows from
(P.4) and the fact that the product topology for B, is generated by the metric p,
which is defined by

px(X,y) = n7t 2155 p(Xs, ¥i)
where x; and y; are the restrictions of x and y, respectively, to the interval
[iz, (i + 1)r). Note that the definition of B([0, 1)) implies that (B;, <%}) can be
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identified with the product measurable space (B.*, <.") in the same manner as
for the reproduction alphabet.

4. Coding the continuous-time source. A source word x e A% is encoded
with the “best” code word in the sense of minimizing the distortion as measured
by p,. If for a given x e A1®% all code words produce infinite distrortion, the
reference code word a, defined in Section 3 is used. Let &, denote the class of all
A-length code books C, and define a function d,: Q x &€, — 2 by

dy(w; C;) = min {5,(0, ®,)| y € C3}

for all w e Q and all C, € &, where w,: &2 — A is as defined in Section 3. Note
that d;(+; C,) is a measurable extended-real-valued function having finite expec-
tation since, by Lemma 3, each p,(., »,) is such a function.

We can define d,: A%V x &, — .Z by

dy(x; C)) = dy(w,; C;), V xeAoD
which is analogous to (4). The average distortion for code book C, is
(11) P(Cy| 1) = §a di(@; C;)p(dw)
which is finite by Lemma 3. The minimum average distortion attainable for

A-length codes of rate not greater than the positive number R for the code alpha-
bet B([0, 1)) is

(12) 3R, p, ) = inf {5(C, | )| C; € Z(R))

where <(R) is the set of all 2-length codes which have rate not greater than R
and have code words from B([0, 2)). The minimum average distortion for all
codes of rate not greater than R is

O(R, p) = inf {0,(R, g, 2)|2 > 0} .
Note that for any C, € &,
dy(; C;) £ A7 §po1) P[X (@), a5)m(dt)
and therefore by (8)
(13) p(Cilp) = o* .

This implies that J,(R, ¢, 1) < p* for R > 0and 2 > 0. Furthermore, property
(P.4) implies that for any R > 0, 2 > 0, and 7 ¢ [0, 2)

(14) 20,(R, p, ) S (A — 1)0(R, pt, 2 — 1) + t0(R, p, 1) .
It follows from the theory of subadditive functions [7] that

(15) lim,_, 6,(R, ¢, 2) = inf {3,(R, ¢, 2) |2 > 0} .
Note that (12) and (13) imply

(16) O(R, ) < p*

for any R > 0.
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One of the goals of the paper is to express d(R, y) in terms of an information-
theoretic minimization; that is, to provide a coding theorem relating (R, ) to
the appropriate distortion-rate functions. As in the discrete-time case, there is
no hope for evaluating d(R, y) directly from its definition.

The distortion-rate function D(R, p) for the source (Q, &, y), reproducing
class B, and distortion measure p is defined as follows. First, for 2 > 0 Lemma
4 guarantees that we can define a probability measure g, on (B;, &%) by setting
t(H) = p({o € Qy | 0 ¢ H}) for each H e <5,. Let Q; be the set of all transi-
tion probabilities ¢: B; x By — [0, 1]. For geQ, let

D 9) = V5,88, 02(X, y)g(x, dy)pa(dx) .
Define Dy(R, p, 1) by

Dy(R, g, 2) = inf {F(1, 9) | 9 € (R, p)}

where Q;(R, p) is the set of all transition probabilities for which the information
rate 27> (y, q) is not greater than R. The average mutual information (¢, )
is defined as the entropy of P, relative to z, where P, and x, are probability
measures on %, x %, defined by

P(E x F) = § 5 4(x, F)ta(dx)
and

7(E x F) = p(E)Py(B, x F)
for each E ¢ <%, and each Fe &%, Clearly, Q (R, p) is nonempty and Dy(R, g,
2) £ p* for any R = 0 since the transition probability g,e Q, which satisfies
go(x, {a;}) = 1 for each x e B, also satisfies Z,(, q,) = p* and (g, q,) = 0.
Next, define the distortion rate function by

D(R, p) = lim inf,__ Dy(R, g, ) .

It can be shown that D(R, ¢) = lim,__, D (R, g, 2) by first establishing that for
" tel0,2)
AD\(R, p, ) £ (A — )Dy(R, 1, 2 — t) + tD(R, p, 1)

which is analogous to (14). The converse source coding theorem [1] guarantees
O(R, ) = D(R, p); that is, there is no rate R code which produces distortion
less than D(R, p).

Equation (15) implies a code with average distortion arbitrarily close to 6(R, z)
can be found by first choosing 2 sufficiently large and then selecting a good code
from &,(R). However, this is not a very practical method for finding good
codes. In the next section we will approach the problem from a point of view
closer to that adopted in practice: the continuous-time source is modeled as a
discrete-time source.

5. The segmented source. In order to represent the continuous-time source
for which we have no coding theorem by a discrete-time source for which a
coding theorem exists, we segment the sample functions of the continuous-time
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process into a doubly infinite sequence of time functions as suggested by Berger
(1971). The alphabet for the segmented source consists of functions defined on
the interval [0, 7). Given any r > 0 a sample function » € Q can be segmented
to give a sequence .., ®_;, w, ®,, - - - Where o, is the restriction of o to the
interval [iz, (i + 1)r). Thusan element w € Q can be viewed as a doubly infinite
sequence with alphabet 4’ = A“" and the original source can be viewed as a
discrete-time source described by the process {X,’|ie Z} defined on (Q, &, p)
by X/(w) = w;. However, the only coding theorem available for stationary
discrete-time sources requires that the underlying measurable space is a product
space X _., (A;, ;) where 4, = A,and 7, = 7 forie Z, 4, is a complete
separable metric space, and %7 is the Borel o-field of subsets of A4, ([6] and
[13]). Since (Q, %) does not have this structure, we cannot apply the source
coding theorem directly to the process {X,|ie Z}.

We have already considered an appropriate subset £ of Q which does have
the necessary structure when the alphabet A4, is taken to be the metric space
B.. Thus we can take p, as the distortion measure for the discrete-time source
coding problem that we are designing. Letting %, = <%, we can construct
the product measurable space (Z,.5) = X_. (4, %) discussed in the
preceding paragraph. It is easy to show that if for any 2 > 0 we let % = <7,
and generate .&; in the same manner, then &, = &;. That is, &, does not
depend on r. Henceforth, we will denote this g-field by .S

To be useful, the probability space (Z, &, v) must satisfy &' &, u(Z) = 1,
and y(H) = p(H) for each H ¢ 5. If the first two of these are satisfied then we
can define the measure v by the third. The second of these is true by Lemma 5
and the first is established by showing that sets of the form X2 __ G, are in &~
where G, = B([ir, (i + 1)r)) for all but finitely many integers i and G, e Z([ir,
(i + 1)7)), Yie Z. Note that

© G = Niez {0 € Q|00 e G} .

i=—o0

By Lemma 4 each set in the intersection is .~ -measurable so X _, G, €. 7.
This implies that any set in the o-field &7 generated by sets of this form is & -
measurable.

For any = > 0, the segmented source of duration t is the random process
{X..|ie Z} on (%, &, v) defined by X, (0) = otV forwe Landie Z. This
source is clearly stationary with respect to the r-unit shift transformation 7°*
but it is nov ergodic with respect to 7 if the original source is not ergodic.
Moreover, ergodicity of the original source does not guarantee ergodicity of the
segmented source of duration r. Since (I, .5, v) does not depend on the value
of 7 used in the construction, it can serve as the underlying probability space
for the segmented source of duration r for any = > 0. For each positive integer
n, let X_* be the random vector whose ith component is X_ , for0 < i< n — 1.

We are now in a position to define the least average distortion d(R, p, r) that
can result when the source is encoded with a discrete-time code book. We will
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view the source as a discrete-time source with alphabet B.. Source letters, which
are elements of B,, are encoded with elements of the reproduction alphabet B..
The first step is to consider the coding of the segmented source described by the
process {X_ ;|i e X} defined on (Z, & v).

A (z, N) block code book C, , is a finite collection of elements of B.Y. We
require that ay_e C, . The code C, , is applied to the segmented source by an
encoding rule U: B C. y which satisfies

0=,5(%, U(x)) = min {o. y(x, y)|y € C; x}

where p_ , is the distortion measure obtained from the single-letter distortion
measure o, in the usual way; that is,

Pe (X, y) = N2 32, po(Xs5 yi) -

We can apply a (z, N) block code to the continuous-time source by extending
the encoding rule U to A"*". For instance, we can let U(x) = a,_  whenever
x e A but x ¢ B.¥. Since B,Y = B,_, then we can view any (z, N) block code
as an Nr-length code for the continuous-time source as discussed in Section 4.
In fact there is a one-to-one correspondence between elements of <. and ele-
ments of the class <, , of all (z, N) block code books. This correspondence is
denoted by C, ~ C, ;.

The rate of a (r, N) block code C,_ , is (Nz)~*log||C, y||. If the logarithm is
taken to the base 2, this represents the minimum number of binary digits per
unit time required to transmit fixed length binary representations of sequences
of code words over a channel which accepts binary digits at a constant rate.
Of course C, ~ C, , implies the rate of C,, is equal to the rate of C,,. Let
Z..n(R) be the class of all (z, N) block codes of rate not greater than R. We
say a code is a block code for segments of length 7 if it is a (r, N) block code
for some positive integer N. The class <R, ) of all block codes for segments
of length  which have rate not greater than R is [J$., & 4(R). Note that
(v, 1) block codes are just the z-length codes of Sections 3 and 4.

If d. y(x; C, y) is the minimum distortion as measured by p, , for source out-
put x € B.¥ and code C_ ., then we can define

Oy(R, g, v) = inf {p(C. | p)|C. y € Z, y(R)}
where
(17) P(Ce x| 1) = $zd. y(X.Y(0); C, y)p(dw)

(since p(Z) = 1 we can also write (17) as an integral on the space Q). The
quantity d,(R, p, 7) is the greatest lower bound on the distortion that results
when the segmented source of duration ¢ is encoded with a (¢, N) block code
of rate R. We then define

(R, p, ) = inf {0(R, , ) [N = 1,2, .. -}.

Since Noy(R, p, r)is a subadditive function of N, (R, g, t) = lim,__ d(R, p, 7).
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We note that d,(R, p, Nt) = (R, ¢, ) so (15) implies that for any ¢ > 0,
(18) O(R, pt, 7) = limy_, 0,(R, 1, N) = &(R, ps) .

The implication is that given any ¢ > 0 we can segment the continuous-time
source using any segment length r and construct a block code of rate R which
yields average distortion within ¢ of the lowest possible distortion d(R, ) achiev-
able by coding the original continuous-time source. Thus, the segment length
t is not an important parameter in the design of efficient source codes. If this
is not the case (e.g., if we drop the requirement (P.4)), we have no guarantee
that it is possible to achieve distortion level d(R, ) + ¢ by applying a rate R
block code to the segmented source of duration .

The quantity p(C, | ) is the average distortion that results when the (z, N)
block code C, , is applied to the source (Q, 5, ¢). Note however that X ¥ is
actually a measurable mapping from (Z, &) into (B.Y, &."). Thus 5(C, y|p)
is really only a function of v, the restriction of x to (Z, .5”). In particular

(19) P(Ce x| ) = P'(C. y|v) = {5 d. (X (@); C, y)¥(dw) .

The quantity §’(C, ,|v) is the average distortion that results when the block code
C. y is applied to the discrete-time source (X, &, v). Because of (18) and (19)

(20) (R, v, 7) = 8(R, t, 7) = (R, )

for each = > 0 and hence 6(R, v) = d(R, p).

The definition of the distortion-rate function D(R, v, r) for the segmented
source of duration r is analogous to Berger’s definition of the rate-distortion
function for discrete-time stationary source with abstract alphabet [2]. We first
define the nth-order distortion-rate function D,(R, v, t). The random vector X,”
induces a probability measure v” on (B.", Z£,*) which is defined by

v(E) =viweX|X(w)ecE} YVEcZB".

For any transition probability ¢: B." x Z* — [0, 1], the average mutual infor-
mation _#_ (v, ¢) is defined as the entropy of p relative to = where p and = are
the measures on <%." x Z%," defined by

(21) PE x F) = {q(x, F)y"(dx)
and
(22) m(E x F) = v(E)p(B." x F)

for each E ¢ Z&.* and each F ¢ ™.

Let Q, (R, v) be the set of all transition probabilities ¢ for which the infor-
mation rate (nt)~'_#“_ (v, q) is not greater than the positive number R. Define

L (v 9) = $52 V57 0 u(X5 Y)g(x, dy)v™(dx) .
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The nth order distortion-rate function is given by

D,(R,v, t) = inf{Z (v, 9)|q € Q. (R, V)}.
Finally, the distortion-rate function for the segmented source of duration r is

D(R,v,7) = lim,_,D,(R,v, 7).

—00

The distortion-rate function for (£, &, v) is then D(R, v) = inf {D(R, v, 7)|7 > 0}.
Since a transition probablhty g€Q. (R, v) can be viewed as a function on
B x ZB* or B; x &, where 2 = nr, it is clear from the definitions that

Feavs @) = (e q) and Z, (v, Q) = Z(p, 9) so that D(R, v, t) = D(R, p)
for each = > 0 and thus D(R, v) = D(R, p).

To summarize, we have constructed a source with underlying probability space
(Z, &, v) which has the structure needed for the discrete-time source coding theo-
rem of Gray and Davisson. This source satisfies d(R, p) = d(R, v, t) = (R, v)
and D(R, p) = D(R, v, ) = D(R, v) regardless of the value of r that was used
to construct the segmented source. If the original continuous-time source is
totally ergodic, then the segmented source of duration r consisting of the process
{X. :|i € Z} on the probability space (Z, &, v) is ergodic with respect to the shift
transformation 7. In this case the abstract alphabet discrete-time source coding
theorem of Berger (1968, 1971) can be applied to establish (R, v, ) = D(R, v, 7)
and therefore not only is it true that o(R, 1) = D(R, p) but also o(R, p, 7) =
D(R, p) for each = > 0.

Because of the fact that we do not require the original source to be ergodic
(let alone block ergodic), the segmented source cannot be assumed to be ergodic.
Thus, the more general result of Gray and Davission is required. Since the
alphabet space (B, p,) is a complete separable metric space, the nonergodic
source (Z, &, v) can be decomposed into its ergodic (or metrically transitive)
~ components [18], [19]. Let .77, be the o-field of r-invariant sets in &% Since
& is the g-field of Borel subsets of the complete separable metric space X, then
there exists a family {v,”| w € I} of r-ergodic probability measures on (Z, &)
for which v,7(S) is a .7 _-measurable function of w for each fixed S ¢ & and

v(S N H) = {5v,7(S)v(dw)

for each S ¢ & and each H e ... Furthermore, for each nonnegative measur-
able function f: X — 2,

(23) o fdv = (:{}: fav, p(do) .

Note that we require v,°(S) to be .77 -measurable and not just .>“measurable as
in [15]. Thus, v,7(S) is a version of the conditional probability of S given 7.
The results of Gray and Davisson (1974) as generalized in [13] provide a coding
theorem for the nonergodic source in terms of the distortion-rate functions
D(R, v,) for the ergodic sources of this decomposition. We need only the fol-
lowing special case.
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THEOREM 1. Given a discrete-time stationary source consisting of the random
process {X_ ,|i e Z} on the probability space (X, &, v) with complete separable metric
space alphabet (B,, p.) and reproduction alphabet B, ¢ B, for which there exists a
letter a_ e B, such that

SE pr[Xr,O(w)’ az’]”(dw) < o

o(R, v, 7) = {; D(R, v,/ )v(dw) .

then

6. Continuous-time source coding theorems. In this section we will present
several new coding results for continuous-time random processes. We first sum-
marize the results of the previous sections by stating a source coding theorem for
stationary sources. We then specialize this result to stationary ergodic sources.

Stationary sources. Our basic coding theorem follows from Theorem 1 and
(20). As in the case of Theorem 1, this result can be applied for any = > 0.

THEOREM 2. For a stationary continuous-time source satisfying (P.1) and (P.2)
with a reproduction alphabet satisfying (P. 3) and (P.4),

(24) O(R, 1) = 5 D(R, v, )p(dw) ,

where X = {w e Q|1 ¢ B([ir, (i + 1)7)), Vie Z} and {v,|w € X} is the
family of t-ergodic probability measures obtained from the ergodic decomposition of
the segmented source of duration t.

Equation (24) can be written in various equivalent forms. Since v, is 7-
ergodic, we can replace D(R,v,7) by d(R, v, ) in the integrand and we can
also replace d(R, p) by either 6(R, p, 4) or 6(R, v, ) for any 1 > 0.

Theorem 2 provides a formula for evaluating the optimum performance 6(R, p)
for the stationary source. Since an uncountable number of distortion-rate func-
tions must be evaluated in order to calculate the right-hand side of (24), it is
important to have conditions under which the simpler relationship d(R, p) =
D(R, p)is valid. A stronger relationship which has considerably greater practi-
cal significance is (R, ¢, t) = D(R, p) for each = > 0. In order to establish
such relationships we must place further restrictions on the source.

Ergodic sources. Before proceeding to the source coding theorem for ergodic
sources, we will show that the coding theorem for totally ergodic sources follows
immediately from Theorem 2. Suppose the totally ergodic source satisfies all
of the conditions-of Theorem 2. Total ergodicity implies .7 is a trivial o-field
for each ¢ > 0 (i.e., any set in .7, has v-measure equal to 0 or 1). Therefore,
for each set S € & there is a set X; e & such that y(Z;) = 1 and

w7 (S) = E{Is| 7)) = Bl = »(S) Yoel

where I is the indicator function for S. Since & is countably generated this
implies that the measures v,° and v are identical for v-almost all w. Theorem 2
and the results of Section 5 then imply (R, ¢) = D(R, ¢)and in fact 6(R, p, 7) =
D(R, p) for every = > 0.
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We will say a continuous-time source (2, .4, y) is continuous in the sense of

Pinsker if
lim,_,(EATE)=0, VEe. .

A source which is weakly mixing and continuous in the sense of Pinsker is known
to be totally ergodic [1]. Thus, the above comments constitute a proof of the
coding theorem for weakly mixing sources which are continuous in the sense
of Pinsker. Our main result for ergodic sources is the following theorem.

THEOREM 3. Suppose a stationary, ergodic, continuous-time source Q, F,p
satisfies (P.1) and (P.2) and is continuous in the sense of Pinsker. Suppose the
reproduction alphabet satisfies (P.3) and (P.4). Then d(R, p, t) = D(R, p) for all
> 0.

PrRoOF. Let 7 and ¢ be arbitrary positive numbers and define 2, = 2-* for each
nonnegative integer k. For each k, let {y, ,|w € X} be the family of 1,-ergodic

probability measures. Choose a positive integer n and a transition probability
g€ Q. (R, v) such that

(25) Z v, 4) S DR, 1) + <.

Let v , be the measure induced on <#." by v, ,. For each nonnegative integer k
define -
Rk(w) = (nf)_l r,‘n(”w,m ‘1) ’ Yoe pX

and note that
(26) T Vs> ) = D(R(®),v,,), YVwel.
It follows from (25) that =7, (v, q) < p* + e. Since

Do avs 9) = {57 (a1 00 a(X, Y)q(x, dy)r™(dx)

= s (am 0 (X"(€)s 1)9(X."(§), dy)v(dE)
and

Do 9) = §x U2 02 w(X(E), Y)GX(E)s dy)va i(dE) »
then it follows from (23) that
(27) Dol 9) = 3 Ze Vo s 9)(d0) -

We will later show that there exists a 6 > 0, a positive integer k, and a set
2, e & such that y(Z°) < 0;

(28) R(w)<R+¢, Yowel;
and
(29) §5¢ §5 00 n(X"(§), ape )y i(dE)v(dw) < €.

Assuming that (28) is true, then it is clear that

(30) D(R(w),v,:) = D(R + ¢,v,,), Yocki,.
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Combining (26) and (30) we have
D e aVoir9) = DR 4+ ¢,v,,), Yowei,,
and then from (27)
(31) Z, (v, 9) = {5, D(R + ¢, v, ,)v(dw) .
Next we notice that
Szg D(R + & yw,k)y(dw) é S}.‘.g SE pr,n(xrﬂ(E)’ a'nr)yw,k(ds)v(dw)
so that (29) and (31) give '

(32) Fwvs q) = (DR + ¢, v, )v(dw) — €.
Applying Theorem 2 and (25) and (32) we have
(33) D(R, i) = (R + ¢, p1) — 2¢.

Since ¢ was arbitrary and (-, p) is a convex function, (33) implies
D(R, 1) 2 O(R, p)

which, together with (20) and the converse source coding theorem, guarantees
O(R, ¢, 7) = D(R, ). Thus, the proof is complete if we establish (28) and (29).
Clearly, these two results follow from the two lemmas which are stated and
proved below.

LEMMA 6. For any ¢ > O there exists a § such that v(S) < & implies
SS SE pr,ﬂ(xr”(é)’ am‘)yw,k(dg)v(dw) < ¢

for all nonnegative integers k.

PrOOF. Suppose the random variable Y is defined by

(34 Y(§) = 0.,a(X(6),a,), VéeX
and, for each k, X, is defined by
(35) X(0) =, Ydy,,, VoeX.

Then, the random variables X, are uniformly integrable and therefore the inte-
grals {; X, dv are uniformly bounded and uniformly continuous in the sense that
for any ¢ > O there exists a > 0 such that

(36) sup {§s X, dvlk=0,1,2, ...} <¢

whenever S € &“and v(S) < 6. Substituting in (36) using (34) and (35) completes
the proof of the lemma.

LeEMMA 7. For any ¢ > 0 and 6 > O there exists a set X, ¢ . and an integer k
such that v(L,°) < 0 and

FenlVorr @) S Fnvsq) +¢, Ywel,.

PROOF. Since convergence in mean implies almost uniform convergence of a
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subsequence, it suffices to show
(37) lim, ., §5 |7 w(Var §) — F 2 alv; )(do) =0,

which follows from

(38) liminf, ., 7 (Vo1 9) = S n(¥s 9)
for v-almost all w and
(39) SE jr,'n(pw,k’ q)”(dw) g jr,'n(v’ q) N

We first establish (38) for v-almost w. Let 7% = Ny, .7, . Clearly for each
k, 73, © 7 i, each positive integer m. Thus,

‘7—’* = n;‘;o nev;’x:l 7"“1: .

Let .7 denote the class of invariant sets in &, Clearly .7~ c 77*. To show
that in fact 7~ = .77*, let 1 be an arbitrary positive number, let Ee .7 *, and
let (z;) be a sequence of positive numbers such that each 7, is of the form m4i,
and lim,_,, v, = 2. For each i/, stationarity of y implies

(40) w(E A TPE) < p(E A THE) + p(E A TOE) .

But E ¢ 77* implies ,u(E A TeE) = 0 for each i. Thus, (40) and continuity in
the sense of Pinsker implies

t(E A T*E) < lim,_, p(E A THE) = 0

and therefore E ¢ 77;. Butsince 4 was arbitrary this implies £ e 7. Therefore,
7= =071, Notice also that (77, ) is a contracting sequence of sub-o-fields
of & Therefore, if Y: £ — 22 is any random variable with finite expectation
EY, then the sequence (X,) of random variables defined by

X(o) = E{Y | T @) = (Y dv,,

~ is a martingale relative to the sequence (.77,,) and the sequence (X,) converges
to E{Y | 7"} v-almost everywhere. But the source is ergodic so 7" is a trivial
o-field and E{Y |7} = EY v-almost everywhere. Let E’ and F’ be arbitrary
setsin <" and ZZ", respectively, and define the random variable Y by Y(w) =
g(X.*(w), F') if X,"(0) € E’ and Y(w) = O otherwise. If we define the random
variables (X,) by
Xy(w)=$:Yay,,
then we see that for v-almost all @

lim, . p, (E' x F') = lim,__ §; Y dv,,
(41) = s Ydv= p(E x F'),

where, for each w € Z and each k, p,, is the probability measure induced on
B x B, byv,,and q. That is, for each E € £&," and each F e ",

(42) PoilE X F) = (5 q(x, F)v; ,(dx) .
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For each we X, p,, can be extended in a unique way to <" x ﬁ”. The
measure p is defined in (21). If _/ is a countable algebra of sets which generates
A x . then it follows that there exists a set X' ¢ & with y(Z') = 1 such
that for each w ¢ ¥’

(43) lim, ., p, (M) = p(M), ¥YMe_».

The proof of (38) is now easily completed by applying (43) and Dobrushin’s
theorem to the definition of mutual information. This step is very similar to
the proof of lower semi-continuity of mutual information and relative entropy
(see [17], pages 13 and 20), so the details are omitted.

Finally, we see that (39) is a direct consequence of Lemma 1 if we define P
on the g-field & x B, x Z.* by

P(B) = Yo {an V32 (@, X, y)q(x, dy)v,, y(dx)v(dw)

T

and then let P be the measure on . x Z&* x <Z.* which satisfies
P(G x E x F) = (4P, (E x F)u(do)
where p, , is the measure which satisfies
Po(E % F) = p,(E x B*)p, (B x F).
If Q and Q are defined as in Lemma 1, then it follows from (23) that

Q(E x F) = {;q(x, F)v"(dx)
and )
Q(E x F) = v™(E) {4 q(x, F)v"(dx) .

Therefore, H(Q, Q) = -7, (v, 9) and H(p,, p,) = -, .(Vu» 9)- This completes
the proof of Lemma 7.

7. Discussion and conclusions. The main results of this paper are Theorems
2 and 3 which relate optimal code performance to the distortion-rate function
of information theory. These results apply to a wide class of stationary sources
of physical interest including nonergodic sources (Theorem 2) and ergodic sources
which are continuous in the sense of Pinsker (Theorem 3). We should mention
that the measurability requirement on the process is not unrelated to the conti-
nuity requirement. If a stationary source is continuous in the sense of Pinsker,
the source output process is continuous in probability. If the source alphabet
is &2 or any compact metric space, this guarantees there is a measurable standard
extension of the process.

Theorems 2 and 3, as stated and proved here, require that the distortion
measure be a metric. However, the only place this is used in our proof is where
we invoke Theorem 1 (the Gray-Davisson theorem). Thus, Theorems 2 and 3
are also valid for any bounded, measurable distortion measure; the proof is ex-
actly as given here except we use Theorem 3 of Kieffer (1975) in place of Theo-
rem 1. Furthermore, as pointed out in [6], it appears that Theorem 1 can easily
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be extended to allow the distortion measure to be a nonnegative, continuous,
nondecreasing, function of a metric.

Finally we should mention that source coding theorems can be obtained for
information-stable continuous-time sources with certain uniform integrability
conditions on the distortion measure. In unpublished lecture notes (in Hun-
garian), Csiszar has proved a continuous-time source coding theorem via this
method. This approach was used earlier by Dobrushin (1959) for discrete-time
sources. Marton (1972) has established information stability for stationary er-
godic continuous-time processes which are continuous in the sense of Pinsker
and have separable metric space alphabets. Her approach was based on the
observation that the set of all = for which the ergodic process is not r-ergodic
is a countable set.
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