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A CURIOUS CONVERSE OF SIEVER’S THEOREM

By JAMES LYNCH
The Pennsﬂvania State University

A sufficient condition for a sequence of random variables, T1, T3, ** -,
with cumulant generating functions, ¢, ¢, -+, to have a large deviation’
rate is that n=1¢(1) — ¢(2), where ¢)(2) satisfies certain regularity conditions.
Here it is shown that, when the large deviation rate exists and T3, Tz, - - -
are properly truncated, it is a necessary condition,

1. Introduction. Let T, T,, - -- be a sequence of random variables such that
T,/n converges to zero in probability (written T,/n—,0). For a >0, let
P,a) = P(T, = na). Then P,(a) — 0 as n — oo, and, in many cases, P,(a) — 0
exponentially fast, i.e., there exists a ¢*(a) with 0 < ¢*(a) < oo such that

(1.1) n=tlog P, (a) —» —¢*(a) .
The function ¢* is referred to as the large deviation rate.

In many instances the large deviation rate can be determined. For example,
if T, =X, + ... + X,, where X, X,, -- . are independent and identically dis-
tributed (i.i.d.) with mean 0, then (see Chernoff (1952), Bahadur and Rao (1960),
and Bahadur (1971))

(1.2) @) =sup{ia — g(N): 2 2 0},

where ¢(1) = log E(exp(4X,)) is the cumulant generating function (c.g.f.) of X,.
Recently, Sievers (1969) used Bahadur and Rao’s type of proof of Chernoff’s
theorem to calculate the large deviation rate for sequences of random variables
T,, T,, - - -, which are not necessarily sums of i.i.d. random variables, when the
c.g.f.’s of {T,} and some of their high order derivatives satisfy certain regularity
conditions. More recently, Plachky (1971) and Plachky and Steinebach (1975)
have improved Siever’s theorem by removing these higher order derivative con-
ditions. The Plachky and Steinebach result may be stated as follows.

THEOREM 1.1. Let T,, T,, - - be a sequence of random variables with c.g.f.’s
&1y oy - -+, respectively. Let
(1.3) n=,(A) > ¢(A)  for Aele,d], 0ce<d.

Let D = {2¢€(c,d): ¢ exists and is continuous at 2} and let A = {a: ¢'(2) = a,
Ae D). Then, if ¢(2) is strictly convex on [c, d], (1.1) holds for a € A, where

¢*(a) = sup{la — ¢(2): 2e[ec, d]} .

Notice that the large deviation rate (1.2) for sums of i.i.d. random variables
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is an immediate consequence of Theorem 1.1 with ¢,(2) = nlog E(exp(4X))),
when E(exp(2X,)) < oo for 2¢[c, d] and X, is nondegenerate.

In this paper, we consider the converse problem, i.e., when does (1.1) imply
(1.3)? Example 2.6, below, shows that the converse need not hold. The reason
that the converse may not hold, as is illustrated in the example, is that the ex-
ponential factor in the c.g.f. of T, artificially gives large weight to regions in
the tail of the distribution of 7, which may blow up the c.g.f. as n — co. How-
ever, this problem is removed by truncating T,; and in Theorem 2.5, we show
that the converse indeed holds for the truncated random variables.

2. The main result. Let T,, T,, - - - be a sequence of random variables such
that T,/n —, 0. It is assumed that
(2.1) nt'log (T, = na) > —¢*(a) for ae[0,d] and (0<d< ),
where ¢*(d) < oo. |

Let

¢(2) = sup {a — ¢*(a): ac|0,d]},
and let :
S, =T, if T,<nd

For n =1,2, ... and for 2 > 0, let ¢,(4) be the c.g.f. of §,. Note that, for
each n,, ¢, is a convex function and that the derivative of ¢,, denoted ¢,’, exists
and is finite for 2 > 0. Also, since ¢, is convex, the right derivative of ¢, exists
at 0, though it may be equal to — oo, and will be denoted by ¢,’(0).

We begin with some lemmas which are required for the proof of Theorem
2.5.

LEMMA 2.1. For ac |0, d] and for ¢* as defined in (2.1),
n='log P(S, = na) — —¢*(a) as n-— oo .

Proor. For ac[0,d], P(S, = na) = P(T, = na), from which the result
follows immediately.

LEMMA 2.2. For 2 =0,

lim inf L ¢(2) = ¢(3) .
n

Proof. Let 2 = 0. Then, by Markov’s inequality,
P(S, = na) < exp(—4na)E(exp(4S,)) -
Hence, fora €0, d],
Aa — ¢*(a) < liminfn='¢,(4) .

The lemma now follows from the definition of ¢(2) by taking the supremum of
the left side of the above inequality over a € [0, d].
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LEMMA 2.3. The sequence {n~'¢,(4)} is pointwise bounded, and hence, for each
subsequence {m} of {n}, there is a further subsequence {k} of {m} and a convex function

¢(2) (which may depend on the subsequence {k}) such that
k=g (2) — $(2) as k—oo for 2=0.
Proofr. Let 2 = 0. Then
n~'log P(S, = 0) < n7'¢,(2) < Ad .
Since n~'log P(S, = 0) » —¢*(0) = —¢*(d) > —co, it follows that the
sequence {n~'¢,(4)} is bounded for 2 > 0. The remainder of Lemma 2.3 is a
well-known property of bounded convex functions (see Roberts and Varberg
(1973), Chapter I).
LEMMA 2.4. For 2 > 0,
(2.2) 0 < liminfn~'¢,/(2) < limsupn~i¢,/(2) < d.
Proor. Let 2 > 0. Let ¢, and F, be moment generating function and distri-
bution function, respectively, of S,. Then
n7¢a'(A) = 17 o, uay X €XP(AX) dF(X)/$,(2)
= d §g,na1 €Xp(AX) dF (x)/$,(2) < d.

This proves the inequality on the right of (2.2).

To prove the inequality on the left, note that 7,/n —, 0 implies that S, /n —, 0.
So, for 2 = 0, E(exp(4S,/n)) = $,(4/n) — 1 as n — oo since exp(Ax) is a bounded
continuous function on (—oo, d]. Since the function g,(1) = ¢,(4/n) is convex
for each n, it follows that g,’(1) — 0 on (0, oo) (see Roberts and Varberg (1973),
Chapter I). So,

n g (A[n) = n=1¢,/(2/n)|$.(3/n)
= 9./(2)/9,(2) — 0
on (0, c0). Thus the inequality on the left of (2.2) follows by noting that
n='¢,’(2) is an increasing function of 2 for each n.
THEOREM 2.5. For 1 > 0,
lim n=1¢,(2) = §(A) .

Proor. From Lemma 2.2, we need only show that

(2.3) lim sup n='¢,(2) < ¢(2) for 1>0.
To do this we define the following quantities. Let X, X}, - .. be i.i.d. normal
random variables which are independent of S, and have mean 0 and variance
o’. LetS,’ = ¥# X,. Then, for 1 >0,
a.o(4) = log E(exp(A(S, + S.))) = ¢u(2) + n(20)2 .
It follows from Lemma 2.3 that, for every subsequence {m} of {n}, there is a
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further subsequence {k} of {m} and a convex function &(2) such that

k=g (A) —> () as k—oo for 1x=0.
So,
k=1, (2) — ¢,(4) as k—oo for 2=0,
where ¢,(2) = $(2) + (A0)*/2 is strictly convex.

Let D = {210, oo): ¢, exists and is continuous at 2}, i.e., D = {1€ (0, oo):
J" exisis and is continuous at 4}. It follows that D is dense in (0, co), and
furthermore, it is clear that it is independent of ¢. Fix ¢ > 0 and let 2¢ D.
Let a;,, = §,'(2). Then by Theorem 1.1,

k= log P(S, + S/ = ka;,) > —$,*(az,,) as k — oo,

where §,*(a; ) = Aa,, — ¢,(2).
Note that a, , | #'(2) = a,aso | 0. It follows from Lemma 2.4 that a; € [0, d]
for Ae D. We consider two cases.

Case 1. a,e(0,d]. Let 0 < e < a;. Then for all sufficiently small o, say
6 < 0, 0< a,—e¢<a, Thus, since
P(S, + S, = ka,,) < P(S) < ke)P(S), = k(a,, — ¢)) + P(S,,' = ke)
< P(S, 2 k@, — ) + PS/ = ke)
&.*(a; ,) = min (¢*(a,, — ¢), €*/(20%)) for 0<ao<a,.
That is,
Aay,, — ¢,(2) = min (¢*(a,, — ¢), &/(267)) ,
or v
(20)[2 4 ¢(2) < max (Aa,,, — ¢*(ar,, — €), 2a;,, — €/(20%)
= max (de + A(a, , — €) — ¢*(a;, — €), 4a;,, — €*/(207))
< max (A + ¢(2), 4a, , — €*/(24%)) .

Letting ¢* — 0 and then ¢ — 0, we have

24) §(2) < 9(2) -
CASE 2. a, = 0. Then, from the argument in Case 1 with ¢ =a; /2, we
have

$(A) 4 (A0)’[2 < max (H(2) + 2a;,/2, 2a,,) -

Letting ¢ — 0, we get (2.4). Hence, (2.4) holds for all ¢ D, and since ¢(2)
and ¢(2) are convex and D is dense in (0, c0), (2.4) holds for all 2 > 0. Thus,
since every subsequence {m} of {n} has a further subsequence {k} such that (2.4)
holds for 2 > 0, it follows that (2.3) must hold. This completes the proof of
Theorem 2.5. '

We conclude the paper with an example where (2.1) holds for a sequence of
random variables, T}, T,, - - -, but lim n~*log E(exp(4T,)) = oo for 2 > 0.

ExAMPLE 2.6. Let X,, X,, - -- be i.i.d. normal random 'variables with mean
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0 and variance 1. Forn=1,2, ..., let Y, be a random variable independent
of X, ---, X,, where Y, = n? 0, or —n® with probabilities, exp(—n?®), 1 —
2 exp(—n*), and exp(—n®), respectively. Forn=1,2, ..., 1let T, = 31 X, +
Y,. For 2 > 0 let ¢,(2) = log E(exp(4T,)). Then,

n'¢,(A) = 22 4+ n~'log (1 + exp(n*(nd — 1)) + o(1))

— 00 as n— oco.
However, for a > 0,

P(T, = na) = P(37 X, = na)(1 — 2 exp(—n?)

(2.5) + exp(—r*)(P(21 X, = na—n®)+ P(3t X; = na+ n?))
= (P(21 X, = na) + exp(—n*))(1 4+ o(1)).
Thus, since n~'log P(3;* X; = na) — —a*/2 from (1.2), it follows from (2.5) that

n='log P(T, = na) — —a*/2.

Another interesting example which is related to the problem considered here
may be found in Baum, Katz and Read (1962), page 196. There a sequence of
random variables, T,, T,, - - -, is constructed which is a martingale sequence
such that

E(exp(4T,)) = o foreach n and 20,
but
limn-tlog (T, = na) = —4% for a>0.
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