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DISCRETE-TIME STABLE PROCESSES AND THEIR
CERTAIN PROPERTIES

By Yuzo Hosoya
Tohoku University

In this paper we derive the characteristic functions of multivariate
stable distributions; specifically the canonical representation of symmetric
stable laws is given. Based on that representation, we construct linear sta-
ble processes (which include autoregressive stable processes) and stable pro-
cesses with spectral representation. A sufficient condition for linear stable
processes to be regular is given; the complete regularity of autoregressive
stable processes is proved. Furthermore, we derive the asymptotic distri-
bution of the Fourier transform of a sample from stable processes with
spectral representation.

0. Introduction. The present paper attempts to construct various (discrete-
time) stable processes through the canonical representation of multivariate stable
laws: throughout this construction, concrete models which seem to be practically
useful are suggested and their probabilistic properties are examined. A con-
struction of stable processes by means of characteristic functionals can be seen
in Hida (1970). His study is, however, confined to stable processes with inde-
pendent increments; in this paper we try to construct stable processes with
“correlation” and to investigate the conditions under which statistical inference
can be made for those processes.

To be specific, in Section 1 we establish the canonical representations of
multivariate stable distributions (Theorem 1.2 to 1.4). That section introduces,
in particular, the concept of symmetric multivariate stable distributions and
shows that their characteristic functions have a simple representation (Theorems
1.3 and 1.4). In Section 2 we construct discrete-time stable processes and ex-
amine their stationarity. In particular, we give two typical examples: linear
stable processes (which include autoregressive stable processes) and stable pro-
cesses with spectral representation. Namely, let {¢,, t € I} be a family of i.i.d.
random variables with a stable distribution of exponent a: that section proves
that the equations X, = Y5, 7,¢,_; (f € I) generate a stationary stable process
{(X,:rel} if 5, |rd*® < oo for some d > 0 (0 < @) when 0 < a < 1, or if
Y=o lril < oo when @ > 1. Those pracesses are called linear stable processes
and their regularities are examined in Section 3. On the other hand, in the
same section we will show that the spectral representation known in the theory
of second-order stationary processes has an analogue for a certain class of stable
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processes. These processes will be termed stable processes with spectral repre-
sentation; the characteristic function C(u,, - - -, u,) of a finite sample from those
processes will be shown to have a representation of the form C(u,, - - -, u,) =
exp[— §5 {| 25%-1 cos (A, w)u,|* + |32, sin (4; w)u;|*} dF(w)], where F is a finite
measure with a bounded, Riemann-integrable density.

The concepts of regularity and complete regularity of stationary processes
were introduced by Rozanov (1967). In Section 3 we examine the regularities
of linear stable processes. Theorem 3.1 provides a sufficient condition for linear
stable processes to be regular; Theorem 3.2 states that autoregressive stable
processes (@ > 1) are completely regular if the usual condition for eigenvalues
of the difference equations is satisfied.

In Section 4, we introduce the kernel K, (w) = (27)~'C,(2n 4 1)'~%|sin {(n +
Ho}/fsin (0/2)|* (1 < a < 2) and prove that it has a similar property to the Fejér
kernel as far as pointwise convergence is concerned (Lemma 4.2). Furthermore,
defining D, (w;) = (2r)"Y*C,V*(2n+1)*=*/=sin {(n+§)(0; — o)}/sin ((0; — v)/2)),
we show that the kernel |} 2_, u,; D, (w,;)|* reals the values of the f(w;) in the
sense that (= _|>?_, ;D (v;)*f(®)de converges pointwise to > 2_, |u;|*f(w;)
under fairly general conditions (Theorem 4.1). That result will be employed
to show that the Fourier transformation of the sample generated by stable pro-
cesses with spectral representation reveals the structure of the measure F in the
canonical representation to a certain extent (Theorem 4.3).

1. Multivariate stable distributions. The following theorem concerning the
multivariate infinitely divisible distributions is well known (cf., for example,
Parthasarathy (1967)).

THEOREM 1.1. A characteristic function f(u) is that of a ( finite-demensional) in-
finitely divisible distribution if and only if it has a representation of the form

log flu) = i X2, Biu; — % 220y 2201 0y 0,
+ S(eiz“m SRR DWLILS >1’+ L %5y (dx)

U+ X% Do
where u and X are real p-dimensional vectors the jth element of which are denoted
by u; and x;, {0,;;i,j = 1,2, ---, p} is a symmetric, nonnegative-definite matrix,

and v is a finite measure on R assigning zero measure to the origin (p = 1). The
8, and the measure v are uniquely determined in the representation above. Further-
more, if the matrix {0,;} is positive definite, {a,;} is also unique.

DEfFINITION 1.1. A p-dimensional random vector X is said to have a stable
distribution if for every positive integer k, and X,, - - -, X, independent with the
same distributions as X, there are a constant ¢, > 0 and a vector b, such that

(1.1) X+ -+ X)) = L (@ X+ by
(&£ denotes the distribution) .

REMARK. The same line of argument used in the univariate case applies
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here and @, can be expressed as k* for some 2 > 0. This fact is given without
proof.

Let f(u) be the characteristic function of a stable distribution. Since a stable
distribution is also infinitely divisible,

¢(u) = log f(u)
=0 Bous — % 2 25 00504,
S ] iy ugx, >1+in2 o)
+ 5 (e Rl ) R e

Suppose thatg,; = 0, fori, j = 1,2, ..., p. From Definition 1.1, [exp{¢(u)}]* =
exp(i 33; b, ;u;) exp[¢(a,u)], where b, ; denotes the jth element of the vector
b,. Thus

(1.2) kp(u) =i 33; b, ;u; + P(a,u).

Define y and y, to be measures on <Z(R?) such that, for B e <Z(R?), pu(B) =

{5 (1 + X x,%)/ 2 x;(dx) and p(B) = p(z; a,z € B), where <& denotes the Borel
field. Between these measures there exists the following relation.

LemMa 1.1. kpu(dx) = p(dx).

Proor.

o) = i, 3 g+ (o0 — 1 — L BE5) o),

for suitable constants ;. On the other hand, from (1.2),
kd(u) = i 3 kB, u, <eizw~_1 _LZ_"_J')‘_f_>k dx) .
$0) = 1 X kpoa o+ § (e300 — 1 — R ) k(ax)
Then by the uniqueness of representation (see Theorem 1.1), the lemma follows
from the relation (1.2). [

Let T, be the unit sphere {x: >, x>=1,xeR?} in R? and let y =
(P> -+ +»y,) €T, where y; = x;/(3 x;*)! and let z = (r,y) with r = (3 x;?).
Consider the map p: R? n {0} — (0, o) X T, such that p(x) = z. The map p
is one-to-one onto (0, o) X T,. Now let £ and &, be measures defined on
Z£[(0, ) X T,] such that, for every Be ZZ[(0, o) x T,], &(B) = u(p~'(B)),
and &,(B) = p#(07%(B)). Then:

LEMMA 1.2. For any x € R*, and for any D, Borel subset of T,

&([x, o) x D,) = (1/x")E([1, 00) X D).

Proor. Let @ > 0. Then in view of the definition of &,,

(1.3) £(([a, 00) X D,) = 5([5‘_ oo> X D,).

k
On the other hand, from Lemma 1.1,

(1.4) t(o7X([@; ) X D,)) = ké([a; 00) X D).
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Thus using the fact that @, = k%, 2 > 0, it follows from (1.3) and (1.4) that
é([a/k?, o0) X D,) = k&([@, o0) X D,). Putting a = (k/n)* with some positive
integer n,

(1.5) E(([k[n), 00) X D,) = (kln)&([1, ) X D,).
The equation (1.5) implies that for a dense subset of R¥, it is true that
(1.6) §([x, 00) X D,) = 1/(x*)&([1, o0) X D,) .

However, since ¢ is monotone in x, (1.6) holds for all xe R*. []

LemMMa 1.3. 4> 4.

Define the measure 7 on =£(T,) by 9(D,) = é([1, oo) x D,) for D, e &&(T,).
As in the above, denote by y a point belonging to T,; r > 0, and let z be the
pair (r,y). By virtue of Lemma 1.2, the next theorem is derived as a straight-

forward generalization of the univariate case of stable distributions. This result
is also to be found in Rvaceva (1962).

THEOREM 1.2. A characteristic function f(u) is stable if and only if it is given
by either

—_7 Uu. ir Uy _ irz uiyi _dL
(1L7) 10gf(0) = i T Bty + Soumer, (@ |- LR S nay)
or
(1.8) log flu) = i 3} Bu; — § L2 045

where 7 is a finite measure on T, and 0 < a < 2.

For various applications, Theorem 1.2 seems to be too general; in the rest of
this section we explore the canonical representations of symmetric stable laws.

DerFINITION 1.2. The distribution of a random vector x is called symmetric
with respect to @ if there exists a vector 8 of the same dimension as x such that
P(x — @ e A) = P,(—x + 0 € A) for any Borel set 4.

LeMMA 1.4. A stable distribution is symmetric if and only if the measure 7)
in (1.7) satisfies n(B) = n(B*) for all Be =#(T,), where B* is the subset
{veT,: —yeB}.

Proor. Let x be a random vector. Then the distribution of x is symmetric
with respect to @ if and only if for the characteristic function f(u) of x — @ it

is true that f(u) = f(—u). On the other hand, since p is one-to-one and onto,
the measure 7 is uniquely determined. []

RemArk. If p =1, (1.7) becomes

— 3 o iUz iu, x dx

(1.9) log f(u,) = iB,u, + m \§ <e "1 — 1 — i —; ;12) x11+1a
m, §0_ <eiwz o iwx > dx, )

+ 2 S 1 + x22 ]x2]1+a
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Stable distributions for which m, = m, are usually called symmetric; the ex-
pression (1.9) is equivalent, in this case, to

(1.10) log f(u,) = ifu, — dlu|*,
for some positive constant d and a real number g (cf. Breiman (1968), pages
204-207). , -

THEOREM 1.3. A stable distribution is symmetric if and only if its log f(u) is
given by 4 4
(1.11) log f(u) =i 33 ius — §r, |2 4syi*6(dY) »
where 0 < a < 2, and § is a finite measure.

Proor. The symmetricity of » implies that

log f(w) = i ¥ r.u; + % ST,[S"_w <ei*<2“m’ —1- ir(lz+"jfi)> |,‘;r+a,

oo ir(Z %yg ir(Z u y ) dr
+80<e @i — 1 — 1+;zi>r1+a 7](dy)
However, the term in the brackets corresponds to the last two terms in (1.9)
with m; = m, = 1 and u, = 3} u;y,; thus it is equal to 0 3 u,y;, — d| 2] u; y,|*
for a certain constant § in view of (1.10). Set &(dy) = 47(dy) and B, =
7i + 0§z, y:7(dy), to obtain (1.11). The sufficiency is obvious. [J

There exists another form of representing symmetric stable distributions.
Namely,

THEOREM 1.4. A multivariate distribution is symmetrically stable if and only if
its characteristic function f(u) is given by

(1.12) log flu) = i & Buts — $ro | 50 i xi|*¢(dX)
where ¢ is a (not necessarily finite) measure on ZZ(R?) such that
(1.13) {15 x2eg@x) < oo

Proor. The necessity of the condition is obvious since in Theorem 1.3, the
measure & can be regarded as the measure over R? giving zero measure to
{T,}' N R? (the prime denotes the complement). The sufficiency is proved as
follows. First symmetrize ¢ by defining ¢* as ¢(B) 4 ¢(— B) for Be ZZ(R?).
Then (1.12) and (1.13) still hold for ¢*. Let & be the measure over (0, c0) X T,
induced from ¢* by the map p, and let

(1.14) g*(dy) = (¢ re&(dr, dy);

then, in view of (1.13), &* is a symmetric, finite measure on (T,). Using
(1.14), (1.12) is rewritten as

(1.15) log f(u) = X Bty — Vo, |20 #:yil*€*(dY) - 0

EXAMPLE. Suppose {X,:t=0, =1, +2, .-} is a set of independent random
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variables with the same log-characteristic function, given by ifu — clu|* (¢ > 0
and 0 < @ < 2). Let{a,:i=0,1,2, ...} be a sequence of constants such that
D]yt < oo for some ¢ (0 <e<a)if 0<a=<1 or 15, |a] < oo if
l <a<?2 Then Yti(: i Xy ), i= 1,2, ..., p, have a symmetric
multivariate distribution: let Y7 = 7, a; X, _;; then each of the Y7, converges
a.e. in view of Kolmogorov’s three series theorem. Set Y, = }17,a,X;_;,
i=1,2, ..., pand consider the characteristic function g(u) of Y, - - -, Y,; then

in view of the Lebesgue bounded convergence theorem, it holds that

(1.16) g(u) = exp{if( o @) (2o 8;) — € Dheoo | 2Poh @i 4]} -
Now let «; = 0 for i < 0. Then

I A—- |Zf=k a; U= | 5P, Ay U .
Therefore (1.16) can be identified with (1.12) if the measure ¢ in (1.12) is in-
terpreted as giving the mass c to each point (a;_, @, 4, - -+, a, ), k= -+, p — L.
Though the number of the points having positive masses is not finite, it is true
that, since a/2 <l

DRSNS 3¢ SN U P o L Y S B A I P LD Q-
which proves that (1.13) is satisfied.

2. Stable processes and stationarity. From now on, we exclusively consider
symmetric stable distributions defined in the previous section. Then in view
of Theorem 1.4 it may be natural to define stable processes as this:

DEFINITION 2.1. A triple (R*, <#(R*), ) is called a (discrete-time) stable
process if for any J, finite subset of 7 (the set of all integers), the characteristic

function f,(u) of 4, is represented by

(2.1 log f,(u) =i X,e, Bju; — SH' o S Des Ui X% (dx)

jeJ Bj

with a measure ¢, defined on ZZ(]],., R;) such that

(2.2) § - V20 X1 y(dX) < o0,

where ZZ(R>) denotes the o-field generated from the cylinder subsets of R, and
¢,(B) is defined as p,(B) = (B X [[ic;-s R;) for Be ZZ(]];e, R;) (R, = R).

The Kolmogorov conditions of consistency are characterized in terms of char-
acteristic functions as follows.

DEerINITION 2.2. Call a class of characteristic functions {f,(u)} consistent, if

it satisfies the following conditions (2.3) and (2.4): if a;, - - -, @, is a permutation
of 1,2, ...,n,

(23) ftl,n-,t,ﬂ(uli R un) = ftal""'tan(ual’ ceey ua%)

and if m < n,

(2'4) ﬁl""’tm(ul’ ity um) = ﬁl,---,tn(ul’ sy Uy, 05 Tty 0) .
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REMARK. Based on a consistent class of characteristic functions, the station-
arity is characterized: given a consistent class of characteristic functions { f;(u)}
the stochastic process consistent with that class is stationary if and only if for
every u e [],., R, and for any integer k, f;(u) = f;,,(u).

To give concrete examples of stable stochastic processes, first of all, linear
stable processes are constructed as follows: let {X, i € I} be a sequence of inde-
pendent random variables with the common log-characteristic function given
by ifu — clu|*, ¢ > 0 and 0 < @« < 2. The example in the previous section
showed that the Y, generated by Y, = Y= ,r, X, ;, t =1, t,, ---, 1,; have a
multivariate stable distribution if Y52, |r,|*™* < oo for some ¢ (0 < ¢ < a) when
O<a<lorif 2|7 < oo when 1 < @ < 2. Then it is easy to see that the
class of characteristic functions given by (1.16) satisfies (2.3) and (2.4) above;
moreover, the process {Y,} is stationary. Call the process {Y,} generated by the
scheme Y, = 3 7,X,_, a linear stable process. Section 3 explores conditions for
the ergodicity of linear processes. '

Next, consider a special but practically important case of the above example.
Namely, that is a finite-order autoregressive stable process. Given real number
0 &y, - -+, &,, assume the function }}7_, &,z (§, = 1) has all zeros outside the
unit circle in the complex plane. Then the following expansion converges uni-
formly on the unit circle {|z| = 1}; that is,

(2.5) X &2y = Lori?* -

Now, suppose that a linear stable process {Y,} is generated by Y, = 3772, 7: X,
where the 7, are given by (2.5) and the characteristic function of X, is given by
exp{iu — clu|*} (a« > 1). Let Z, = > 7., &,Y,_,; then the Z, are independently
identically stably distributed. As a result, {¥,} may be regarded as generated
by: X7,&,Y,., = X,, where the X, are independent stable random variables
with a common symmetric stable distribution. Call the process {Y,} thus defined
a (finite-order) autoregressive stable process. The complete regularity of such
processes will be examined in the next section.

Denote by Z the space of infinitely differentiable real-valued functions
on [0, 7]. Then a generalized stochastic process is defined to be the triple
(Z', B(ZD"), 1) where 2" is the dual of Z, and ££(Z") is the o-field gener-
ated by the weak topology on Z’. According to Minlos (1959), to each char-
acteristic functional on &, there corresponds a unique generalized stochastic
process. For generalized stochastic processes, Gelfand and Vilenkin (1968) in-
troduced the concept of “processes of independent values at every point.”
Namely, a generalized process X is a process of independent values at every
point if (X, &) and (X, &,) are independent whenever §&,, §, € Z and the sup-
ports of & and &, are disjoint, where ( , ) denotes the canonical bilinear form
on & x Z'. Consider the functional on &

(2:6) CH(u) = exp{—{; u(w)|" dF()) ; e,

where Fisa finite measure on ZZ([0, =]) which hasa bounded, Riemann-integrable
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density. Evidently C*(u) is a characteristic functional which defines a process of
independent value at every point Z. The process Z takes a point in <&’ as its
sample path. Now let Z, and Z, be independent processes with the same charac-
teristic functional given by C*(u). Let g, and A, be the maps from [0, z] to R
such that g,(o) = cos wt and 4,(w) = sin wz. Consider the random variables

(2.7) X, = (Z, 9> + {Zs 1), tel.

The representation (2.7) may be regarded as the generalization of the spectral
representation of second-order stationary processes to stable processes. For

any t, - -+, t, (el), th, ey th have a multivariate stable distribution whose
characteristic function is given by

(2.8) f(”tl’ oo, utk)
= exp[—§; {|Z w, cos (1, 0)|* + |5 u, sin (1,0)|)} dF()] .

Furthermore the class of characteristic functions of the form (2.8) is shown
to be consistent, though not stationary. The process {X,} thus obtained will

be termed a stable process with spectral representation. In Section 4, we in-
vestigate that process.

3. The regularities of linear stable processes. Suppose now that{Y,(w): e[}
is a stationary process defined on a probability space (Q, <Z/(Q), ¢); denote by
F ¢, the g-field generated by subset 4 of the form: 4 = {w e Q: Y (w)eB,, -,
Ytk(w) e B, ) wheres, ..., 1, <t and B,, ..., B, are arbitrary Borel subsets
of R; > and & =, are defined in a similar way. Now the regularity and the
complete regularity are defined respectively as follows.

DEeFINITION 3.1. A stationary process {Y,(w): te I} is called regular if for
any Ae & =,

—0o0?

(3.1) lim, . Supe -t |#(A N B) — p(A)u(B)] = 0.

DEFINITION 3.2. A stationary process {Y,(w): t €I} is completely regular if
for any ¢,

3.2) lim__,, SUP e ot ipe s, [#(A 0 B) — p(A)p(B)] = 0.

THEOREM 3.1 Let {Y,} be a linear stqble process generated by Y, = 312 1, X,_;
where the X, are independent stable random variables whose log-characteristic func-
tion is given by ifu — clu|*. Then {Y }isregularif 3 5 ,ilr,| < ccandl < a < 2.

The proof of the theorem is broken into a sequence of five steps, each of
which is stated as a lemma below. In those lemmas, the x, are assumed i.i.d.
random variables with finite expectation (E|X,| = a) and they need not be stable.

As the notations to be used in the discussions below, let A,l,...,,l =
N:f{e: Y, ()€ B, } and Ay, = Nilow: Y, (0) € B, }, where s, < 5, < -+ <
5SS St — 5, =m > 0; the B, and B, are arbitrary Borel subsets
of R. Define the set 4°(e R) by 4° = {xe R: |x — y| < ¢ and y € 4}. Dividing
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the sum 3}, 7;X,,-; into parts, let Yiim = Dfomicmtp1 7;X;,-; and Y*om=
Y, — Y, .. Moreover, let C, = {w: max,_, ., |Yy, ml < ¢} and C,’ be the
complement of C,,.

LeEMMmA 3.1.

(Y ml >¢) < a 2ifemtctg—tpn 7516 -
LeMMA 3.2.

/"{Atl,“-,tk n Asl,---,s; n Cm,} =a Z.‘;’o=m+1 lnl/e .
Let A% ..., = M {Y#(w)e B} and 4% ., = N {Y. (o) € B2}, then

Lemma 3.3.

I#{Atlv"'vtk n A"]"""’l n Cm} - #{Atﬂ;,..._tk n Agl'...,sl n Cm}‘
é ﬂ{A%:,...'gk - Atl""’tk} .
Proor. Denoting by Ai,.... ., the complement of Ag oty

plAf e, 0 Ay NGy = p{Ay e, 0 A,y N Cl
+ oAl VA, DG ALY
On the other hand, it holds that p{4] .., n Ay N Cu A LS
el e, — A} O

LEMMA 3.4.

|#{At1,~~-,t,,} - #{Atﬂ;,~~-,t,,}| = #{Agi,m,tk - Atl,m,tk} +2a X5 i jleg)/e

LeMMA 3.5. For any Ayt

lim,, SUP,, oy, |(Aeyyey O Ay ) — #(Ae (A i) = 0

where the supremum is taken over all Borel sets A, .., and all subsets {s, - - -, s;}
of I such that s,, ---,s5, < t, — m.

Proor. By virtue of Lemmas 3 and 4, it holds that

(3:3) (A, N Agy) — (A JA, )
= zﬁ(A%i,...,tk - At1,~~,tk) +4a X5 i jlrille -
Now given 75(> 0) arbitrarily small, ¢ can be chosen so small that

2u( AL ..., — Ai..r,) < 1/2. Besides,'since 3] j|r,| converges by the assump-
tion, 4a 317_,..1 j|7,|/¢ is made less than /2 by taking m large enough. []

In the rest of this section we demonstrate that the autoregressive stable pro-
cess {Y,} generated by 3 &, Y, , = X, is completely regular if all zeros of the
function )] §,z* are assumed to be outside of the unit circle, and the X, are
i.i.d. stable random variables.

First of all, suppose {Y,: re I} is generated by a first-order autoregressive
process: Y, — £Y, , = X,, where |§| < 1; then,

LEMMA 3.6. The first-order autoregressive process {Y} is completely regular.
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ProoF. Giventandr,lets, < -+ S StSt4+7=SHS - S then,
in view of the fact that {Y,} is a Markov process,

P Ay, N Ay ) = (Y, € B, | Yy, € By (Yo, € B, |Y, ,€B, )
F‘(Ytl € Btl | A’l""»’t)#(Y’z € B,l, ceey Y,l e le) .
Then,

‘#(Atl""’tk ,---,gl) - p(Atl,~~,tk)#(Asl,u-,sl)I

nA
8
< (Y, € B,) N (Y, € B,) — (Y € B )Y, € Bl
The term in the right-hand side, however, tends to 0 as 7 — oco. []

THEOREM 3.2. A (finite-order) autoregressive stable process is completely regular.

PROOF. A finite-order autoregressive process is reduced to a vector-valued
first-order autoregressive process to which an argument similar to that of Lemma
6 applies. [] ‘

4. Stable processes with spectral representation. Define a function K, ()
on [—m, x] by

(4.1) K, (0) =2n + 1 for =0,
= (2n + 1y—<|sin {(n + %—)w}/sin (%)r for @ #+0,

where 1 < a < 2. Obviously whena = 2, K,(®) is nothing but the Fejér kernel.
For this K, (w), :

LemMaA 4.1. (i) K, (0) = K,(—o);

(i) 0 £ K, (w) =2n + 1

(iii) K, (0) < (2n + 1)'*z*w~*, for 0< w<m;
(iv) 27 < §*. K, (0) do < 2ar for all n.

ProoF. Since (i), (ii), (iii) are self-evident, only the proof of (iv) is given.
Let F,(w) be the Fejér kernel; namely F,(o) is defined to be K,(w) with «
replaced by 2 in (4.1). Since a <2, F,(0)/K,(0) = (2n + 1)*sin{(n +
1)w)/sin (w/2)~= < 1. Thus, §*, K,(0) do = {7, F,(0) do = 2. Define h,(o)
by: '

h(w) =2n + 1 for 0 < jo] £ n/(2n + 1)
=(2n 4+ 1) 0™ for #/2n 4+ 1) < o] ==«
Then in view of (ii) and (iii), K,(0) < k,(w) for 0 < @ < n. Moreover,
(7. h(w)do < ar . 0

Let 1/C, = (1/2x) §* . K,(w) dw; then, by the lemma above, 1 < C, < a. Let
fe LY —nr,n]; write (2, w) = f(A + 0) + R — 0) — 2f(2) and define (1, w) =
{o|®(2, v)| dv. Each point 2e(—m=, ) for which lim,_,, (1/0)®(4, w) = 0 is

called a Lebesgue point of f. To use Lemma 4.1, the next lemma can be
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demonstrated by following the usual steps of the proof for the case of the Fejér
kernel.

LeEMMA 4.2. Let fe [ —nr, n], and let A be a Lebesgue point. Then
tim, ., [(27)7'C, {2, f(A — w)K,(0) do — f(2)] = 0.

The result of Lemma 4.2 can be generalized in the following way.

THEOREM 4.1. Given an integrable function f(d), —n < 2 < m,let A, Ay, - - -, 2,
be distinct Lebesgue points of f(R), then for 1 < a <2, \* |2 2_, u, D,(2,)|*f(4) dA
converges to 3i7_, |u|*f(4,) as n tends to infinity, where the u, are any complex
numbers and

D,(4,) = 2r)~VeC,V*(2n 4 1)2-/a 32n_ eith=2i

Proor. Without loss of generality, all #, may be assumed to be nonzero. Set
7 = S(2n 4 1)°~* for a positive number S and J such that 1/a < 6 < 1. Let
E,(4,) be the sets [2, — 7,, 4, + 7.], Kk = 1,2, .- -, p, and for each k, denote by
G,(4,) the subset of E(4,) such that for 2e G,(4,), [u, D, (4)] = | X141 4, Du(R)];
then, to neglect the terms converging to zero as n — oo,

(42) Siifr IZI’c,:l Uy Dn(xk)laf(x) da — Zl’c)=1 ,ukla Szfr IDn(Zk)I“f(Z) da
= Lika Sepap |80 1 Du(A)* — |1, Do(2,)|"}(2) d2 .

Now in view of the relations that for any x and y (x >y > 0), |x + y|*
xa + 2ax*"'y and x* — ax*~'y < |x — y|%, the sum in the right-hand side
(4.2) is seen to be absolutely bounded by

Zibes M(ZEo ()20 + 1)704 9 (4 Ju, Do (4,)|*7f(4) dA,
for some M < .

2 IA

However, since {;_ |, D,(4,)|*"f(4) d4 is bounded for each k, as n tends to infinity,

Sonap U 201 4 Du()|* — |4 Du()|"}f(2) d2 — 0 . 0

Let {X,} be a stable process with spectral representation; suppose that the
characteristic function of the sample X_,, X_,,,, ---, X,_,, X, is given by

(4.3)  Clu_y -1, |
= exp[— 5 {| X5-—n #; cOs (@))|" + | Zj-—n #; sin ()|} dF(w)] -
Then construct statistics 7,(4,) and J,(4,) respectively according to the formulas:

I(%) = (2r)/C,He(2n + 1)%=0/< T3__, X, c0s (4,]) ,

J(4) = (2r)7V=C,V*(2n 4 1)-av/e 3% X, sin (4,)),
k=1,2,...,pandl=p+ 1, ..., p 4 g, where the 4, and the 4, are distinct
Lebesgue points in [0, 7], but the 2, may be equal to some 4.

THEOREM 4.2. The I (4,), k = 1,2, ---, p, are independent with the J,(4,),
l=p+1,---,p+g.



DISCRETE-TIME STABLE PROCESSES 105
Proor. The assertion of the theorem is an obvious consequence of the de-
composability of the joint characteristic function of the I,(4,) and the J,(4,). [

Suppose that the measure F(w) in (4.3) has a density f(w). Defining flw) =
f(—) for < 0, the density f(w) is extended to [ — =, x]; through this extension,
the same notation f{w) is preserved without confusion. Let the 4, and 2, be
L@bgsgue points in (0, x).

THEOREM 4.3. The I,(4,) and the J (1,) are asymptotically independently dis-
tributed in stable distributions whose characteristic functions C(u,) and C,(u;)

(k=1,---,ps;l=p+1,...,p+ q)are given by
C,(u,) = exp {—f_g';’ﬁ |uk|“} and
C,(u,) = exp { —[%Q |u,|“} respectively.

Proor. Write the joint characteristic function of the 7,(4,) and the J,(4,) as

exp[—% V—n{\Zfﬂ”k D.(4) +2Dn(—3k)

a

Dy(—4)
i

D (4,) —
+(Zf::+lu, () =

| @) dw} :
and apply Theorem 4.1 to it. ]
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