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LIMIT THEOREMS FOR MULTIPLY INDEXED MIXING
RANDOM VARIABLES, WITH APPLICATION
TO GIBBS RANDOM FIELDS!

By CARLA C. NEADERHOUSER
Texas A & M University

If d is a fixed positive integer, let Ay be a finite subset of Z¢, the lat-
tice points of R, with An 1 Z4 and satisfying certain regularity properties.
Let (Xn,z)ze 1y be a collection of random variables which satisfy a mixing
condition and whose partial sums Xy = Y zeay Xn,z have uniformly
bounded variances. Limit theorems, including a central limit theorem,
are obtained for the sequence Xy. The resultsare applied to Gibbs random
fields known to satisfy a sufficiently strong mixing condition.

1. Notation and definitions. In [14] Philipp discusses the central limit prob-
lem for a triangular array of random variables (X, ,) where the probabilistic
dependence of X, , and X, ., approaches zero as N, k — co. If we think of
the integers Z as defining sites in some physical system and X, , as describing
what is happening at site n, this sort of dependence simply means that distant
sites have little effect on one another. Here we consider a model of a system
exhibiting a similar type of dependence among sites, where the set of sites is Z¢
for some fixed d > 1. By Theorem (4.24) in [7] our results are applicable to
certain Gibbs random fields.

We , d(+, +) denote Euclidean dis-
tance in Z¢, [.] denote the greatest integer function, and, for A c Z¢, oA =
{ZeA:3Z'eZ' — A withd(Z,Z') = 1}.

We will need some simple estimates of |A| for certain types of subsets A of
Z¢. If A is a d-dimensional cube of side ¢, ([¢])* < |A| = ([1] + 1)?and [0A] <
Ly([1] + 1)1, where L, is a positive constant depending only on the dimension
d. If A is a d-dimensional sphere of radius 7, by considering the inscribed and
circumscribed cubes, we see that |A| = O(¢?). Finally if A isa ddnmensnonal
annulus with radii 7 and ¢ + k, |A] is on the order of

(t+ k)t — vt = 3a_ (D "k < kd(t + k)it

For k = 1 this reduces to d(t 4+ 1)*~' = O(¢*71).
Let H C R be the set of possible distances in Z¢, arranged in increasing order
of size. Note that for fixed Z, e Z¢and he H, |{Ze Z*: d(Z, Z)) = h}| = O(h*7?).

Received January 30, 1976; revised April 22, 1977.

1 Some of the results in this paper appear in the author’s thesis (University of Illinois, 1975),
directed by Professor L. L. Helms.

AMS 1970 subject classifications. Primary 60F05, 60F15.

Key words and phrases. Weakly dependent random variables, mixing random variables, central
limit problem, random fields.

207

@/:]

e [E

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to @,g, )2
The Annals of Probability. STOR

_ ®
www.jstor.org



208 CARLA C. NEADERHOUSER

We will wish to consider an increasing sequence of sets (A,) which have
certain properties.

(1.1) DEeFINITION. The sequence (Ay) of finite subsets of Z¢ will be called
a regular sequence if Ay 1 Z* and if there exists a sequence of positive integers
By, By 1 co, and positive constants L, and L, such that

1.2 LB <|Ay < L,BA,
1
(1.3) |0A,| = O(B,Y),
and
(1.4) max; ziey, dZz,7') = 0(By) .

For convenience, we will assume A, is a d-dimensional sphere of radius N,
centered at 0 ¢ Z¢.

We suppose that for each N we are given a probability space (Q,, & , Py)
and random variables (X, z)zen,- FOr convenience we assume Ey(X, ,) =0
for all Ze A, where E(.) denotes expected value with respect to P,.

(1.5) DeFINITION. If A, is a regular sequence, any collection of random
variables
(XN,Z)ZEAN ,» Nz1
with E(X, ,) = 0 forall Ze A, N > 1, will also be called regular.
For A C Z? let _#,~ be the g-algebra generated by (X, ,),.,-

2. Mixing inequalities.

(2.1 DEFINITION. Suppose a,: [I, c0o) — R is a sequence of continuous
positive functions -such that for fixed N, a(f) |0 as 1 co and for fixed t,
ay(t)y Z ay(t)if M= N. Then fori= 1,2, we say the collection (X, ,) satisfies
the mixing condition (M) if whenever A, A* ¢ A, with d(A', A>) = & and A e
AT Be A

(M) |Py(AB) — Py(A)P(B)| < ay(h)Py(A),
(M,) |P(AB) — Py(A)Py(B)| < ay(h)|A']|A?
and

ay(h)hi=1 | 0.
It is clear that (M,) is stronger than (M,).
Now conditions (M,) and (M,) imply the following inequalities:

(2.2) LEMMA. Suppose A, A* C A with d(A', A*) = hand fe _#,) and g e
—Aya are such that Ey|f|? < oo and Ey|g|* < co. If (M,) holds with p, g > 1 and
lp+ 1/qg = 1, then

(2.3) Ex(f0) = Ex(N)EN(9)] < 2ay"*(R)(Ey|f17)/*(Ey|g|*)* .
If (M,) holds with p, q,r > 0 and 1/p + 1/q + 1/r = 1, then
(2.4 1ENf9) — EANEN9)] < 2ay""(R)(Ey| fIP)*(Eylglo)o(IN] |A)*"
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The proofs of these inequalities are essentially the same as the proofs given
in [2] and [8]. In these references it is assumed that d = 1 and (X, ,) = X, is
a stationary sequence, but neither of these assumptions is necessary.

3. A central limit theorem. We first consider convergence in law, where the
random variable X, is defined on the space (Q,, &, P,). Clearly, our results
apply to the case where (Qy, &, Py) = (Q,, 5, P,) for all N. We simply
replace A, by Z¢ and consider Xy = }},; <y Xz- For convergence in terms
of characteristic functions, working with a sequence of probability spaces makes
no difference. When we consider almost sure convergence, we will specify one

fixed probability space. Our notation for the different modes of convergence is
taken from [9].

Set XN = ZZGAN XN,Z'
Let .#7(0, 1) denote the law of a normally distributed random variable with
mean 0 and variance 1. We have the following theorem:

(3.1) THEOREM. Suppose (X} ,) is regular. Suppose
(3'2) EN(X)(I,ZIX)(I,ZZ) =0 for Z,Z,¢e AN

and
ming.,, Ex(X} )= C>0.

Suppose also that X}, , satisfies (M,) and for all N

3.3 ca M 1dh < A < oo
N
and
3.4 max,.,. EyX{ P < B< .
4 N ] ,
Set

XN,Z = X;’,Z/(E‘V(ZZeAN X&'Z)Z)i .
Then

A(Xy) —> A0, 1).
Proor. For Ze Z¢

E(Xzieny X32X52) 2 C>0

and

(3.5) = E(Saeny Xio) 2 CNY.
Thus by (3.4)

(3.6) max,e,, E(Xy )t = O(N-%),
and

0y = max,.,, Ex(Xy ,)' = O(N™).
Also (3.6) and (2.4) with r = 2, p = ¢ = 4 imply
= O(N?).



210 CARLA C. NEADERHOUSER

Now we proceed as in [14], replacing intervals by annuli concentric about
0 e Z?. For each N we have, using (2.4) and (3.6),
L) = EN(ZZGAN Xyz)=1.

Choose ¢ satisfying
0<e<}

and set « = d — ¢/2. Define disjoint annuli
’ ’
sz,p A;v’,la AN,z’ Ay,z, Y AN,LN’ AN,lN’ Afv,l:\]"-l ’

and random variables

Yni = 2ize AN,; Xy.z
and

Uy,; = ZZGA:V'J- Xy z
by choosing A4, ; to be the largest annulus outside Ay ;- satisfying
Ey(yy,;) = N*¢
and A}, ; to be the annulus outside 4, ; with radius
ky = N,
Because the X} , satisfy (M,) and (3.3) we can show that Vy,; is small enough
to be neglected in the computation of E(exp(itXy)), while the v, ; separate the

Yx.; enough so that the y, ; behave approximately as independent random vari-
ables. In fact, a proof similar to that of Lemma (5) in [14] gives

Ex(¥y.;) = N1 + o(1)),
2isiy Ex(¥%,;) = IyN“(1 + o(1)),
Iy = O(N*-%)

and

Ef(Xisiyr1Vy,;) = 0(ZyY) .
Therefore, setting

Y, = stzN Yx.i

and following the proof of Lemma (6) in [14], we obtain

E\(exp(itYy)) = [Lisiy Ex(exp(ityy ;) + o(1)

E(exp(itXy)) = Ey(exp(itY,)) + o(1) .
So it suffices by Liapounov’s theorem ([9], page 275) to show

2isiy Ex(y¥.;) — 0.

Letting p; be the number of summands in y, ;, we can use (2.4) and Holder’s
inequality to show

Ev(yy.;) = O(pN~*),  p; = O(N%).

and

Thus
Zisiy Ex(¥y,;) = O(N*"*N**N=*) = o(1).
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From results in [3], a result similar to (3.1) follows for the strictly stationary
case. The method described here, however, works for processes where the mix-
ing condition contains a factor related to the dimension d (see, e.g., [7], [10]).
The method can also be used to obtain the analogue of Theorem 1 in [14],
which states that if (X ,) is regular and satisfies (M,) and certain moment con-
ditions then the partial sums X, have as possible limits only those laws defined
in [9, Theorem A, page 293] ([12]).

4. Convergence to a degenerate limit. In this section we give some conditions
which imply X, converges to 0.

(4.1) PROPOSITION. Suppose (XY ;) is any collection satisfying
(4.2) (M,) holds with {3 h*~'a }(h)dh < A < oo
and
max, ., Ey(XY ;)< B< oo uniformlyin N,
or
(4.3) (M,) holds with ¢ h*~'a }(h)dh < A <
and
max, . Ey(X{ ;) < B< oo uniformlyin N.
Fix k > § and set Xy , = X3 ,/|Ay|*. Then ZZ( 3 4er, Xy, z) — Z£(0).

ProOF. We use Chebyshev’s inequality and the standard fact that convergence
in probability implies convergence in law. Thus it suffices to show that

E‘\'(Zze Ay X‘\',z)2 -0,
which is easily proved.

As in the independent case, if X, —, 0 it is natural to ask whether X, —, ; 0.

(4.4) DEFINITION. Suppose (A y)isaregularsequence. Set . =[], .7, c.

In the independent case it is easily shown that %, is trivial. The same result
holds here.

(4.5) LEMMA. Suppose (X;) ;e za is a multidimensional sequence of random vari-
ables defined on a probability space (Q, >, P) and satisfying (M,) with a (1) = a,(1).
Let (Ay) be a regular sequence. Then the o-field 5, defined by (Ay) is trivial.

Proor. The proof in the independent case is easily modified for the mixing
case (see, e.g., [9], page 230).

Thus if (X,) is 2 multidimensional sequence satisfying (M,) with E(X,) = 0
for Ze Z* and b, | oo,

(szy X,)/by

converges or diverges almost surely. We give some sufficient conditions for
convergence.
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(4.6) PROPOSITION. Suppose (X,),. za is @ multidimensional sequence of random
variables with E(X,) = 0 and max,. 5 E(X,’) £ B. Suppose (4.2) or (4.3) holds
for a regular sequence (M) and a(h) = a,(h) for all N. Suppose k = 1 if d =1
and k > (1 + 1/d) if d > 1. Then

Xy = (ZzeAl\- Xz)/|A.\'[k —s. 0.

PrROOF. We may assume |A ;| = N%. Proceeding as in the proof of (4.1), we
find E(X,*) = O(N-¢*-1), If k > }(1 + 1/d), then d(2k — 1) > 1, and so

Fo1 E(Xy) = E(Z521 X)) < o0
and }}%_, X,’is finite a.s., which implies X, — Oa.s. Forthecased =1,k =1
we are considering
Xy = 2N, XN .
It suffices to show LY X /N —, . 0and 372y, X,/N—,. 0.
Now by (4.2) or (4.3)
E(Xiym) 255" X;/N = O(1/N) ,

and thus the desired result follows from Theorem 2B, page 420 of [13], with the

number ¢ defined in the statement of the theorem equal to 1. The same proof
also shows

Dim-txa XIN =4 0.

5. Applications to Gibbs random fields. In this section we consider a type of
physical model, the so-called Gibbs random field, to which the above results
may be applied. Intuitively we may think of each site in Z¢ being occupied by
a particle which has “spin” 41 or —1. We assume some interaction among the
sites which leads to a probability measure on the possible configurations in Z¢.

Such processes have received a great deal of attention in recent years (see, e.g.,
[15] and [16]). -

We set @ = {—1, 1}** with 7 the o-algebra generated by finite-dimensional
cylinder sets. We let C denote the class of finite subsets of Z¢.

The interaction between the particles in our system will be specified by means
of a potential function.

(5.1 DEFINITION. A potential is any map @ : C — R such that ®(¢) = 0.
Here we will assume

(5.2) o, =9,,, for AcZz¢, ZeZ* (O is translation invariant)
and

(5.3) there existsan r >0 such that ®, =0 if diam(A) > r
(® is finite range) .

(5.4 DEFINITION. A probability measure P on (Q, & ) will be called a Gibbs
state for the potential @ if for Ze Z¢

Plo(Z)| Aga_iz)] = [1 + eXp(2 Xrsz Pu [Tyer @]
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is a regular conditional probability distribution for the “spin” at Z given the
configuration on Z¢ — {Z}.

Clearly if such a measure P exists and if the potential @ has range r, then the
resulting probability space is an r-Markov random field; that is, events inside
of a finite set A, conditioned on the o-field of events generated over the points
at distance < r from A, are independent of what happens outside A. If d =
r = 1 we are just dealing with a Markov chain with finite state space, and the
conditional probabilities defined above ensure the existence of a unique station-
ary measure P on (Q, & ) which gives rise to those conditional probabilities.
Even for d = 2, r = 1, however, it is possible that there exist two or more prob-
ability measures on (Q, % ) giving rise to the same conditional probabilities,
and in some cases not all these measures need be stationary [16].

For sufficiently regular potentials @ (see, e.g., [7]) it can be shown that there
exists a unique Gibbs state on (Q, F").

Let us define the multidimensional sequence (X,),. ;2 on the probability space
(Q, &, P) by

(5.5) X (0) = o(Z), 0weQ.

It is believed that, at least in cases where the measure P is unique, the averages
2l zeay Xz, suitably normalized, should have a distribution which converges to
that of a normal random variable with mean 0 and variance 1 as A, 1 Z¢. In
[4] and [10] such a theorem has been proved for certain finite range pair poten-
tials (®, = 0 if |A| > 2), while in [1] and [11] some central limit theorems have
been shown to hold under rather stringent conditions. In the central limit theo-
rem proved here, we have relaxed certain of those conditions. We have also
made clear a sufficient set of conditions which would guarantee that an arbitrary
random field satisfy the central limit theorem.

We use a mixing property of P which is proved in [7].

(5.6) THEOREM ([7], Theorem (4.24)). Suppose @ is a potential satisfying (5.2),
(5.3), and
AL + exp(2 Zaso /s Hzea @217 < 1,

where the operator A is defined on functions on Q by
Z)y=wZ), Z'#0
= —w(0), Z'=0,
A(@) = () — flo) -

Then there exists a unique Gibbs state P with potential ®. Also, there exist K > 0,
B > 0, such that, for each A, e Cand A, C Z* — A,, (M,) is satisfied with

ay(h) = Ke .

Now clearly
max,e [ Xl =1
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and so if (Ay) is a regular sequence we may apply the results from Sections 3
and 4. We will state these for completeness.

(5.7) THEOREM. Suppose A is a regular sequence and the hypotheses of (5.6)
are satisfied. Then

(i) fork > 4,
Xy = (ZZEAAV (Xz — EXp))/|Ay]* =50,
(ii) for any sequence b, — oo,
Xy = (ZZGAN (Xz — EXZ))/bN
converges or diverges almost surely, and
(iii) fork =z lifd=1landk > (1 + 1/d)ifd > 1,
Xy = (Zze/\‘\- (X; — E"Yz))/lA.vllc —,5.0.
Proor. The statementsare immediate from(4.1), (4.5), and (4.6), respectively.

A different proof of (iii) for the case k = 1 is indicated in [16].

To apply our results on convergence to a normal law, we note that the second
part of (3.2) follows from the translation invariance of the measure P ([5]). We
also need the following, which is explained in detail in [6]:

(5.8) DerINITION. The potential @ isa strongly superadditive potential (s.s.a.p.)
if whenever A is a finite subset of Z¢ and w, and o, are configurations on Z¢
with @, = w, on Z¢ — A, then

D(w)) + P(w,) = P(v,) + D(v,)

where
o' =,V o, on A
= w, on Z¢— A
and
0, = v, N v, on A
= w, on Z¢*— A.

For example, if ®, >0, |[A] > 1 and ®, =0, [A| > 2, then @ is a s.s.a.p.
Or, if for A = {Z,, Z,}, Z, + Z,, we have
(DA g ZZEA |®4\U(Z)l

and ®, = 0, |A| > 3, then @ is a s.s.a.p. This notion is also discussed in [15],
where such a potential is called supermodular.
Now from the FKG inequalities it follows that if @ is a s.s.a.p. then

EX, X, = EX, EX, ,
and therefore (3.2) would hold.

Now by (5.3) X, is not a.s. constant and thus the following result on conver-
gence to a normal law is an immediate consequence of Theorem (3.1):
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(5.9) THEOREM. If (Ay) is a regular sequence and @ is a s.s.a.p. satisfying the
hypotheses of (5.6), then

AN Dzeny Xz = EXDNE(Z zeny (Xz — EX,))H) — 70, 1)
Proor. In the proof of (3.1) we need only set

X{ =X, — EX,
for Ze A, and
a(h) = Ke=?*
for all N.
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