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CONTINUOUS PARAMETER MARKOV PROCESSES

By W. WINKLER
University of Pittsburgh

In this paper, we obtain a continuous parameter generalization of
Doeblin’s and Harris’ theory of Markov processes.

0. Introduction. In 1940 Doeblin (1940) introduced a theory of discrete
parameter Markov processes which involved the movement of the processes.
Chung (1963), Jain and Jamison (1967), and Winkler (1975) have shown the
involvement of Doeblin’s theory with Harris’ theory of Markov processes. In
this paper we introduce a theory of continuous parameter Markov processes
analogous to Doeblin’s theory and show that the theory can be reduced to con-
sidering the discrete parameter processes induced by the continuous parameter
process which greatly simplifies the study of continuous parameter Markov
processes. A similar situation occurs in continuous time Markov branching
processes which induce discrete time Galton-Watson processes (see, e.g., Harris
(1963), Athreya and Ney (1972)).

There are several important advantages to our approach. We neither assume
that we have a Hunt process with its inherent assumptions of the strong Markov
property and quasi-left continuity (both of which are difficult to verify for a
given Markov process) nor do we assume the existence of a reference measure
(see, e.g., Blumenthal and Getoor (1968), pages 196-197).

The first section is devoted to notation, definitions, and preliminary results.
In the second section we prove the main decomposition theorem which has
discrete parameter analogues (see, e.g., Chung (1963), Jain and Jamison (1967),
and Winkler (1975)).

1. Notation and preliminary results. Let (E, &, &”) be a locally compact
separable topological measure space; that is, &” is locally compact, Hausdorff
topological space with countable base and & is the o-field generated by &”. Let
X,, 0 < t < o, be a Markov process taking values in E. For each ¢ > 0, the
transition probability P,(., +) has the following properties:

(i) for each xe E, P,(x, ) is a probability measure on &;
(ii) for each Be &, P,(+, B) is an &-measurable function.

In addition, the transition probabilities P,(+, +), 0 < r < oo, satisfy the Chap-
man-Kolmogorov equations:

Pooix, A) = § Pi(x, dy)P,(y, A)
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460 W. WINKLER

for all sand re R,, xe E, and A € &. We make the assumption that P(x, B) =
0,(B) where

5,(B)=1 if xeB
=0 if xgB.

ForeachteR,,set E, = Fand &, =& . Let (Q, %) = ([[. E, ®: &) be
the product space of {(E,, &,): re R,} where ¥), &, is the o-field generated by
the finite cylinder sets. For each probability measure # on & we assume that
we have a probability measure P, on (Q, &) such thatfor0 = 1, <, < - - - <,
and B,e&, =&,i=1,2, ..., n, we have

pp(th € Bl’ th € Bzy M ] Xt,ﬂ € Bn)
= sBl #(dxtx) SBz Ptz_tl(xtl’ dx‘z) T SBn Ptn—‘n—l(xtn—l’ dx‘n)

(see, e.g., Neveu (1965), page 83 or Rosenblatt (1971), page 236). In the par-
ticular case in which y(.) = d,(+) we write P, for P,.

We assume that {X,}, 0 < r < oo, is right continuous and has left limits (that
is, lim,_,+ X,(w) = X,(0) for o € Q and lim,_,- X,(w) exists for w € Q). The right
continuity of {X,}, 0 < ¢ < oo, implies that X,(») is bimeasurable in (¢, ). In
addition we assume that

(&) foreach xeE, Be&, s>0, lim,, P(x, B)= P(x, B).

If the state space is countable, then (%) is true without loss of generality if
Xy(w) is assumed to be bimeasurable in (7, »). Indeed, by a remark on page 41
of Blumenthal and Getoor (1965), P,(x, {y}) is bimeasurable in (z, x) for every
y€E, and by Theorem 1 of Chung (1967), page 120, for every xc E, Be &,
and ¢ > 0, P,(x, B) is uniformly continuous on [d, co).

For eacha > 0, xe E, and Be &, we set

La(x, B) = px(U:=l {Xna € B})
and
Qu(x; B) = P,(N7= Ui-n (Xiw € BY) -
L,(x, B) is the probability that, starting at x, the process {X,,,}z_, ever hits Band

Q,.(x, B) is the probability that, starting at x, the process {X,,,}2_, hits B infinitely
often.

DErFINITION 1. A nonempty set Be & is called P,-stochastically closed, or P,-
closed, if P(x, B) = 1 forxe B. A P,-closed set Be & is called P,-indecomposable
if it does not contain a disjoint pair of P,-closed sets; otherwise it is called P,-
decomposable.

One of the principal advantages of considering P -closed sets is that the Markov
process {X,,}r_, restricted to a P,-closed set C € & agrees with the original Markov
process (see, e.g., Rosenblatt (1971), pages 50-53).
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DEFINITION 2. A set Be & such that Q,(x, B) = 0 for all xe E is called P,-
inessential, otherwise it is called P,-essential. A P ,-essential set which is a count-
able union of P -inessential sets is called P,-improperly essential; otherwise it is
called P,-absolutely essential.

DEeFINITION 3. Let C be a P,-closed set and let @ be a ¢-finite measure on
(C, &) with ®(C) > 0. Then C is called ®-a-recurrent if Q,(x, F) = 1 for all
x e C whenever F < C and O(F) > 0. If Cis ®-a-recurrent for some @, then
C is called a-recurrent in the sense of Harris (see Orey (1971), Harris (1956)).

THEOREM 1.1 (Harris (1956)). Let C be a P, -closed set such that C is ®-a-
recurrent. Then there exists a unique (up to multiplicative constant) o-finite measure
7 on C satisfying

(i) ®<Ln(n(B) = 0 implies ®(B) = 0),

(ii) =(B) = \. n(dx)P,,(x, B) for B< Candn = 0, and

(iii) =(B) > 0 implies Q,(x, B) = 1 for all xe C.

The measure = is called the a-Harris measure on C and has the following
property:

LemMma 1.1 (Jain (1966), page 209). Let H be a-recurrent in the sense of Harris

and © be the a-Harris measure on H. Let BC H. wn(B) = 0 if and only if B is
P -inessential.

Lemma 1.1 immediately implies that H can contain only P,-absolutely essential
sets or P,-inessential sets. If D is a P,-absolutely essential subset of H, then, by
Theorem 1.1 and Lemma 1.1, Q (x, D) = 1 for all xe H.

If a set H is a-recurrent in the sense of Harris, then H is P,-absolutely essential
and P,-indecomposable (see, e.g., Orey (1971), page 36). A set D which is a-
recurrent in the sense of Harris is said to be maximal a-Harris if D, is any set
which is a-recurrent in the sense of Harris and which contains D, then D = D,.
The next four lemmas follow from basic facts from Doeblin’s theory of Markov
processes (see, e.g., Orey (1971), Chung (1964)).

LEmMMA 1.2. Let H be a-recurrent in the sense of Harris. Then D = {x:
Q.(x, H) = 1} is maximal a-Harris.

LEMMA 1.3. Let H be a-recurrent in the sense of Harris and let C be a P,-closed

subset of H. Then C is a-recurrent in the, sense of Harris and consequently, P,-
absolutely essential.

LemMA 1.4. Let H, and H, be two maximal a-Harris sets. Either H, = H, or
HnH =¢@.

LeEMMA 1.5. Let C be a P,-closed set contained in a set D such that x € D\C
implies L,(x, C) = 1. Then D\C is P -inessential.

REMARK 1.1. Let H be a-recurrent in the sense of Harris and let C be a P,-
closed set containing H such that C\H is P,-inessential, Then C is a-recurrent
in the sense of Harris.
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Doeblin (1940) proved (see also Orey (1971), page 46):

THEOREM 1.2. Let (X,)7_, be a discrete parameter Markov process and let there
exist a finite measure m(+) on & such that if Ce & is P-closed, then m(C) > 0.
Then there exists a disjoint decomposition E = (Jz_, C,) U I such that I is either
P,-inessential or P,-improperly essential and each C, is a P,-absolutely essential and
P,-indecomposable closed set.

REMARK 1.2. Doeblin’s theorem was proved on an arbitrary measure space
(E, &) where the o-field & satisfies no topological or separability conditions.
Under the additional assumption that the o-field & is separable (i.e., & is count-
ably generated), Jain and Jamison ((1967), page 29), proved that each C, =
H, U J, where each H, is P,-recurrent in the sense of Harris and J,, is P,-improperly
essential or P -inessential. Thus, the decomposition of Theorem 1.2 becomes
E=JU Uz, H,) where J =T U (Ug, /).

If we assume that there exists a ¢-finite measure m(.) on & such that, for
some fixed a > 0, if C is P,-closed, then m(C) > 0, then we have the following
condition:

(~77) For some fixed a > 0, there exists no uncountable disjoint collection
of P,-closed sets.
Winkler ((1975), Theorem 2) proved:

THEOREM 1.3. Let {X,};_, be a discrete parameter Markov process. If there
exists no uncountable disjoint collection of P,-closed sets, then there exists a disjoint
decomposition E = 1 U (U, D,) such that I is either P,-inessential or P -improperly
essential and each D, is a P,-absolutely essential and P -indecomposable closed set.

REMARK 1.3. Under the additional assumption that the o-field & is separable,
we obtain the disjoint decomposition £ = J U (|Jz, H,) mentioned in Remark
1.2.

ReMARK 1.4. If Cis any P,-closed set and condition (_#") holds on subsets
of C (in particular (/") holds if there exists a o-finite measure = which assigns
positive measure to all P,-closed subsets of C), then, by considering the Markov
process restricted to C, C may be decomposed in the following manner: C =
I* U (U7-: K,*) where [* is either P -inessential or P,-improperly essential and
each K,* is a-recurrent in the sense of Harris.

ReEMARK 1.5. Under condition (¥°) if there exists a o-finite measure p on
(E, &) such that y(A) = 0 = (& P(x, A)dt = 0 for all x¢c E, then condition
(+7") holds. Indeed, if C is P,closed, then for any xe C, {7 P(x,C)dt >0
which implies that 4(C) > 0. For our purposes the above condition is effectively
equivalent to the existence of a reference measure (see, e.g., Blumenthal and
Getoor (1968), pages 196-197 or Meyer (1962), page 160).

DEFINITION 4. We say that a set Te & is P,-transient if there exists a real
number M = M(T) such that 35 P, (x,T) < M for all xc E. We say that a
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set S ¢ & is o-P,-transient if it is contained in a countable union of P, -transient
sets.

ProrosITION 1.1 (Abrahamse (1971), page 220). For some a > 0, let I be a
P_-inessential set. Then I is o-P -transient.

CoRrOLLARY 1.1. Let Te &. Then T is o-P,-transient if and only if T is not
P -absolutely essential.

PRrOOF. Since every P,-transient set is P,-inessential, the conclusion of Corol-
lary 1.1 follows from Proposition 1.1 and Definition 2.

By Lemma 1.2, Lemma 1.4, and Corollary 1.1, the decomposition of the state
space E as given in Remark 1.2 may be considered in the following form:

(&2°) Forsome a > 0, there exists a countable disjoint collection {H,*: n = 1}
each of which is maximal a-Harris such that £ = J* u (U, H,*) where J* is
g-P, -transient.

In Section 2 we will prove:

THEOREM 2.1. Assume (<€) holds. Then (") = (F£°) and the decomposition
is independent of a > 0.

REMARK 1.6. This theorem generalizes the decomposition of Jain and Jamison
mentioned in Remark 1.2. In addition, it generalizes results for Markov chains
given by Chung ((1967), Section II.10).

2. Main decomposition theorem. The important feature of Theorem 2.1 is
not that the decomposition (#”) exists, but that the decomposition is independent
of @ > 0. Throughout this section we will assume that condition (.#") holds.
The proof that the decomposition (5#7) is independent of & > 0 will contain
three key steps:

(I) if T is o-P,-transient, then T is g-P,-transient for all 3 > 0;
(II) if H is maximal a-Harris, then H is P,,,-closed for all n > 1, and
(III) if H is maximal a-Harris, then H is maximal ¢-Harris for all ¢+ > 0.

LemMa 2.1 (Chung (1964), page 239). Let 8 > 0 and let k be a positive integer.
A set B is Pys-inessential, P, -improperly essential, or P,,-absolutely essential accord-
ing to whether B is Py-inessential, P,-improperly essential, or Pg-absolutely essential.

LemMmA 2.2. If T is P,-transient, then T is o-P,-transient for all 8 > 0.

ProoF. Let a > 0 be fixed and T be P,-transient. Foreach xe E, j = 0, and
r > 0, we have that

(2.1) Piarn(%, T) = § P(x, dy)Po(y, T) .
Using (2.1) we have for all positive integers N that
(2.2) §¥ Ve Py(x, T)dt = Y0, §& § Po(x, dy)P;,(y, T) dr

= V(¢ Po(x, dy) dr)(Z 3= Py, T)) -
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From (2.2) we obtain that

(2:3) §5 Pu(x, T)dt = § (3§ P,(x, dy) dr)( 270 Piu(y> T))

< § (1§ P(x, dy) d)M(T) < aM(T) .
We note that for each x € E (¢ P,(x, dy) dr is a well-defined measure uniformly
bounded by a.

Let 8 > 0and let C= {x|Ly(x,T) = 0}. If xeC, then 37, Pu(x,T) >0
and using condition (€”) we obtain that {§ P,(x, T)dt > 0. Since T = (TnC) N
(T n C°)and T n C is trivially P,-transient, we must show that 7' n C° is 0-Pp-
transient. For n =0,1,2, ..., let R, ={xeT n C°|{#* P(x,T)dt =0 and
{m+v8 P(x, T)dr > 0}. Since T n C° = Uy, R, we must show that each R; is
o-P,-transient. Let S, ={xeT N Co|\4P(x, Tydt = 1/n} for n=1,2,....
Then Ry = {xeT n C°: {§ Py(x, T)dt > 0} = Uy, S,. Using previous reason-
ing we have that

V" 0P P (x, T)dt = T30 §8 § Pg(x> dy)Po(y, T) dr
(2.4) = (W6 Py, T) dr)( Lo Pisl(x; dy))
2 s, (1 P T) dr)( S0 Pis(xs )

<—’11—> 2= Pis(x, Sn) -

v

From (2.4) we obtain that
(2.5) 2520 Pis(x, S,) < naM(T) forall xekE.

Therefore, each S, is P,-transient and R, is o-P,-transient.
Forn=1,2,...,1etT, = {xc R, | (¥ P(x, T)dt = 1/n}. Then R, = U7_,T,.
Reasoning as in equation (2.4) we obtain that

(2.6) §r 2 P(x, T) dt = \p, (33 Po(ys T) dr) 2y Pis(x, dy))
2 () (Do Pl T

From (2.3) and (2.6) we obtain that
(2.7 250 Piap(x, T) < naM(T) forall xekE.

Since

250 Pojinp (%5 To) = § Py(x, dy)(E5=0 Pyng(y> T)) = naM(T),
we obtain that
3150 Pyy(x, Tp) < 2naM(T) .

pas)

Therefore, each T, is P,-transient and R, is o-P,-transient. In a similar manner
we may show that for each j = 2 R, is 0-P,-transient.

REMARK 2.1. Using Lemma 2.2 and Corollary 1.1 we obtain that a set is P,-
absolutely essential for some a > 0, then the set is P,i-absolutely essential for
all + > 0. If a set Jis P,-inessential for some a > 0, then, by Proposition 1.1
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and Lemma 2.2, J is o-P,-transient for all ¢+ > 0. However, we cannot in
general conclude that J is P,-inessential. This distinction shows the importance
of Lemma 2.1.

The next two lemmas deal with the aperiodicity of the Markov process and
are the key to making the decomposition in Theorem 2.1 independent ofa > 0.
If Bis a subset of a set H which is maximal a-Harris and if B, = Q.(x,B)=1},
then B, £ H. In other words, H contains all points x, startmg from which the
process {X,,}v, hits B infinitely often with probability one.

LemMA 2.3. Fix y > 0 and assume that H is maximal y-Harris. Then H is P, -
closed for all positive integers n.

Proor. Fixn > land x, € H. Let} > ¢ > 0. Using condition (&), we have
that there exists d > 0 such that |A] < 0 implies

(2.8) [P (%, H) — P (x, H)| < e
Choose a multiple m of n sufficiently large so that y/m < 4. For nota-
tional convenience we set 8 =y/m. For i=0,1,...,m — 1, set N> =

N5 Urz; {Xmeirp € H} and set 4, = {x: P,(N,~) = 1}. Since 4, = H we have
that 4+ @. Let ye 4,. Then
1 =P,(N”) = § Py, d2)Po(N5= Ui; (Xem-)s € H})

= § Py(y, d2)P,(N5-,)

= Vovap_y Lo dO)PU(NZ ) + $4,_, Po(y, d2)P(N;_) -
If P(y, E\A,,_,) # O, then the sum of the last two integrals would be strictly
less than 1. Hence, Py(y, E\A,,_,) = Oand P,(y, 4,,_;) = 1. Inasimilar manner
we can show thatif ye 4;,, 1 < i < m — 1, then Py(y, 4,_,) = 1. Each 4, is P -
closed and for each y € 4,, we have that P, ,(y, 4,,_,) = 1.

Using (2.8) and the fact that 8 = y/m < & we have that
(2.9) [P (x5 Ag) — Poyp(Xy5 Ap)] < €.
Now (2.9) and the fact that P (x,, 4)) = | imply that P, ,(x,, 4) >} > 0. If
Apw_y N A, = @, then
P7+,e(x1’ A, U A) = Pr+ﬂ(xn Apn_y) + Pr+,a(x1, 4)>1,
which is a contradiction. Hence 4, N 4,,_, + @. Now 4, N 4,,_, isa P -closed
subset of 4, = H which is y-recurrent in the sense of Harris. Fix x ¢ 4,. Then
Q,(x, 4 N A,_,) = 1 which implies that Q (x, 4,,_,) = 1.
Letz = inf{k = 0: X, € 4,,_,}. Then P,(r < o0) = 1. Now we have that
PyNzo) = Zino Po(Naoy 0 {z = K})
—Zk op( 1n{ eAm 1’X(k 1);reAc ""XoeA:n—l})
= Zk=o§wkeA,,,_, g€ Ag, )P( 1|Xkr—yk’ ""Xo:yo)
X P (X, €dy,, -+, Xy edy,)
= 2% S(y,,eA,,,_l,m,uoeAﬁn_l) L. pz(Xkr edy, -+, X € dyO)
= YpP(c=k=1.
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For the third equality, see Breiman (1968), page 131. The fourth equality fol-
lows from the fact that Ny, = N7, Uiz, {Xm-r, € H} for all r = 2 and the
fact that

pz(N:—ller =i s X, = yo)
= px(N::—ller = _yk)
=P, (Na_) =1 for all y,eA4,_,.

Hence, x € 4,,_, which implies that 4, € 4,,_,. By inductively reasoning as above
we may show that 4, & 4,, 1 < i< m — 2. Consequently H = 4, = N5 4,
is P,-closed.

LEMMA 2.4. Let H be maximal a-Harris. If, for all t > 0, Cis a P,-closed subset
of H, then J = H\C is P,-inessential for all t > 0.

Proor. Fix tsuchthat0 < ¢+ < «. Without loss of generality we may assume
that ¢ < a since, by Lemma 2.1, Jis P,-inessential if and only if Jis P,,,-inessential
for all integers m = 1. Each interval [kt, (k + 1)¢] contains at most one na.

Let ze J. Since C has positive x,-measure, we have that Q (z, C) = 1 which
implies that L (z,C) = 1. Letr, =inf{n > 1: X,,e C}andletr, =inf{k > 1:
X,,e C}. t,and 7, are, respectively, the first entrance times of the processes
(Yoo, and (X7, into C.

Fix n, = 1. Then there exists k, > 1 such that nya € [k,¢, (k, + 1)¢]. Using
the fact that C is P,closed for all s > 0 and the Chapman-Kolmogorov equa-
tions we obtain that

(2.10) P (X0 € C) = Pu(X iy €C) -
In addition we obtain that
(2.11) P(r, £ n)) = PZ(XW eC) and

pz(X(k0+l)t eC)=P(r, =k + 1).
Combining (2.10) and (2.11) and letting both n, and k, /" co we obtain that
1= Lz, C) = P(U{ra = 1)) = PUi {7 = k}) = L(z, €) .
Since z ¢ J is arbitrary, we have by Lemma 1.5 that J is P.-inessential.

LemMMaA 2.5. Let H be maximal a-Harris and let ©t,, be the a-Harris measure on
H. Then for each t > 0, H is maximal t-Harris.

ProorF. By Remark 2.1, H is P,-absolutely essential for all# > 0. Fix¢ > 0.
First we will show that every P,-closed subset of H is P,-absolutely essential. If
not, then there exists a P,-closed subset C of H which is P-improperly essential.
Foreachn = Olet D, = {x g H: Q,.(x, C) = 1}. Then we have that C Z D, C
D, ...c Hand D= J2,D, is P,-closed for all n = 0 and by Proposition
9 of Chung (1964) each D, is P, ,.-improperly essential. Thus, D is P,-improperly
essential. Using condition (¥) D is P,-closed for all s > 0 and using Lemma 2.4
H\D is P -inessential for all s > 0. By Remark 2.1 D is not P,-absolutely essential.
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Thus H = D U (H\D) is not P,-absolutely essential, which is a contradiction.
Hence, every P,-closed subset of H is P,-absolutely essential.

Since 7, assigns positive measure to each P,-closed subset of H there exists at
most a countable disjoint collection of P,-closed subsets of H. By considering
the Markov process restricted to H as mentioned in Remark 1.4 there exists a
disjoint decomposition H = (|J2, K;) U J where each K, is t-Harris and J is
o-P,-transient. If, for instance, K, = (%, then using Lemma 2.3 and condi-
tion (&) we could obtain that K| is P,-closed for all s > 0. But this contradicts
the fact that H is P,-indecomposable unless only K, = . By Lemma 2.4 H\K,
is P,-inessential, and consequently we may extend the z-Harris measure r, on K|
to H by assigning measure 0 to H\K,. If H were not maximal t-Harris, then H
would not be maximal a-Harris.

LEMMA 2.6. For each t > 0, let H be maximal t-Harris. Then there exists a
fixed t-Harris measure which is independent of t > 0.

Proof. Fix ¢ > 0. Let m,,, be the (kf/n)-Harris measure on H for k, n = 1.
By Lemma 2.1 a subset B of H is P,-absolutely essential if and only if it is P,,,,-
absolutely essential for all k, » > 1. By Lemma 1.1 we have that r,,, assigns
positive measure only to P, ,-absolutely essential sets. By the uniqueness of
Harris measures we obtain, for each k > 1 and n > 1, that there exists a positive
constant C, ,such thatr,=C, , - 7,,,. For convenience we assume that C, , =1
for all k, n > 1. We note that for all k > 1 and n = 1 we have that

7, (A) = g Prou(x, A)m,(dx) forall Ae&.

Fix s > 0. Let {t,}5., < {kt/n}7,_, be a sequence such that t;, — 5 as j— co.
Let Ae&. We wish to show that 7,(4) = n,P(A4) = {, P,(x, A)r,(dx). Since
©, is o-finite, it is sufficient to show this for 4 £ H such that r,(4) < co. Using
Fatou’s lemma and ("), we have that

T, P(A) = {,lim Ptj(x, A)r(dx)
< liminf, {4 Pt]_(x, A, (dx) = m,(A) .

Let x, be the s-Harris measure. Using Lemmas 1.1 and 2.2, we have that both
7, and &, assign positive measure only to P,-absolutely essential subsets of H.
By Jain and Jamison ((1967), page 34), the only, up to multiplicative constant,
P,-subinvariant measure supported on H is the s-Harris measure z,. Thus, there
exists a constant C, , such that =, = C,, - 7,. For convenience we assume that
C,,=1 for all s,t > 0. Hence, = = r, is the unique s-Harris measure for all
s> 0.

THEOREM 2.1. Assume that condition (€) and condition (_4") hold. Then there
exists a disjoint decomposition E = T U (U, H,) such that T is o-P,-transient
for all t > 0 and each H, is maximal t-Harris for all t > 0.

Proor. By Theorem 1.3 and Remark 1.3, E =T U (U;., H,) where T is
either P, -inessential or P,-improperly essential and each H, is a-recurrent in the
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sense of Harris. By Lemmas 1.2 and 1.4 we may assume that each H,, is maximal
a-Harris, and, by Corollary 1.1 we may assume that T is ¢-P, -transient. By
Lemma 2.2 T is ¢-P,-transient for all > 0, and by Lemma 2.5 each H, is
maximal ¢t-Harris for all ¢ > 0.

CoroLLARY 2.1. If E = H and & is the t-Harris measure for all t > 0, then we
have the following zero-one property: ‘

(i) if n(B) > O, then Q(x,B) = 1 for all t > 0 and x ¢ E;
(ii) if n(B) = O, then Q,(x, B) = 0 for all t > 0 and x ¢ E.

Acknowledgment. The author is very grateful to Professor William Pruitt for
his advice concerning the presentation of these results.
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