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ON THE RANGE OF RECURRENT MARKOV CHAINS

By LeEo CHOSID AND RICHARD IsaAcC
City University of New York

Let R, be the number of distinct elements among X, X1, - -, X», Where
{X»} is an irreducible recurrent Markov chain. It is shown that, under an
appropriate condition, n-'R, — 0 a.s. (P,) where a is any state and Pa is
conditional probability measure given Xo = a. We prove that any recur-
rent random walk satisfies our condition, so that the result contains the
well-known random walk case. We also give an example of an irreducible
recurrent chain for ‘wh,ich the result fails to hold.

1. One of the first results for the range of a random walk was that n='R, — P
(escape from 0) a.s.; this was proved for simple random walk in [4] and then
extended to arbitrary walks by Kesten, Spitzer and Whitman ([10], page 38) using
Birkhoff’s ergodic theorem. There has been much recent work on the range of
random walks—for references see [10], page 35—and of course most of the
results depend strongly on the fact that one is dealing with sums of independent
random variables. However, the use of the ergodic theorem to get a general
statement about n—'R, valid for all random walks suggests that there may be
related theorems for more general stationary processes. In this paper we con-
firm this conjecture for irreducible recurrent Markov chains.

Markov chain terminology follows [3] or [5]. Let {X,} be an irreducible re-
current Markov chain on a countable state space S which may be considered to
be a subset of the integers. It is well known [3] that such a chain possesses an
essentially unique o-finite stationary measure =, with 33, 7,(i) < oo, that is,

Dies To(i)Py; = 7 f)

is true for all states i and j, where P;; is the one step transition pl:obability for the
process. m,(i) > O for each i ¢ S by irreducibility. The process may be repre-
sented on bilateral coordinate space Q of points @ = (- -+, X_y, X, X3, =+ +) with
entries from S; 7, and P,; induce on Q and the product s-field a measure = which
turns out to be invariant relative to the shift T that takes w into the point ob-
tained by shifting each coordinate of @ one step to the left. See e.g., [1], [9]
for fuller discussions of sequence spaces and shifts.

Define, in the same way as for random walk ([10], page 35), random variables
R,, n = 0 equal to the number of distinct elements among X, X;, - --, X,; R,
is called the range of the Markov chain in time n (we do not, as is customary
in the random walk case, necessarily require X, = 0). Crucial to the discussion
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is the following stopping time:
N = {first index n > 0 such that X, = 0}

where “0” represents any fixed state of the process. N is finite a.e. () by the
assumptions on the chain. Now define

(1.1) W =R, if X,=0
=0 if X,+0.
P, will denote conditional probability measure, given X, = a. The main result
is:
THEOREM 1. Let {X,} be an irreducible recurrent Markov chain, and let = and
W be as defined above. Then a sufficient condition for

(12 lim, . R — 0 as. (P)
n

for all states ac S, is that
(1.3) E W< oo.

If 7 is a finite measure, then automatically (1.3) is satisfied, so that (1.2) is
true for all Markov chains possessing a stationary probability measure.

REMARKS. Since W = 0 on the set X, # 0, (1.3) is the same as EPOW < oo.
Moreover, it is clear that 7 may replace P, in (1.2). Theorem 1 contains the
result for recurrent random walks by Theorem 2 and its corollary. The example
of Section 3 shows that (1.2) may fail if (1.3) does not hold. Although we have
not investigated the situation, we conjecture that an example may be constructed
showing that (1.2) and (1.3) are not equivalent. Henceforth “E” without sub-
script will denote “E,.”

PROOF OF THEOREM 1.

Case 1. 7(Q) = 1. Noticethat W < N - lix)=0» and so E. W < E, N = mean
recurrence time to 0 < oo [5], page 356. This shows that (1.3) is automatically
satisfied for finite z.

Let o, = 1 and ¢,(X,, X,, - -+, X,) = 1if X, # X, forallv =0,1, ..., k — 1
k = 1 (see [10], page 36). Then
R, = k0@
Using the bilateral stationarity
Ep, = (X, # Xy Xp # Xy, -+, Xy # X))
=Xy # Xy Xy Xy oo, Xy = X_,) >0
as k — oo by recurrence (the reversed process is also recurrent). Therefore

(1.4) nER, = n' 37_ Ep, — 0 .

5

9

Now let M be a fixed large positive integer. Define (compare [10], page 38)

Z(M) = the number of distinct elements among X, Xiyir =« +» Xipsnyms



682 LEO CHOSID AND RICHARD ISAAC

for k = 0. For the shift T we have

™Z(M)=Z,,,(M), k=0.
Moreover

(1.5) R, < TG Z(M)

where [x] is the largest integer < x. Apply Birkhoff’s ergodic theorem on T
to obtain

limsup, ... n7'R, < lim,_, M~Y(Mn~*) MM+ Z (M) = M-'Z* a.s. (7)
where Z* is a function satisfying EZ* = EZ(M). This implies
Elimsup,_,n7'R, < M'EZ* = M'EZ(M) = M~ER,,_,,

and letting M — oo (1.4) proves E lim sup,_., n~'R, = 0, that is, n='R, — 0 a.s.
(7). m(a) > 0 for each ac S, so that the proof is complete for finite z.

CASE 2. n(Q) = co. This case is most easily handled by proving a series of
lemmas. Define the successive hitting times of 0, that is, let N, = N, and let
N, be given by induction as the smallest integer n > N,_, with X, = 0.

Lemma 1. lim,_, k/N, = 0 a.e. (7).

ProoF. Let V; = 14._,. Apply the ergodic theorem, the metric transitivity
of T (by irreducibility, see e.g., Section 4 of [7]) and the infiniteness of = to
obtain

(1.6) ntyr , V,—>0 ae. (7).
Choosing the subsequence {N,}, (1.6) yields
N7V, =N k—0 ae. (7)

proving the lemma.
Define the transformation 7% on almost all points of Q by:

TV(0) = T¥(w).

It can be shown that 7% is an a.e. measurable invertible transformation on the
set {X, = 0} which preserves « restricted to this set (see e.g., [6]). Let W be
the random variable (1.1). Define

(TYyYW =Ww,, j2oOW =w,).
LemMma 2. lim,_. Ry /N, = 0 a.s. (Py).
ProoF. In analogy to (1.5) write
Lyyo Ry, = D50 W5

Apply the ergodic theorem to T% with reference to « restricted to {X, = 0},
obtaining

(1.7) lim SUP; oo k=) gy Ry < k72 S, W; > f a6 ()
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for f an a.e. finite valued function. Therefore,
(1.8) Lizymo N 'Ry, = (Ligp=k'Ry,) - (N,7%k) -0 ace. (m)
as k — oo by (1.7) and Lemma 1. This translates to the assertion of Lemma 2.

LEMMA 3. There is a fixed set F with P(F) = 1 such that if k(n) is any subse-

quence of the integers
lim, _ Bna(@) _
Nitny-1(@)
forall we F.

ProOF. There is a P, full set F, on which all hitting times N, are defined;
there is a P, full set F, on which the convergence of Lemma 1 takes place;
there is a P, full set F, on which the convergence of (1.7) takes place. Let
F=F nF,nF, ForweF (1.7) may be altered slightly to give

((k(n) — 1)-1)1<X0=0) Ry < (k(n) — 1) ZER W, — f
and then a variation of (1.8) completes the proof.
LeEMMA 4. lim,_, R,/n = 0 a.s. (P,).

ProoF. We show convergence on the set F of Lemma 3. For fixed w ¢ F let
k(n) be the (random) subsequence defined by

k(n) = the unique index ; with N,_, <n<N;.
Clearly
R.(@) < Ryym(@) -0
n Nigay-1(@)
by Lemma 3 for » € F, proving the lemma.

Lemma 5. (1.2) holds.

Proor. If (1.2) fails on a set of positive P, measure for some a ¢ S, since al-
most all paths starting from a eventually visit 0 in finite time, (1.2) would then
have to fail on some set of positive P, measure. This is impossible by Lemma 4.

2. In this section it will be shown that condition (1.3) is satisfied for recur-
rent random walk. We actually obtain a much stronger statement involving
exponential convergence of the tail of the distribution of W,

THEOREM 2. Let X, be a recurrent random walk, and let h be a fixed positive
integer satisfying P(N = h) = vy < 1. Then

(2.1) P(W = nk) < 7, n=1.

ProoF. Recurrent random walk has the stationary measure z,(i) = 1 for each .
The following arguments will involve computations with respect to the measure
n obtained from this r,and the transition probabilities as described in Section 1.

First, we make an observation: let Uand ¥ be a.e. finite valued stopping times
([1], page 131)satisfying U = ¥ =0on X, # 0,and 1 < U < Von X, = 0. Let
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A be any set measurable with respect to X;, U< j < V. Then
(2.2) (A, Xy =a, X, = b)=a(A, X, =b| X, =a)
=n, Xy, =a|X, =b),
for every fixed a, be S, a + b. To prove this, note
7(Xy = a,U>0) = 5, 7(U = r(Xy = a| U =)
(2.3) = Yimm(U=jnX; =a) = X ®(U =)
=nX,=0)=1.
Moreover, since a + b
A, U=0,X,=a,X,=b)=7(A,U=0,X,=a,X,=0)=0.
Therefore,
(A, Xy =a,X, =b)=a(A,U>0,X, =a, X, =b)
=Xy =a,U>0)r(A, X, =b|X; =a,U>0)
=n(A, X, = b| X, = a),
this last equality obtained from (2.3) and an easy generalization of a Markov
property (see [3], page 5, relation (4)) to the strong Markov case. This proves
one equality in (2.2). The other is proved in the same way by applying the
above arguments to the reversed random walk.
The proof is by induction. A fixed positive & satisfying P(N = k) =y < 1
surely exists. As noted previously W < N- 14 _,,, so that
P(W=h) X P(N=h)=7
proving (2.1) for n = 1. Let us define
U, = firstindex n>0 with X,+# X, forall n>v>=0; X, =0,
and in general, )
U; =firstindex n>U,_, with X, # X, forall n>v=0; X, =0,
and let U; = 0 on X, # O for all j = 1.
By the strong Markov property
(W = nh)
(2.4) = 2lp#0 Diagho 7(X; # 0,0 <j= Upoyno Xy = @5 | X, =0) .
2(X; # 0, 05 Upeyp S Jj < Unis Xuryy = 04 Xy = @4) -
7(X; # 0, Uy < j < N, Xy = 0] X, = ) = B3 (1) - () - (1) .
From (2.2), term III = z(X; # 0, U,, = j < N, Xy,, = 0;| Xy = 0). Again
using (2.2) and homogeneity of random walk we obtain
() =a(X; # 0, 055 Upryp = J < Upps Xy, = @05 Xy, = 0:)
S Dia1 (Ui = )1(X; # 0, 05 Uiy £ Jj < Upis Uy = &, Xy = )
S D1 ®(Uny = )n(X; # 0, Uiy = j < Upp, Uy = k, X, = 0)
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= D1 T(Unm = k)n(X; #£ 0, Uiy < j < Upy, Uy, = k| X, = 0)
< Yz ©(U,, = k)n(reversed random walk starting from 0 avoids 0
for at least 4 consecutive steps)
=2 ®™(Un =k) -7 =7,
where the last step uses the easily verified fact that the distribution of the first
return time to O is the same for the reversed walk as it is for the forward one.
Summing first over p, in (2.4) we obtain
(W = nh) < Zwiaﬁo m(X; #0,0 £ j = Upoyys Xy
=mW=n—-Dh)y=y.y" 1=

= ;| X, =0)-7

(n=1)h

by the induction assumption. Since (W = nh) = P(W = nh), the proof is
complete.

CoOROLLARY 1. Recurrent random walks satisfy (1.3).
Proor. From (2.1) it is easy to see that
Zia P(Wzn) sh+ Fi ok < oo
This is sufficient to imply E. W = E, W < oo, as follows, e.g., from [8], page
111.

3. We exhibit an example showing that (1.2) may fail for an irreducible re-
current Markov chain.

Define a subsequence u(n), n = 1, by induction as follows: #(1) = 1, and given
u(n), let u(n + 1) > u(n) be selected so that u(n + 1)/u(n) = r(n), an integer, and

2n(1 _ 2—n)r(n) < n—z .

We define a chain with behavior described roughly as follows: a particle starting
at 0 moves deterministically one step to the right unless it is at #(n); at u(n) it
may return to O or else continue moving to the right, each choice having posi-
tive probability. More precisely, the state space is the set of nonnegative integers
with one step transition function p,; given by:

Peiv1 = 1, i+ u(n), n>1
Pumyo = 2=, ‘
Puny,um+r = 1 —2-, n=>1.

This chain is easily seen to be irreducible and recurrent. Let {X,} be the vari-
ables of the process. Define the events

A, ={X,=0,X,4;, =0 and X; 0 for 1 <j< uk)+ 1}
A¥., = {X, =0, first return to O occurs before the first hitting of u(n 4 1)},
observe .
Ax, = U, A, and so
P(A%,;) = P(Utoa A) = D1 P(4) S Di 274 = 1 - 2.
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Since the process “starts afresh upon returning to 0,” the resulting independence
yields
P{X, = 0, at least r(n) returnsto 0, each such return before
(3.1) first hitting u(n + 1)}
S e (1= 27 = (1 = 271 4+ (1 = 27%) 4 -]
— 2n(1 _ 2—n)r(n) < n-2 s
and, calling W, the event on the left side of (3.1),
e PW,) < Zian?< oo,

proving that W, occurs at most finitely often for almost all sample sequences.
Now let
t,(») = first hitting time of w(n + 1).

Then
R, _un+1)
t, 1,
where
(3.2) t(0) = L(0) + u(n + 1).
Now suppose that
R
(3.3) % <4%.

n

Then u(n 4 1) < [(w), from (3.2). Since, by (3.2), the excess /,(®) is the
time spent on the way to #(n + 1) in states that were already visited, it follows
that there must be at least

(o) S, wn+1) _

) ” am :
returns to the origin before reaching u(n 4 1). According to (3.1) this can
happen only finitely often a.s., so that (3.3) can happen only finitely often a.s.,
and thus limsup n~'R, = } a.s., showing the failure of (1.2). The preceding
example can be modified to give an irreducible recurrent Markov chain for
which limsup n—'R, = 1 a.s.
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