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A UNIFORM LAW OF THE ITERATED LOGARITHM FOR
CLASSES OF FUNCTIONS

By R. KAUFMAN AND WALTER PHILIPP
University of Illinois, Urbana

Let {£&, k > 1)} be a sequence of random variables uniformly distributed
over [0, 1] and let ¥ be a class of functions on [0, 1] with afix)dx =0.In
this paper we give upper and lower bounds for sup;c 4|2, nf(§)| for the class
of functions of variation bounded by 1 and for the class of functions satisfying
a Lipschitz condition.

1. Introduction. Let {£, k > 1} be a sequence of random variables, uniformly
distributed over [0, 1], and let & be a set of integrable functions on [0, 1] with
J4f(x) dx = 0. We are interested in those classes & for which we have almost
surely

1
(1.1) sup;c o= < wf(&)| < (N log log N)2.

If for instance the random variables £, are independent and ¥ consists of all the
indicators of intervals [s, #] centered of expectation, ie., F = {1}, 4(x) — (+ — 5);
0<s <t< 1)}, then (1.1) follows from the Chung-Smirnov law of the iterated
logarithm for empirical distribution functions. In view of a number-theoretic
inequality of Koksma (see (2.7) below) the Chung-Smirnov theorem implies that
(1.1) holds for the class ¥ of functions whose variation V(f) on [0, 1] does not
exceed 1. The results stated so far remain valid for stationary sequences {§, k >
1} of random variables satisfying a strong mixing condition and having uniform
distribution over [0, 1] and for lacunary sequences §, = {n,x). Here x is uniformly
distributed over [0, 1], {¢) denotes the fractional part of ¢ and {rm, k > 1} is a
lacunary sequence of real numbers, i.e., a sequence satisfying

(1.2) Mot/ M 29> 1, k> 1

The purpose of this paper is to prove (1.1) for the class & = A, («a >1) of
functions f on [0, 1] with f(0) = f(1), [ f(x) dx = 0 satisfying a Lipschitz condition
with exponent a and Lipschitz constant not exceeding 1 and for independent and
mixing random variables, as well as for lacunary sequences. Moreover, we shall
disprove (1.1) for A, (a <3) and uniformly distributed independent as well as for
lacunary sequences. It is this very last result which is the most difficult one to
prove.

We shall divide the material into four sections. In Section 2 we shall collect the
results for the class of functions of bounded variation. In Sections 3 and 4 we shall
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treat the classes A, for @ >3 and a <3 respectively. The case @ =1 remains open.
In Section 5 we shall give another proof of (1.1) for A, (a >3) and independent
uniformly distributed random variables by translating the problem into a setting
involving Hilbert space valued random variables.

2. Functions of bounded variation. The theorems of this section follow easily
from known results. We state and prove them only for the sake of completeness.
Let {&, k > 1} be a strictly stationary sequence of random variables satisfying a
strong mixing condition
21) |P(4B) — P(4)P(B)| < p(n)]0
for all 4 € %, and B € ¥, and for all integers n, ¢ > 1. Here ¥,” denotes the
o-field generated by & (a < k < b). Let g be a measurable mapping from the space

of infinite sequences (a;, a,, - - - ) of real numbers into the real line. Define

(22) T = 8w &usrs e ) n>1

and

(23) Ton = E(n,|F2%™) mon> L.
As is usual we assume that 7, can be closely approximated by 1,,, in the form

(24) E|n, = M| < $(m)0

for all m, n > 1.

Let A be the class of real valued functions f on [0, 1] whose variation V(f) on
[0, 1] does not exceed 1 and for which [{f(x) dx = 0.

THEOREM 2.1. Let {&, k > 1} be a strictly stationary sequence of random vari-
ables satisfying a strong mixing condition (2.1) with
(2.5) p(n) < n78
Suppose that the random variables m, defined by (2.2) are uniformly distributed over
[0, 1] and that they satisfy (2.4) with

(2.6) Y(m) < m™ 12
Then
|2 k<Nf (m)l

< C as.
(N loglog N)?

lim supy_, o, Sup;c s

where the constant C only depends on the constants implied by < in (2.5) and (2.6).

THEOREM 2.2. Let {m, k > 1} be a sequence of real numbers satisfying (1.2).
Extend the functions of A with period 1. Then

|2k<Nf(”kx)| <C

lim supy_,, SUpsea T
(N log log N)?

for almost all x € [0, 1]. Here constant C depends on q of (1.2) only.
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The proofs of these two theorems depend on an inequality of Koksma (see
Kuipers and Niederreiter (1974), page 143). Let x, - - - , x, be points in [0, 1].
Denote by A(N, ¢) the number of indices k < N with 0 < x, <¢. Here0 <z < 1.
Define the discrepancy

(Note that N ~'4(N, ) can be considered as the empirical distribution function of

the pointmasses in xi, - - -, xy.) Let f be a function of variation V(f) on [0, 1].
Then
27) 12 e<nf(xe) = Nfof(x) dx| < V(f)NDy.

Now let Fy(#) be the empirical distribution function at stage N of the random

variables {§;, k > 1} or of {{mx), k > 1}. Put
Ay = 5upo<t<1|FN(t) -t
Then by Theorems 3.1 and 4.1 of Philipp (1977)
NA,
(N log log N )%
for some constants C with the properties spelled out in Theorem 2.1 and 2.2 above.
1

(If the random variables are independent then (2.8), with C = 22, is the Chung-
Smirnov theorem.)

We now apply (2.7) with x, = § or x, = {(mx). Then Dy = A, and thus for
eachf € A

(2.8) - lim supy_, o, <C

IZ k<nf(§)] < NAy.
Hence

SupfeA|2k<Nf(£k)l < NAy.

We divide by (N log log N )%, take the limes superior and apply (2.8). This proves
Theorem 2.1. The proof of Theorem 2.2 is the same.

Theorem 2.1 is best possible in the sense that one cannot replace the constant C
by o(1), at least not for independent sequences of random variables. A similar
remark holds for Theorem 2.2. One can show that C > § in Theorem 2.2. (For the
details see Philipp (1975).)

3. Theclass A, (@ >3). Let A, be the class of real-valued functions f on [0, 1]
with f(0) = f(1), [} f(x) dx = 0 and satisfying a Lipschitz condition
[f(x) = fD)] < |x — y|* 0<x<y<L

THEOREM 3.1. Theorem 2.1 remains valid if we replace the class A by A, (a > -;-)
and (2.5) and (2.6) by
p(n) <n='¢
and
Y(m) < m™2
respectively.
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Note. For independent random variables we shall prove (1.1) for a larger class
of functions which comes close to A1. This will be done in Section 5.

THEOREM 3.2. Theorem 2.2 remains valid if we replace the class A by A, (a > %).

REMARK. It is interesting to compare Theorem 3.2 and Theorem 4.2 below with
a result of Takahashi (1962) who proved the standard law of the iterated logarithm
for all f € A, (a > 0) and gap-sequences of integers #,.

3.1. A proposition. The proofs of Theorems 3.1 and 3.2 are based on the
following proposition.

ProposITION 3.1.1.  Let {x,, k > 1} be a sequence of random variables. Suppose
that there exist positive constants A, C and 3 < 1 such that

P{l H+N . exp(2mihx,) > AR(N log log N)%}

(3.1.1) < C(exp(— R loglog N) + RN ~278)
for all R > 1 and all integers H > 0, N > 1 and h % 0 with |h| < N2. Then
lim supy_,, SUp;c Aa—lz—"ﬁﬂ&)—l—,— <A, as.
(N log log N)?

where the constant A, depends on A, a and B only.
For the proof of the proposition we need two lemmas. Write
F(H, N, h) = |SH2 X | exp(2mihx,)).
Define n by
(3.1.2) 2" < N < 2"+l
LemMma 3.1.1. For N > 1
(3.1.3) F(0, N, h) < F(0,2", h) + 2%,,<,<,,F(2" +m2, 27 h) + N?

where m, are integers with 0 < m; < 2"/,
A proof of this lemma can be found in Gaal and Gaal (1964). It is simply based
on the dyadic expansion of N. We also put

(3.1.4) #(N) = (N log log N)?
and define the events (here and throughout log* x = log(max(e, x)))

(3.1.5) G(n, k) = {F(0,2", h) > 24 log* |h|$(2")},
(3.1.6) H(n,m, I, h) = {FQ2" + m2', 2'=', h) > 24 log* |h|¢(2")2:¢~ "8}
(3.1.7) Gn = U l<|h|<2nG(n’ h)

(3'1‘8) Hn = U 1<|h<2” U %n<1<n U m<2n—rH(n’ m, l’ h)'
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LemMa 3.1.2.  Assume the hypothesis of Proposition 3.1.1. Then with probability 1
only finitely many G, or H, occur.

PrOOF. We apply (3.1.1) with R = 2 log* |A|, N = 2" and H = 0 and obtain
P{G(n, h)} < exp(—2 log* |h| log n) + 2~ "P+D(log* |h[)™>.
Thus
P(G,) < Zpy»; exp(—2 log* |h| log n)
(3.1.9) +27EDT, 1 on(log® |A]) 7
<n’Z
Similarly with H = 2" + m2/, N = 2/~ and R = 2 log* |h[22(1~AXa=D
P{H(n,m, I, h)} < exp(—2 log*|h| - 2:1=B)Xn=1) Jog n)
+271C+B)(log*|h[) =2+ 20=m(1=A),
Thus ~
P(H,) < Zp51Zin<i<n2’ ™ exp(—2 log*|h|220=BXn=D Jog n)
(3.1.10) +21<|,,|<2n2%,,<,<,,2”"- 27 2B+ . U=, =F)
<n?+ 2n(1+B)2%n<’<n2—1(2+3/3) <n-2
The lemma follows now from (3.1.9), (3.1.10) and the Borel-Cantelli lemma.

We now recall two facts valid for all functions in A, (« >3). First the
coefficients a, of the Fourier series of f

(3.1.11) A(x) = 2519 exp(2mihx)
satisfy
(3.1.12) Sy ilanPlhl(log* |A)* < 1

where the constant implied by <« depends on a only. This result was known in
essence to Bernstein. For a proof of (3.1.12) see Zygmund (1935), page 136,
formula (3).

For the remainder of the Fourier series we obtain

(3.1.13) IS 45w eXp(2mihx)| < N3
uniformly in x. Indeed, by a theorem of Lebesgue there is a constant C; such that
124> na exp2mihx)|| < Cy ming, || f — Ty|| log N

where || - || denotes the supremum norm and the minimum is extended over all
trigonometric polynomials 7, of degree N (see Lorentz (1966), page 54, Theorem
1). But according to a theorem of Jackson there is a constant C, such that

. 1 a
ming || f — Tyl < Czw(f, -’;) < CN ™
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Here w(f, h) is the modulus of continuity of f (see Lorentz (1966), page 56,
Theorem 2). (3.1.13) follows now since a > 1.

We finally can prove Proposition 3.1.1. By Lemmas 3.1.1 and 3.1.2, (3.1.2),
(3.1.4) and (3.1.5)-(3.1.8),

F(0, N, k) < 24 log* |h|$(2")
+24 log* [h|¢(2")S1, <<, 220 ~™F + N2

< 24 log* [hlo(2")(1 + (1 - 277 ) + N2
< log*|h|op(N) as.
for all 1 < |h| < 3N. Hence we have for each f € A, (a >1)

=k caf(x)] < |21<|h|<%;vah2k<~ exp(2mihx,)|
+2k<N|2|h|>%Nah exp(2mihx, )|

1
< (ZicpicinlaPllog* A)*)’
X (Z1<<inlhl " (log* A4 F(0, b, N))* + NN 7

< ¢(N) + Nig #(N) as.

using Cauchy’s inequality and (3.1.11)-(3.1.13). Here the constant implied by <
only depends on 4, a, 8. We take the supremum over all f € A, (a >3), divide
both sides by ¢(N) and then take the limes superior as N — co. This proves the
proposition.

For the proof of Theorem 3.1 it remains to show that (3.1.1) holds for functions
of mixing random variables as well as for lacunary sequences. This will be done in
the next two subsections.

3.2.  Functions of mixing random variables. Before we begin the proof of (3.1.1)
for functions of strongly mixing random variables let us observe that for indepen-
dent random variables n, with uniform distribution over [0, 1] relation (3.1.1)
follows from the classical exponential bounds. Indeed, {exp(2mihn,), k > 1} is a
sequence of independent identically distributed random variables, centered at
expectation with variance ¢ < 1 and bounded by 1. Hence it is enough to check
(3.1.1) for H = 0 only. Since

jexp(2rifm,)| _
oN?

relation (1) on page 255 of Loéve (1963) yields
P{[Sccw exp(2aifm)| > 2R(N log log N)?)

1
¢ = max,y 67N~z

< exp(—tZR(log log N)%+%t2(l +§o“N‘5't))
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forallh Oandallf < N2. We set t = (log log N)% and obtain (3.1.1) with 4 = 2
and C = 1.

The proof of (3.1.1) for functions of mixing random variables is much more
complicated. On the other hand, in a recent paper Philipp (1977) proved a similar
inequality for the random variables 1{s <n, <t} — ¢+ s (0 <s <t < 1) instead
of exp(2wihm,). Since the proof of (3.1.1) is essentially the same as the one given in
Philipp’s paper we shall only sketch the proof.

We first observe that for each integer A 7 0 the random variables (A, ) are also
uniformly distributed over [0, 1] since for 0 < ¢ < 1

P{{hyy <t} = 20<v<hP{”h_1 <y < (v + t)h_l} =t

We put

3.2.1) x, = x,(h) = exp(2mihn,)

and

(3.2.2) Xppn = X (h) = exp(2wim,,,).

Then

(323) El%, = Xl < 2a{|E[1, = 1] < [H19(m).

As in Section 3.3.1 of Philipp (1977) we put

_ 1

=5

(This a has nothing to do with the a in A,.) We define blocks of integers H; and J;
each consisting of [/'°%] consecutive integers. We leave no gaps between the

o

blocks. The order is H,, I,, H,, I,, - - - . Let M = M), be the index j of the block
H; or I; containing N and let /; be the smallest member of H;. Then

hy S N <hyyy
and

M100a+1 < NK M100a+1
We introduce new random variables y; and z; by

)’:j = 2:'nel-ljxmn
Zj = 2nellxmn

where we set m = [;°°*]. This notation parallels that of Philipp’s (1977) Section
3.3.1. We now state a series of lemmas whose proofs are also entirely parallel.

LemMMA 3.2.1. As N> o©
P|S 0, %o = Zjn(y) + 2)| > RN? | < RTIN 728

for all |h| < N2



A UNIFORM LOG LOG LAW 937 -

LEMMA 3.2.2. As N - o0
2 e, ol < N:
for all integers h.
LEmMMA 32.3. As N>«
2By} <N

for all || < N2
Let £ be the o-field generated by y,, - - -, ;.

LEMMA 3.24. The random variables y; can be represented in the form
=Yty
where (y;, £;) is a martingale difference sequence and v; = E(y)|E;_,) satisfies
lloylls < /=190
LemMMA 3.2.5. As N—> o
P{Z,culyl > RN} < RN 2,
LEMMA 3.2.6. As N - ©
P{S, yE(YHE,_|) > 2RBN } < R™*N 2%,
Here B > 1 is the constant implied by < in Lemma 3.2.3.
LEMMA 32.7. As N—> x
P{|S;<mY)| > 8RB(N log log N)*}
< exp(—6R loglog N) + R ~*N 2%
for all integers h with 0 < |h| < N2,

The proofs of all these lemmas are practically the same as the corresponding
ones in Philipp (1977). Similarly all these lemmas remain valid if the y;’s are
replaced by the z’s. We denote the corresponding martingale difference sequence
by {Z,j > 1}. Then for all integers » with 0 < |h| < N?

|2n<1vxn| < |2n<hM+|xn - EKM(}’J' + Zj)l
+2’;”QAM|xn| +Zemly, — Y+ Zculz — Z)
+Zjem Y| + |2,cnZ)
< 10°RB(N log log N)?
except on a set with probability
< exp(—6R log log N) + R ~*N ~2%,
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3.3 Lacunary sequences. There are several ways to prove (3.1.1) for lacunary
sequences. The first one is to modify the argument in Section 4.2 of Philipp (1977).
This approach is then similar to the one followed in the previous section. The
second way is to modify the proof of Lemma 4 of Takahashi (1962) and combine it
with Lemma 7 of Erdés and Gal (1955). However, it is not difficult to prove 3.1.D)
directly making use of elementary trigonometric identities and the fact that

(33.1) f3°(

The use of this identity in the context of lacunary sequences is due to Hartman
(1942).

Before we set out to prove (3.1.1) we shall make the usual simplifications. We
shall show (3.1.1) with 4 = 4log 4/log ¢ + 1 and an absolute constant C. Since
the sequence {hnm,, ,, k > 1} is lacunary with the same ratio ¢ it is therefore no
loss of generality to assume H = 0 and h = 1. Next, let

sin x
X

2
)cosuxdx=0 u>2.

log 4
(33.2) r= [ 10: ; ] +1
so that
q" > 4.
a < r)is lacunary with ratio at least 4 it is

Since each sequence {n,,,,, k > 1} (1 <
4, and an absolute constant C under the

enough to establish (3.1.1) with 4 =
additional hypothesis g > 4.
We note that for |x| < 1

(33.3) e* <1+ x+ x2
Let ¢ > 0 to be chosen suitably later. We shall first estimate

Jo exp(I2 <y €08 27m, x) dx
in x\2
< f(')(sm7x) Mecn(1 + £ cos 2amx + £2 cos? 2mmy x) dx
(334)
sin x

2
) een(1 + 322 + £ cos 2amex + 142 cos 4an, x) dx

<z

using (3.3.3) and the fact that sin x/x > 1 on [0, 1]. When we multiply out this

product we obtain a term (1 + 13" plus a cosine polynomial whose frequencies
are bounded from below by

2a(me = 2m = 2m, — - -+ ) > 2mm (1 — 2gh =% — 2gh K . .. )

>27rnk(1—2(%+4—12+~~-))

> 2an, /3 > 2an, /3 > 2
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if we assume n, > 1, as we can do without loss of generality. Here k >/, >/,
> oo,
Hence by (3.3.1) the integral in (3.3.4) does not exceed

(1+ gtz)”f;f( Si’;x )2 dx < (1+42)" <.

Consequently,

P { |Z < cos 27m, x| > 2R(N log log N)%}
(3.3.5) < exp( —2Rt(N log log N)fl)
- Jo exp(1Z ;< i cos 27my, x) dx
< exp(—2Rt(N log log N)% + N2).
We set t = (N~ log log N )% and obtain the bound
< exp(— R log log N).

Of course, the same bound holds, if in (3.3.5) cos is replaced by sin. This proves
(3.1.1) in the lacunary case.

4. The class A, (a« <3). In this section we disprove the uniform law of the
iterated logarithm for the class A, (a <3) and for independent uniformly distrib-
uted random variables as well as for lacunary sequences. This will be done in
Sections 4.1 and 4.2 respectively.

4.1. Independent random variables.

THEOREM 4.1. Let {§&,k > 1} be a sequence of independent random variables
uniformly distributed over [0, 1]. Then for each 0 < ¢ < j there is a 8 > 0 such that
supse . 2 r < nf(é) > A

with probability at least §. Here the constant implied >> depends only on e.

Notice that the theorem is valid for all 0 < a < 1 although for a > } it does not
give much information.

For the proof of Theorem 4.1 we need the Paley-Zygmund theorem and a
martingale inequality due to Burkholder.

LEMMA 4.1.1. Let X be a nonnegative random variable with finite second moment.
Suppose that

(4.1.1) IX|l, < aEX
Jor some 0 < a < 1. Let 0 < b < a. Then
P{X >b|X|;} > (b — a)*.
The next lemma follows from Burkholder’s (1973) Theorem 3.1.
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LemmA 4.12. Let {Y;, £} be a martingale difference sequence. Then for each
k>0and M > 1

KIP{S;cpY? > k) < 3E[S;0p Y.

Before we begin the proof of Theorem 4.1 we introduce some notation. Let
H > 1 be an integer. For 0 < h < H we define

(4.1.2) F,(x)=sin27Hx if hH '<x<(h+ 1)H™!
=0 else.
Let a > 0. We observe that for all choices §, = *+ 1(0 < & < H) the functions
(4.13) f(x) = H ™ *ZocnanOnFu(x)

belong to A,. Indeed, f has period 1 and f{f(x) dx = 0. Moreover, since |f| <
H ~“ we have

|f(x) = f(¥)l < 2H™* < 2[x = y[*
if |x —y|>H LIf |x — y| <H! then

|Fy(x) = F(»)| < 27H|x = yl.

Thus
|f(x) = f(»)| < H™*27H|x — y|
< 2mlx — yl*(|lx - y|H)'™"
< 27|x — y|*
Let N > 1 be integer and let 0 < & < 3. Put
(4.1.4) H=[N'"]
and for 0 < A < H put
(4.15) Sy = Sy(h) = 2k<NFh(§k)‘

Theorem 4.1 is a consequence of the following lemma.

LEMMA 4.1.3. As N > o0

(4.1.6) E|Sy| > N7
and
(4.1.7) ES2 < N°

where the constants implied by < are absolute.

Let us postpone the proof of the lemma for a moment and let us first deduce
Theorem 4.1 from it. We introduce random variables

1
Ty = N~l+2520<h<1{|2k<NFh(£k)|'
Then by (4.1.6) and (4.1.4)

ETy>» N™'*ieN1-eN7e s |
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By (4.1.7), (4.1.4) and Minkowski’s inequality

I Tyll, < N1+ 2N =Nz < 1.
Hence by the Paley-Zygmund theorem (Lemma 4.1.1) there is a 8§ > 0 such that
(4.1.8) P{Ty>6}>4.

Denote by sup,, the supremum over all 27 sets {§,,- - - , 8} with §, = = 1
for 0 < h < H. Then by (4.1.8)

sup(sh)ZKNH *a20<h<H8hFh(£k)
—_|€ - —1'8
>H™°N'"2 sup(&,)N 1*2 20<h<H8h2k<NFh(£k)
= H™N'"7Ty > H N~z

> N—a(l—e)+1—%s > Nl—a—e
with probability > §. The result follows now in view of (4.1.3).
We now turn to the proof of Lemma 4.1.3. Since by (4.1.2)

(4.1.9) E{FX&)} = [{P" " sin® 2nHx dx =1 H ",
we have by (4.1.4) and (4.1.5)
(4.1.10) ESy = E{S, vF}%)} = N-3H ™' ~iN-
This proves (4.1.7). To prove (4.1.6) we observe that for 0 < h < H
E{F{g)} < H™'

andforO<h<Hand1 <k<I<N

E{FE)FE)) < H™?
by (4.1.9). Hence by (4.1.4)
(4.1.11) E{Z, ~FH&)) < N*H 2+ NH ' < N*%.

We apply the Paley-Zygmund theorem (Lemma 4.1.1) with X = 3, _ yF2(&). Then
(4.1.1) is satisfied with some a > 0 by (4.1.10) and (4.1.11). Hence we obtain

P{S nFH&) > 1aN®} > 1a > 0.
Thus by Lemma 4.1.2 with x =3aN°® and (4.1.5)
E|Sy| > N7,
This proves (4.1.6) and thus Lemma 4.1.3.
4.2. Lacunary sequences.

THEOREM 4.2. Let {m, k > 1} be a lacunary sequence of real numbers and let
a < 3. Extend the functions f € A, with period 1. Then for each 0 < & <3 there is a
8 > 0 such that

SuprA,2k<Nf(”kX) > Nl-a-e

on a set E C [0, 1] of Lebesgue measure A(E) > 6.
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The proof of Theorem 4.2 runs parallel to the proof of Theorem 4.1 but is much

more complicated. Again we shall define functions F,(x), but slightly different
from (4.1.2).

We first introduce some notation. Let H > 1 be an integer and let
4.2.1) P=[H2“]H

Let G € C®(— o0, o0) with period 1, G(0) = G(1) = 0 and all derivatives vanish-
ing at 0 and 1. Suppose that G has a pure sine series and that

(4.22) J8G*H(x) dx =1.
For integer 0 < h < H we define
(4.2.3) G(x)=G(Hx) if hH'<x<(h+1)H™!
=0 elseon [0, 1].
We extend G, with period 1. We now define the functions
(424) F,(x) = Gy(x) - cos 27 Px.
For all choices §, = = 1 (0 < A < H) the functions
(4.2.5) fx) = P_a20<h<H8hFh(x)

belong to A, and have period 1. We first show that f satisfies a Lipschitz condition
with Lipschitz constant less than ||G’||, + 27|/ G||,. To prove this claim we note
that | f| < P ~%||G||,. Thus

|f(x) = f)| < 2P7%||Gllos < 2/[Gloo|x = yI*
if [x —y|>P LIf [x —y| <P~!then
|G, (x) cos 2aPx — G,(y) cos 2w Py|

< |Gy(x) = G(¥)| + |cos 2aPx — cos 27Py| || G||o

< NG'lllx = y|H + 27P|x = ||| Gl

< Plx = y|27(Glle + 1G"ll) = Plx — y|L (say).
Consequently,

|f(x) = f(¥)| < LP|x = y|P™* < L|x — y|*|x — y|'~°P' "
< Ljx = y|~

This proves that the Lipschitz constant is less than
167l + 27| G |l
Finally, [} f(x) dx = 0 because
(4.2.6) JoFu(x) dx = H™'[G(x) cos 2aPH ~'x dx = 0

since by (4.2.1) PH ~! is an integer and since G(x) is assumed to have a pure sine
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series. Similarly, we obtain

(42.7)  [§FA(x) dx = H™'[\G¥(x) cos® 2nPH ~'x dx
=31H '[}\G¥(x) + 1 H'[}G*(x) cos 4nPH ~'x dx
=3H'(1+0(P'H)) =3H"1(1 + 0(H ~%)),

using integration by parts and (4.2.1).
Let N > 1 and put

(42.8) H=[N'"]

so that by (4.2.1)

(4.2.9) N'*+e—2 « p g N1+e2d,
Write

(4.2.10) Sy = Sy(h) = 2, nF(mx).

Theorem 4.2 is a consequence of the following proposition.

ProPOSITION 4.2.1. As N — o0,

(4.2.11) E|Sy| > N7¢
and
(42.12) ES2 < N*

where the constants implied by < depend only at most on q, G and e.

Except for a few minor changes the proof that Proposition 4.2.1 implies Theorem
4.2 is identical with the proof that Lemma 4.1.3 implies Theorem 4.1. It will be
given in Section 4.2.5. In Section 4.2.1 we collect a few preliminary facts and
lemmas. In Section 4.2.2 we introduce blocks of integers and random variables
similar to Section 3.1. These block random variables are then approximated by a
martingale difference sequence to which Burkholder’s inequality (Lemma 4.1.2) is
applied. All this is done in Section 4.2.3. The proof of Proposition 4.2.1 is then
completed in Section 4.2.4.

4.2.1 Preliminaries. We expand G, into a Fourier series

(4.2.13) G,(x) = 2%_(a,, cos 2amx + b,, sin 2wmx)
where for each positive integer ¢
(4.2.149) a,, b, <min(H'm~'"!, m'H~'"").

Here the constant implied by <« depends only on G as is easily seen, e.g. by
integration by parts. We put

(4.2.15) Gx(x) = 2, cyi+s(a,, cos 2amx + b, sin 2mmx)
and
(4.2.16) F¥(x) = G¥(x) cos 2nPx.
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Then by (4.2.14)
(4.2.17) Fy(x) = Ff(x) < Z s prvsersl|ay| + [Bl)
< H’ZM>H|+3¢/zm”_l < H_3

if we choose ¢t > 2/e.
Let r, be the largest integer r with

(4.2.18) 2" < n, exp(log? k)
and let %, be the o-field generated by the intervals
Uy =[r27"% (v + 1)27%] 0<»<2%

Write
(4.2.19) & = F,(nex).

LemMMA 4.2.1. We have
(4.2.20) E(§.44]9) < H ™ "exp(log’j)g™* as.
and

(4221)  E(£%4.%) =1H (1 + 0(H ~* + g~ * exp(log? /))) a.s.
where the constants implied by < and 0 are nonrandom and depend on G only.
Proor. We prove (4.2.20) first. We estimate
SEEPY IF(ny 4 %) dx
= [p2-5, G+ 2 5in [k -, (h+ 1y - G(HN . x) cOs 20Pr; o x dx
= (Hnj+k)h1f[awam]n[,,,,“k, (h+1)n,,,]G(x) cos 2nPH “Ix dx
< HnZ)
using (4.2.6). Here o, = »27"n;, , H. Thus by (4.2.18)
(4.2.22)
E(£j+k|6jj) = Eil‘oll(Uy,')2’ff$5fr,”2_70h(n,-+kX) cos 2@ Pn; , ;X dx
< (Hnj+k)_12’f < H ' exp(log?j)q .
This proves (4.2.20). To prove (4.2.21) put 8, = »277 n; ;. Then
SEEPY IRy i x) dx = n,-l‘kf;‘?:*‘ﬂ,z(X) dx
= AR + O)FR(R) d
=277 H (1 + O(H ~% + q~* exp(log®/)))

by (4.2.7) and (4.2.18). Here 0 is a constant bounded by 1. (4.2.21) follows now as
in (4.2.22).
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LEmMA 4.22. Forl >k >0
E(§4i§41%) < P7'qg  exp(log’j) + H™® as.
where the constant implied by < is nonrandom and only depends on G, € and q.

ProoF. We first estimate

(4.2.23) J$EP277 cos 2a((P + s)my, = (P £ r)m,)x dx
where we assume

(4.2.29) rs < Hit3/2

Now by (4.2.24)

(4225) (Pxs)m, =(Pxrn,, >Pn, (1 —-sP™'—(1+rP Y)g*)
>3(1 - q_l)Pnj+l
if H is sufficiently large. Hence (4.2.23) equals
(Pr5+,)_1f§:+' cos 27((1 = sP~Y) = (1 £ rP 073 ))x dx
< (P"ju)_l

where p, = »27"Pn;,,. The same estimate holds with sine instead of cosine.
Consequently (we shall drop the index A from F} and F)),

(42.26) [P IFH(nyy 4x) F* (%) dx
<2, ccmsllal + 1B)(a] + |B)(Pr.)
< (P”j+1)_l

since by (4.2.14)

2m>l|am| <1 and 2m>l|bm| <1
with absolute constants implied by <« . Next by (4.2.17) and (4.2.26)

fﬁ;fg!)z_7F(rzj.+kx)F(ry+,x) dx < H™277 + (P”j+1)_l'
Hence as in (4.2.22)
E( .k j+1|65j) <H+ (Pnj+1)_12rj
< H %+ P~ 'qg7 " exp(log?j) as.

42.2. Introduction of the blocks. We now define inductively blocks I, of

consecutive integers each containing [ jie] integers leaving no gaps between the
blocks. We put 4; = min I, so that [, = [k, k) and

(4.2.27) JUTE < <A
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Write

(4.2.28) x, = E(|%,,) ifrel,
(4.2.29) wi=2,e58 ¥ =2,e1%
so that

(4.2.30) ;= E(w|%,,,)-

LEMMA 4.2.3. Asj— o©
y; — w, < P.exp(—log’j) as.
where the constant implied by < is nonrandom and depends on G and on q only.
PrOOF. By elementary calculus and (4.2.18)
(42.31) ¢ — x, < Pn2 "+ < Pg*"h+1 exp(—log? j) as.
Thus
w, =y <P exp(—logzj)Z,,<,5,Hq""5‘+l < P. exp(—log?j) as.
LEMMA 4.2.4. For i <j and j — o

(4.2.32) Ew! < H 7%+ H™ /4
and
(4.2.33) E(w|%,) < H )

where the constants implied by < only depend on q, €, and G.

ProoF. We prove (4.2.32) first. We show that there is no loss of generality in
proving (4.2.32) under the additional hypothesis ¢ > 4. Indeed, if we define r by
(3.2.2) then by Minkowski’s inequality

Wil = 125202 . ig(kr+a<l§+l‘£kr+a”4

LZ 2k I5<kr+a<hj+|£kr+a”4‘

This proves our claim since each sequence {ny,,,, kK > 1} has ratio at least 4.
From now on the proof of Lemma 4.2.4 follows the pattern of the proof of

Lemma 4.2.2, but is more complicated. We first estimate for », < », < »; < », the

integrals

(42.34) [jcos 2n{n (P r) =n (Pxr)xn(Pxtr)*n (P ry)}x dx

with r, < H'*3/2 (1 < i < 4). We observe that as in (4.2.25) the argument in the
cosine is at least %in since we assumed g > 4. Hence

(4.2.34) < (Pn,) "

The same bound holds with sine instead of cosine. Write
g: = F}T (nvx)’
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Then we obtain as in (4.2.26)
EEEEE) < (Pn) "
Hence by a repeated application of (4.2.17)

(4.2.35) E(££44) <H+(Pny)” v, <, <3<,
By (4.2.7)

(4.2.36) E(6,48) < EgZ< H ™.

Now

ij4 < 2 13 <V2<73<V4EI/-IE(gylgvzgngy)l.

We split the sum into two parts ¥, and X, where X, sums over all »; € [,
(1 <i<4) with », <», <v; <, and T, sums over all », € [, (1 <i < 4) with
v, < v, < vy = v, By (4.2.35) and (4.2.1)

(4.2.37) SI<H Y+ P7'E, chcnerd
<HJ3j 4+ P73, der’g™?

< H7 3+ H 1727,

Using (4.2.36) we obtain

(4.2.38) 3, < H /4,

(4.2.32) follows now from (4.2.37) and (4.2.38).
To prove (4.2.33) we use Lemmas 4.2.1 and 4.2.2. We obtain

E(w}|,) < Z,e,E(15)) + Zpcre | EEEIF,)|
Lo
< ja*H ' + 2h,< ,L<y<h,+log3;5.”5,;”2”5,,”2
L . —
"'}’_‘1]4 2,,/_.,_1053 '!/’<"<’9+1th exp(10g2 hj)

1
<j*H ! as.

The last estimate follows from (4.2.21) and (4.2.1). This concludes the proof of
Lemma 4.2.4.

4.2.3. The martingale representation. 'We shall use the following lemma.

LEMMA 4.2.5. Let {y;,j > 1} be a sequence of random variables and let {£;,j >
1} be a nondecreasing sequence of o-fields such that y; is £;,-measurable. (Here Lo
denotes the trivial o-field.) Suppose that

Zf-oEIE(yﬁkIB,'N < ®
for each j > 1. Then for each j > 1

= Yt =



948 R. KAUFMAN AND WALTER PHILIPP

where {Y;, £, j > 1} is a martingale difference sequence and
Y = 27{0=0E(yj+klgj—l)‘

This is Lemma 2.1 on page 7 of Philipp and Stout (1975). We apply this lemma
to the random variables y; defined in (4.2.29) and to the o-fields £, generated by

yl’...,yj.

LEMMA 4.2.6. Let the y; be the random variables defined in (4.2.29). Then we can
represent the y; by

=Y +uw—
where {Y;, £, j > 1} is a martingale difference sequence and

w < H 'log’j as.
The constant implied by < is nonrandom and depends on ¢, g and G only.

ProoF. Let us first estimate ; given by Lemma 4.2.5. Using (4.2.28), Lemma
4.2.1 and (4.2.27) we obtain

w = Z¥_oE(yilS-1)
=32 %,e,, E(E(£]9,,)IE-1)
=32 03,er. EGIE_)

= 7c°=02v61,+kE(E(§v|q’§)|Bj—l)
<H U+ H"ZD,,/H exp(log? i) g" "
< H 'log?h, < H™'log’j as.

Here J is the smallest integer » with exp(log? h)q~" < 1. The above calculations
show that the series defining u; is a.s. absolutely convergent and thus Lemma 4.2.5
applies.

4.2.4. Proof of Proposition 4.2.1. Let N > 1. Define M = M, by the require-
ment N € I,,. Then by (4.2.27)

(4.2.39) M'tie < N < Mi*3e,

Recall that in (4.2.8) we defined H in terms of N. We need three more estimates on
Y? and Y, which we state as lemmas.

LemMA 42.7. As N>
S, enEY} N € N0
where the constant implied by < depends on ¢, q and G only.
ProoF. Since {Y), £} is a martingale difference sequence,

EKMEYJZ = E(2/<M Yj)2

2
= E{2y<h,,$y +oup— Uy + 2oy — W,)}
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by (4.2.29) and Lemma 4.2.6. Hence by Minkowski’s inequality, Lemmas 4.2.6,
4.2.3, (4.2.39) and (4.2.9)
2 1
(2j<MEYj )2 - ||2v<hM£y||2
(4.2.40) <SH ' og N + (Zcnte + Siante)lyy — Wl
< N-1+2 4 Nie(1+3) + P exp(— N+%)
< N*¢/3,
We now estimate using Lemmas 4.2.1 and 4.2.2
E(2v<hM£v)2 _%NH_I < 2v<hME£v2 - %NH_I + 2y<v<hM|E(£p£v)|
(4.2.41) < M#H™' + H™'""%N + H™'S, g~ 7% + H™N?
1
+P7'E, <L
Hence by (4.2.40), (4.2.8) and (4.2.9)
S, mEY} —{Ne < N>*/°,
LEMMA 4.2.8. As N — o0
2
E(Zcn¥7) < N*
where the constant implied by < depends on ¢, q and G only.
ProOOF. By Lemmas 4.2.6 and 4.2.4 and Jensen’s inequality
EY!< Ey} + H™*log®j < Ew! + H *log’j

< H73%¢ + H™Y3/4,
Hence by (4.2.39) and (4.2.8)

(4.2.42) S,cmEY} < HM'*e + H™IM'P3/4 < N3/,
Next we estimate for i <j
@24) K%Y = E(E(VAS,)) = E(VE(VS,))
< EYH E(Y2|%,)lloo-
By Lemma 4.2.6
(4.2.44) Y? <y} + H ?logt .
Hence by Lemma 4.2.4
(4.245) E(Y?%,) < E(y}|,) + H 2 log'j
< E(wjz|65,,l) + H ™ 2logj

1
< H ",
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Also by (4.2.44) and Lemma 4.2.4
EY? < Ep? + H ?logti

< Ew? + H %logti

< H ™V,
Thus by (4.2.43) and (4.2.45) for i <j

E(Y?Y?) < H Y,
Hence by (4.2.42), (4.2.39) and (4.2.8)
E(S,enY?) < H2M* i < N,
LEMMA 429. As N>
E|lZ;cnY)| > N2e.

PrOOF. We apply the Paley-Zygmund theorem (Lemma 4.1.1) with b =3a and
X = 3,5 Y/ Then by Lemmas 4.2.7 and 4.2.8 relation (4.1.1) is satisfied for some
a > 0 depending only on g, ¢ and G. Hence with b = a we obtain that

P(3,(pY? >3aN} > ja > 0.
Thus by Lemma 4.1.2 with k =1aN°®

E|S, Y| > N7=.
Finally, we can prove Proposition 4.2.1. By Lemmas 4.2.6, 4.2.3, (4.2.10), (4.2.19)
and (4.2.29)
Sy = Eng)’j + Ejglog N(Wj - )’j)/"‘ 21og N<,<M(Wj - J’j) - 2',',";*&“&,,

—IC
=ZjcmY; +uy — ey +0(log? N) + P, v mr xp(—log? j) + O( M=)
= 3,cuY; + O(N+).

Hence (4.2.11) follows from Lemma 4.2.9 and (4.2.12) follows from Lemma 4.2.7
and the orthogonality of the Y.

4.2.5. Proof of Theorem 4.2. From now on the proof of Theorem 4.2 is almost
identical with the proof of Theorem 4.1. As in Section 4.1 we introduce the random
variables

Ty = N_1+%820<h<H|2k<NFh(nkx)|'
Using Proposition 4.2.1 we prove
P{Ty,>8}>8
in the same way as in (4.1.8). Hence, as in Section 4.1, but using (4.2.9) instead we
obtain
sup(5,)2 kv P " ZocharrOn Fu(mex)

> P—aNl—gle > N—a(l+e—2ez)+l—%e > Nl—a—e(a+%) > Nl-a—e
with probability > 8. Theorem 4.2 follows now in view of (4.2.5).
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5. The uniform law of the iterated logarithm and Hilbert space valued random
variables. In this section we prove a theorem for independent random variables
which, in view of (3.1.12), is slightly stronger than Theorem 3.1.

THEOREM 5.1. Let {§, k > 1} be a sequence of independent random variables
uniformly distributed over [0, 1]. Let A be the class of continuous functions f on [0, 1]
with [§ f(x) dx = 0 and whose Fourier coefficients a;, satisfy

(5.1) Sz ilail [hl(log* |Al)* < 1.
Then the conclusion of Theorem 2.1 remains valid.

ProOF. Let

pp=h"Zlog™\(e + k) h#0

po = 0.
Then

Sapf =b < .
We define a sequence {y,, n > 1} of /?-valued random variables
y, = {phezmhg}zf;_w_
Clearly, {y,, n > 1} is a sequence of independent random variables centered at
expectations and uniformly bounded by b?. Hence by Theorem 3.1 of Kuelbs and
Kurtz (1974) the sequence {y,, n > 1} satisfies the compact law of the iterated
logarithm and consequently the bounded law of the iterated logarithm, i.e.,
IS, <wall < (Wloglog N)?  as.

Thus by Cauchy’s inequality and (5.1) we obtain for all f € A

|2n<Nf(£n)| = |271°= —ooahph_ 12n<Nphe2m.h£n|

1 1
< (S0 @0 ) sl < (N loglog N)?  as.
This proves Theorem 5.1.

ReMARKS. The application of Theorem 3.1 of Kuelbs and Kurtz was kindly
suggested to us by Kuelbs. In an earlier version of this paper we had proved
Theorem 5.1 via the following exponential bound for sums of independent
bounded Hilbert space valued random variables which might be of independent
interest.

A refinement of Theorem 5.1 was recently obtained by Kuelbs and Philipp
(1977).

PROPOSITION 5.1.  Let {X,, n > 1} be a sequence of independent random variables
with values in a separable Hilbert space H and EX, = 0, n > 1. Denote the norm in
H by || - ||. Suppose that

(52) X1 <
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Jor some real b,. Then for each real t
(5.3) E(exp(t]|1Z,<nX,l) < 3 + 2 exp(2£22 v b2).

When H has dimension 1 this is only slightly weaker than one of the classical
inequalities.
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