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AN ALTERNATE PROOF OF A THEOREM OF KESTEN
CONCERNING MARKOV RANDOM FIELDS

By J. THEODORE Cox
University of Southern California

Let S be a countable set, Q a strictly positive matrix on S x S, £(Q)
the set of one-dimensional Markov random fields taking values in §
determined by Q. In this paper a short proof of Kesten’s sufficient condition
for £(Q) = ¢ is presented.

The purpose of this note is to present a short proof of a theorem of Kesten
(Theorem 2 in [3]) about one-dimensional Markov random fields. We will use
the terminology and notation of [3], and will rely on two additional results
about random fields. The first of these, Equation 2.1 in [2], asserts that Z(Q)
can be obtained by taking convex combinations of elements of Z(Q), the set
of extreme points of £(Q). The second, Theorem 6 in [4], shows that each
re Z,Q) is determined by a pair of sequences of strictly positive functions on

S, {L.()}ue z and {r,(+)},.z Which satisfy:

(la) an(y) = Zwesln(x)Q(x’ }’) = n+1(y) ne Z, ye S
(1b) Qr’n+1(x) = Zyes Q(X, y)rn+1(y) = 'n(x) ne Z, xeS
(IC) ln'r'n = Zmesln(x)rn(x) =1 nez

(1d) lo(n) = xp o(n + 1) = x;, - -+, 0(n + k) = x;}
= L(%)Q(Xos %y) + ++ Q(Xpmyy X)rurs(Xe)» M€ Z, ke Z*, x,€ 8.
THEOREM (Kesten). If there exists > 0 and m = 1 such that
(2) 2n1 QM(x, x) >4, xes§,
and Q is not equivalent to a positive recurrent stochastic matrix, then £(Q) = ¢.

REMARK 1. The proof shows, as does the original, that £(Q) = {the station-
ary Markov chain} if (2) is satisfied and Q is equivalent to a positive recurrent

stochastic matrix.

PROOF OF THEOREM. As explained in [3], it suffices to take m = 1. Suppose
Z(Q) #+ ¢. By the integral representation theorem in [2] we may assume there
exists e Z,(Q), which by Spitzer’s theorem must be determined by a pair /,,
r, as in (1). From (2) we obtain the following:

ln+1<x) > 5ln(x) ’ r'n(x) > —(lé_ "‘-;-l(x) ’ Cn = ln—l e < 1/5 ’ ne Z’ xes.
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In fact, ¢, is independent of n, since ¢, =1,y =1, 1 Q Ty =1l QFuyy =€,
Let ¢ = c,.

Set I,(x) = ¢7U,_(x). It follows that [, is strictly positive, [,Q =1I,,,, and
I-r,=1 The pair I, r, determine an element e &(Q) via the recipe in
(1d). Now set L(x) = (L(x)—dcl,(x))/(1—dc). Hence 1., 7, determine an element
e 2(Q)- .

Unravelling this, we see [, = dcl, 4 (1 — dc)l,, or, p = degt + (1 — doc).
Since 0 < dc < 1, and g is an extreme point, p = fi = fi, or l, =1, = I,. This
implies I, = ¢~',_, or [, ,Q = ¢7!,_,. Setting l, = = gives [, = ¢™*x, ne Z.

This process is repeated on the r, side leaving [, untouched (set 7, = ¢7'7,,,,
7, = (r, — 0cF,)/(1 — dc), etc.). The convexity argument gives Qr, = ¢7'r,, and
setting f = r, gives r, = ¢*f, ne Z. The right hand side of (1d) now becomes

(X)) Q(¥os %) -+ Q¥pors Xi)f(X)* 5
an expression independent of n. This means p is translation invariant, con-
tradicting Theorem 1 of [3]. Hence &(Q) = ¢ and Z(Q) = ¢. [I

REMARK 2. A similar (but shorter) argument shows that the set ~£(Q) of
entrance laws for Q (see [1]) is empty if Q is an irreducible stochastic matrix,
not positive recurrent, which satisfies (2).
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