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LOWER BOUNDS FOR THE MULTIVARIATE NORMAL MILLS’
RATIO!

By GEORGE P. STECK
Sandia Laboratories

Lower bounds are derived for the multivariate Mills’ ratio by expressing it
as an expectation of a convex function and using Jensen’s inequality.

1. Imtroduction. Let X = (X, X,, - - -, X,) be a vector of standardized nor-
mal random variables with EX,X; = p;. Let the positive definite covariance matrix
be £ with M = £~ !. The multivariate Mills’ ratio, R(a, M), is defined to be the
multivariate normal probability “beyond” a certain cutoff point divided by the
multivariate normal density at that point; that is,

R(a, M) = 27)"/}Z|? exp (aMa’/2) P(X > a).
Savage (1962) generalized the Shenton (1954) formula for the univariate Mills’ ratio
obtaining the representation

03] R(a, M) = [,5, exp (—aMu’' — uMu’/2) du.
Assuming A = aM > 0, Savage derived upper and lower bounds for R by using
1 — x <e™* < 1 on exp (—uMu'/2). His bounds are

1= 2m, /A — 22, my /AN, 1
(2 AA, A <R(a,M)<—-——A1A2”'An,

With the same assumption Ruben (1964) carried the expansion to more terms
showing that this led to an enveloping asymptotic expansion which gave alternating
upper and lower bounds of increasing complexity.

More recently, Gjacjauskas (1973) showed that if @, — oo for some i, a; > 0, all i,
and my; > 0 all i, j, then

1 1 1 1
—Z—_ Zn+1/n <R(a’ M) <7+ Zn+l/n’

where Z = (3)"II}d(aMa’)/9a; = II}_,A,. Gjacjauskas’ hypotheses imply A > 0 but
his upper bound is weaker than Savage’s and for n = 1 his lower bound is weaker
also.

If one is interested only in bounding multivariate normal probabilities, there is a
result due to Slepian (1962) that may be useful. Slepian showed that P(X > a|X =
O) > P(X > a|Z = D) provided ¢; > dj(c; = d; = 1, all i). So, for example, if all
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the correlations are positive, one could bound P(X > a) above and below by
probabilities based on the equicorrelated cases for p =max; ; p,; and p =
min, ; p; ;, respectively.

In this paper we derive three approximations from (1), two of which are
expressed in terms of the univariate Mills’ ratio. These approximations do not
require A > 0 and are all based on Ef(X) = f(EX). If f is convex in each argument,
so that Ef(X) > f(EX), then the corresponding approximation is also a lower
bound.

In the last section we report on the results of a sampling study carried out to
evaluate the accuracy of the approximations. That study showed the bounds to be
reasonably good and much better than the Savage bounds which rarely existed.
The requirement that A > 0 appears to be a severe one.

2. Approximations and bounds. Make the change of variable y;, = v,.(mﬁ)‘zl, i
=1,2,: -, nin (1) and rearrange the integrand so that

®3) R@, M) = ((m,)~3) [ - - - [Fe~"P¥/2Tlne=50~4/2 gy,

where Q = (m;/ (m,.,-mjj)%), P=Q-1Iand z = A,.(m,.,.)"i’ . This manipulation ex-
presses R(a, M) as proportional to E exp (—VPV’'/2)where V= (V}, V,, - - -, V)
is a vector of independent random variables such that ¥ has a density proportional
to exp (—zv, — v?/2). An elementary computation shows EV, = — R'(z,)/R(z,)
= 1/R(z;) — z;, where R(z) = [ exp (—zt — t*/2) dt = R(z, 1) is the univariate
Mills’ ratio. In what follows we will call this expectation variously E; or E(z,). Since
vpv’ contains only crossproduct terms, exp (—VPV’/2) is convex in each argument
and the resulting approximation is a bound. Thus we have

@ R(a, M) > R, = If[ R(z)(m;) * | exp (—EPE//2).

Another approximation, which is a lower bound for » = 2 and which appears to be
a lower bound for n > 2 as well, is obtained from (3) by integrating out one
variable at a time. The result is

A _1
() R(@a, M) = R, = TIj[ R(w)(m,) %],
where w, = z, and

wWe =2+ 2 119 EW), k=n—-1,n-2,---,1,
and g; = m,.j/(m,.,.mj,-)%, E(w) = 1/R(w) — w as before. For n = 2, ﬁz is a lower
bound for R(a, M) and in this case '

Ry = (1 — p?) max {R(x)R[ y — pE(x)], R(V)R[x — pE(»)]},

where x =z, = (a, — pa)/(1 — p?)? and y = z, = (a, — pa,)/(1 — p)?. The

validity of (5) can be verified as follows. First, note that the quadratic form in (3) is
vPy' /2 = 31213%_ ., 1v,v,9;. Second, combining this term with the other exponents,

i=]1
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we can write the integrand of (3) as
exp (—v,{z, + Zi;qy} — 03/2)- exp (—vy{z, + Shvqy) — v3/2)
©** €Xp (_vn—l{zn—l + ann—l,n} - 03—1/2)° €xXp (_vnzn - 1-73/2)

Next, multiplying and dividing the above expression by the integral (zero to
infinity) of each individual exponential factor enables us to write their product as
R(Zl + E'Z'l)quj) : R(ZZ + Egvqu) tee R(Zn—] + ann—l, n) : R(Zn)

‘f(vl) .f(DZ) Tt f(vn)3
where f(v,) is the (Mills’) density of a random variable whose expectation is
E(z; + 27, ,v;q;) and R(-) is the univariate Mills’ ratio. This operation expresses
the integral in (3) as an expectation. Finally, each occurrence of a variable in the
product of R’s is replaced with its corresponding expectation (Ef(X) = f(EX))
beginning with v, (since v, was integrated out at the start) and proceeding to
03, Uy * +, and v, in turn,
Thus all occurrences:
of v, are replaced by E(z, + 23v,95);
of v, are replaced by E(z; + Ziv;q3);

of v,_, are replaced by E(z,_, + Vp—1@n—2,n-1 F Vnn—2 1)}

of v,_, are replaced by E(z,_, + v,9,_1,,);

of v, are replaced by E(z,).

This shows, taking the R’s in reverse order, that the expectation of the product of
R’s is approximately the following product:
R(W,) * R(Wy—1) - + - R(w3) - R(wy),
where
Wo = 2Zp» Wan—1= Zp—1 + E(Zn)qn—l, n

=2, + E(wn)qn«],n
wn—Z = zn—2 + E(Zn—l + E(Zn)qn—], n)qn—2,n—l + E(Zn)qn—2,n
=2, + E(Wn—l)qn—2,n—l + E(Wn)qn—z,n’

s

and, in general,
we =12+ 2k EW)qy k=n-1,n-2,---,1

Incorporating the factor (m;;m,, - - - m,,,,)‘% completes the proof of (5).

Since ﬁz depends on the order in which the variables are integrated out there are
n! different possible values. In the evaluation we considered three possibilities: (i)
integration of the variables in their natural order; (ii) integration of the variables in
an order corresponding to the value of z—the variable associated with the largest
value of z being integrated out first; (iii) same as (i) except that it is the variable
associated with the smallest z which is integrated out first. In the cases studied each
of these values of ﬁz was a lower bound; so it is possible that the maximum of the
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n! possibilities is also a lower bound. It is also possible that an algorithm which
minimizes the maximum w or maximized the minimum w would give w’s for which
ﬁz approximated the maximum of the n! possibilities reasonably well.

Another bound can be derived from (3) by moving the exp (—zv’) factor over
with exp (—vPv'/2). Then the expectation is with respect to independent normal
random variables restricted to (0, o). (Another possibility, of course, is to move
the exp (—vv'/2) factor and take the expectation with respect to independent
exponential random variables, but this would require A > 0.) The function
exp (—vPV' /2 — zv) is convex in each argument since P has zero entries on the
diagonal and we have

5 n/2 -1 2\: 2
© R@m >R =(F) mm) Zexp[—(;) 25 -233, 4,

where, as before, z;, = A,(m

Values of P(X > a), Mills’ ratio and approximations

)'" and g; =

TABLE 1

/(mu _/j

forn =2, 4,6,10,20.4

Prob- Mills  R,(a, M) Ry(a, M) Ry(a, M) Savage

ability Ratio Approx. % Approx. % Approx. % Lower Bd. Upper Bd.
114391 .8910 8793 13 8832 09 8716 22 —43.5 5.07
.029434 5327 .5060 5.0 5128 3.7 4922 76 -133 1.86
009851 4368 4368 0 4368 .0 2672 388 -20.38 1.80
.001028 2529 2460 2.7 2480 19 2035 195 .033 414
.000183 1.0942 1.0924 2 1.0934 .1 2254 794 * *

4 .104284 2.4349 1.6633 31.7 1.8696 23.2 1.6632 31.7 * *
.031878 1.2643 9212 27.1 1.0194 194 8113 3538 *
.010031 7684 572 1S 7581 1.3 .6238 188 * *
.001031 .1943 Jd921 1.1 1935 4 0939 517 -33.6 241
.000183 .0448 0430 4.0 0440 1.8 0171 618  —16680. 5.98

6 .014542 3.0269 2.8439 6.0 29332 3.1 2.8534 5.7 * *
005129 1.5196 12923 150 1.3587 10.6 1.0651 299 * *
.000981 .5455 5066 7.1 5290 3.0 3529 353 * *
.000537 1777 1690 49 1725 29 1133 362 * *
(4)928 0670 0609 9.1 0642 4.2 0254 62.1 * *

10 .010030  83.86 2541 69.7 38.08 546 1703  79.7 * »
003145  31.77 2941 74  29.56 70 2549 19.8 * *
.001042 3.983 3342 161 3715 6.7 2369 405 * *
.000108 3352 2610 22.1 2884 14.0 1210 63.9 * *
(4273 2258 2024 104 2160 4.3 1059 53.1 * *

20 .001334  149600. 42280. 717  58140. 61.1 5471. 963 * *
000599  45660. 13580. 70.3 18620. 59.2 2230. 95.1 * *
000304 10390. 3281. 684 4480. 59.6 6744 935 * *
(4)496 6089. 4764. 21.8 5378. 11.7 1628. 733 * *
(4210 405.3 143.3 64.6 1984 51.0 339 916 * *

*Savage bounds not appropnate because A < 0.
1The approximations R,, R2, R, and Savage are defined by equations (4), (5), (6) and (2), respectively.
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3. Evaluation of approximations. The multivariate normal integral can be
expressed as a single integral of products of univariate normal integrals when there
is a set of constants by, by, - - - , b, such that p; = b, In that case X; = b, Y + (1
- b,?)%Z,. where Y, Z,, Z,, - - - , Z, are i.i.d. N(0, 1) and the X’s are conditionally
independent given Y = y. Letting G denote the standard normal distribution
function, it follows that

P(X>a) = fiHQ'G(ﬂ%)G'(y) dy.
(1 - 57

Hence, in this particular case, P(X > a) can be computed by standard quadrature
methods and for purposes of evaluating the approximations we considered only
this special case. The exact Mills’ ratio and its approximations were computed for
n = 2(2)20 and many combinations of {a} and {b} where the b’s were chosen
independently from a uniform distribution on (— 1, 1) and the a’s chosen so that a
range of values of P(X > a) were obtained. The results are summarized in Table 1.

It is apparent that R2 is, in general a good approximation and is the best of the
three. R, is almost as good as Rz, and R3 is, in general, a poor approximation.
Furthermore, the bounds given by Savage are poor the few times they are
appropriate, i.e., A > 0.
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