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FURTHER RESULTS ON ONE-DIMENSIONAL
DIFFUSIONS WITH TIME PARAMETER SET (— 0, o)

By J. THEODORE Cox
University of Southern California

Let p,,t > 0 be the probability transition semigroup of a continuous
one-dimensional diffusion. We examine continuous Markov processes £, de-
fined for —oo0 < s < oo, which are governed by p,. It is shown that the class of
such processes, modulo convex combinations and translations, can consist of at
most three elements. In addition, it is shown that the first passage times for
these processes are related to a previously known existence condition.

1. Notation and definitions. Let I/ be an interval of real numbers, finite or
infinite, with endpoints r, < r,, which may or may not belong 1. ® will denote the
Borel subsets of I, and C, will be the set of real-valued, bounded, continuous
functions defined on 1. p, = p,(x, B)(t > 0, x € I, B € %) is the transition semi-
group of a regular, one-dimensional diffusion with continuous sample paths as
defined in [4]. X,, ¢ > O will denote the process and P, x € I, will be the family of
probability measures on the path space which satisfy P,[X, = x] = 1 and P,[X,,,
€ B|X,,0<u<s]=p(X, B)P, —ae. for xE€1,s>0,t>0,BER. 7. =
inf {¢t > 0: X, = x}, and E, is the expectation operator corresponding to P,.

As in [2], let @ be the set of continuous functions from R to 7, §{(w) = w, for

SER,F, =olf, u<s],J = olf, u €R]. In addition define F° = of{,, u > s].
Let O = {? : P is a probability measure on (2, ¥) and P[§,, € B|F,] =
p(&,B)?P —ae.forseERt>0,BER).
9 corresponds to the set of processes £ which are defined for —c0 <5 < o0
and move according to p,. As noted in [2] & is actually determined by its marginals
P £ € du] and the semigroup p,. I is convex and I, will denote the extreme
points of IM. P € M is said to be nontrivial if for some s,§ ER, B € B,
P& € Bl # P& € B]; otherwise @ is trivial.

It will be convenient to introduce some notation due to Dynkin used in [3]. For
each s € R, x € I we define a probability measure ¥~ on (2, F°),

@""{w :w,l (S Bp’ t s W € Bn} = fB,' "’fB,,ptl—.\'(x’ dxl) te 'pt,,—t,,_|(xn-l’ dxn)

wheres <1, < - -+ <1, B, € B. P~ corresponds to a process started at time s,
position x. Note that P>*[¢ ., € B] = P,[X, € B]if ¢t > 0.

In the proof of his integral representation theorem in [3], Dynkin used a
martingale argument to show that if ? € 9M,, s € R, 4 € ¥° for some s, then

(1.1) lim,_,_,, 94A4) = P(4) P — ae.
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In general the exceptional null set depends on 4. However, standard arguments
show that there exists some Q, C 2, P (2,) = 1, such that for all w € Qy, s € R, f
€ C,

(12) lim, ,_,, & O[f(&)] = &6[ f&)],
where & is the expectation operator corresponding to % and &** corresponds to
P X,

In [2] attention was focused on obtaining necessary and sufficient conditions for
9 to contain nontrivial elements. In particular, Theorem 3.2 in [2] implies that if
% € 9N, is nontrivial, then there exists a sequence z,, z,, - - - of elements of 7, a
sequence of reals z, - — oo, and a family of probability measures {®,},, on R
such that

(@ lim, 2z, =r,wherer=riorr=ryr &l
(1.3) () P, [7, + 1, € du] >, P, (du)
© OLfEN = L@ E[f(X,_,)]

whenever f € C, and f(y) =0 fory > x,r =r); y < x,r = r.. —,, denotes weak
convergence of probability measures. We will refer to (1.3) frequently, and call it a
representation for ¥ .

Our present goals are to identify the measures @, above in terms of ¢ and £
and to understand how “big” 9N can be. To do this we introduce a final definition.

For s€R let 6, : @ —>Q be the shift by s, 0,w(f) = (s + ), and 6.4 =
{w:0_,0 € A} for A € F. The shift induces a map from 9N to MM given by
0,2)(A4) = P(0_,4). Thus (0,P)[¢ € B] = P[¢,,, € B]. In addition, if p is a
probability measure on R, define . u(I) = u(I" + s5), where ' + s = {x : x — s €
T}.

2. The size of 9. It is natural to ask just how large 9N is if we rule out
convex combinations and translations induced by the shifts §,. The answer is
contained in:

(2.1) THEOREM. 9N, contains at most three equivalence ( ~ ) classes.

REMARK. Suitable modifications of the examples in [2] show that each possibil-
ity can occur. The three classes represent the trivial or stationary process, the
process that “comes in” from r,, and the one that “comes in” from r,.

(2.2) LeMMA. Assume @ € 9N, has the representation (1.3). Then there is a
Sunction ¢ : I - R such that c(z,) = t,, c¢(z) > — o0 as z — r (the “r” of (1.3)), and
P[r, + c(2) € du] >, D, (du) as z > r for all x € I.

'PrOOF. Suppose r = r,. By taking a subsequence if necessary we may assume
z,1r,. Now fix x € I, eventually z, > x. Since the time to get from z, to x may be
thought as the sum of the time to go from z, to z,_,, from z,_, to z,_,, etc., and by
the strong Markov property these times are independent, the convergence in (1.3)
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suggests that the time to go from z, to z,_, becomes deterministic as n — 0. To
make this precise, define the concentration functions g,(e) = sup, P, [t <7, <t
+ ¢]. The convergence in (1.3) implies g,(¢) - 1 for all ¢ > 0. Using these con-
centration functions it is not difficult to “interpolate” between the z, to produce a
function c(z), with ¢(z,) = t,, to satisfy (2.2). ]

(23) LeMMA. Assume p, p,,n=1,2,- - are probability measures on R, and
Pn = as n — oo. Let x, be any sequence of real numbers with i, = 8, p,. Assume
A, =, [i for some probability measure [i. Then lim,_, , x, = x, a finite number, and
fi=0.p.

ProorF. Elementary. []

PROOF OF THEOREM 2.1. Assume &P, P’ € 9N, are nontrivial, represented as in
(1.3) (with z,, £, @, for P’). If r # r/, then P < P’, which can be seen by letting
s — — oo in (1.3). Assume r = r’ = r,. We will show that for some t € R, ®, =
6,@’, in which case (1.3) will show ¥ = 6,9".

Apply Lemma 2.2 to the unprimed representation for & to obtain P,[7, + ¢(2)
€ du] >, ?,(du) as z—>r, Letting fi,(du) = P,[7, + c(z,) € du], this implies
B, (au) —,,@,(du) as n — oo. But setting p,(du) = P,[7, + t, € du], we have fi, =
0_y+ceytn and p, >, P, as n— oco. Lemma 2.3 completes the argument. The
trivial ¢, if it exists, forms its own equivalence class. []

3. Hitting times for £. If 91U is nonempty it makes sense to investigate the
properties of the process £. Interest centers on what happens as s » — c0. In
particular, let 7, = inf {# € R : § = x} be the first hitting time of x for §, and
T =inf {z > a: § = x}. Our first result says that if ¥ € 9N, is nontrivial, then
T, is @ — a.e. finite.

(3.1) LeMMA. Assume P € O, is nontrivial, with representation (1.3). Then for
all x,y eI, x >y,

(a) lim,,_, P[§<x]=0, r=n,
=1, r=rn,

(b) [Tl <w]=1,

©) PIT, <T,]=1, r=r
=0, r=nrn

Proor. Throughout we assume the r in (1.3) is r,. (a) From (1.3) we see that
E[AE)] < (up, e [f))) - @,(— o0, s]). Let s > — o0. (b) To handle the possibil-
ity T, = + oo, note that {7, = + oo} C {sup, & < x} U {inf § > x}. Part (a)
above and the regularity of p, imply each of these sets has % -measure 0. The case
(T, = — o} is slightly more involved. As noted in [2], since & is nontrivial,
p(x, &) > ,m(dy) as t —> o independently of x € I where —, denotes vague
convergence and #(/) = 0 or w(I) = 1.
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Suppose m(I) =1, —o0 <a < b <s,and K C I is a compact continuity inter-
val for 7. Then
P[4 €K] > P[4 EK, T, <b]
= [2P[,T, € du]p,_,(x, K)
> @ [aTx < b](inft>s-bpt(x’ K))
Let a| — o0, b — oo to obtain P[£ € K] > m(K) - P[T, = — oo]. In view of (a)
of (3.1) this is impossible unless P[T, = — o] = 0. If #(I) = 0, a similar argu-
ment completes the proof. (c) Using path continuity and the preceding parts of the
lemma we can writt P[T, < T))=lim,, ., P[T, <T,T, >s5 &, >x]=
lim,_,, P[T, >s5,&>x]=1 [
Using the strong Markov property and Lemma 3.1 it is possible to replace
®,(du) in part (c) of (1.3) with P[T, € du), suggesting P[T, € du] = ®,(du). This
is in fact true.

(3.2) THEOREM. Assume &P € O, is nontrivial with representation (1.3). Then

(a) lim,_,_ & =r &P —ae. (the“r’ of(1.3))
b)) P [r,+tEdu]>,P(du) P —ae ast——o0,xEI
(c) P[T, € du] = ®,(du) forallx €I

PrOOF. Let @, be the set in (1.2). For fixed w € Qy, x € I, the family of
probability measures Pg,[7, + ¢ € du], t < 0, is tight, as shown in the proof of
Theorem 3.2 in [2]. Consider any convergent subsequence, say f’ — — co and
PQ: wl™ + & € du] >, (du). Lemma 3.3 in [2] shows, by taking a further
subsequence if necessary, §.(w) — r* where r = r, or r,. It is also a consequence
of this lemma that there must be a family ¢;’, y € I of probability measures on R
such that P&:(w)['ry + t? € du] -, 9,’(du). Hence the representation (1.3) is valid
with @ replacing ®,. Using (a) of (3.1) we see r* = r (the “r” of (1.3)). Now we
will show ¢ = ®..

Letf, = 1, z;, = §,(@), ¥’ = r* =1, ¥, = ¢, and P’ = P The argument used
in the proof of Theorem 2.1 shows @, = §,®, some ¢ € R. Using this fact in (1.3)
and changing variables gives

E[A&)] = L@ (@) E[ f(X,-.)]
= [Lo @ () E,[ f(X,_,)]
= [Ta® () E[ f(X,1;-0)]
= 6[f&.0]

Iterating gives &[f(£,)] = &[f(6,,)] for all n € Z. In view of (a) of (3.1), we must
have ¢ = 0. This means ®, = ¢, = ®_. This holds for all w € Q,, independent of

the choice of #.’.
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We have now shown that for all w € Q,, x € I, P, (@lTx + ¢ € du]l >, (du)
and §(w) —»r as t > — oo, where as usual ®, and r are as in (1.3). It remains to
show ® (du) = P[T, € du].

Fix x € I. Let D be a countable dense subset of R which contains no discontinu-
ity point of ®,. Applying Dynkin’s result (1.2) there exists 2, C @y, (@, = 1,
such that for all ¢, b € D, w € @, lim,_,_,, $**@[, T, < b] = P[, T, < b]. Thus,

|P[T, <b] = @((— 0, b)) < |P[T, <b] - P[,T, <b]|
+|P[, T, <b] - ?P”f:("’)[aTx <b]| + qu’”‘:(“’)[aTx < b]
— P ‘:‘“”[,Tx <b]l + l‘ﬂ’"ff("’)[,Tx <b] = @.((— o, b))|.
Let ¢ — oo, then a] — oo to obtain the desired conclusion. []

REMARK. The Markov chain analog (discrete time and state space) of part (c)
of (3.2) was established in [1] by F. Spitzer and H. Kesten using Fourier analytic
random walk techniques.

REMARK. The fact that £ — ras. P as 1 — — oo can also be proved using
Lemma (3.1) and the fact that if 9 € 9N, is nontrivial, then {lim,_,_ § — r} has
% -measure 0 or 1 by Dynkin’s theorem quoted in [2].

4. Boundary classification. Theorem 3.2 in [2] asserts that 91 contains a
nontrivial element if and only if (a) and (b) of (1.3) hold for some (and hence all)
x € I. This is really a boundary condition; it depends only on how the process
behaves near r. For convenience, let us call r a *-boundary point if there exist
Z, t,, x € I, and @, which satisfy (a) and (b) of (1.3).

Let m and S be the speed measure and scale function of p, (see [4]). If 7 is a
*-boundary point, then

4.1) [S(r)| = +o0
and
(42) C ffdm(w)dS(y)| = + oo,

which indicates 7 is a natural boundary point in the usual terminology (see [5]). The
validity of (4.1) was established in [2]. (4.2) holds because the integral is simply
lim, ,, E,[7.], and if this limit is finite, ®, cannot be a probability measure.
However, not all natural boundary points are *-boundary points (see Example (a)
of [2]).

A sufficient condition, also introduced in [2], for r to be a *-boundary point is
that (4.2) and (4.3) hold, where .

(43) |52 dm(w))*dS(2)dS(y)] < oo,

If 7 C I'is an interval with one endpoint in the interior of 7 and the other endpoint
r, (4.3) implies m(J) < oo. This is a severe restriction, yet we have no example for
which this fails but » is a *-boundary point.
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In view of these comments we pose two questions:
(44) Is there a semigroup p, such that r is a *-boundary point and
m(J) = + oo whenever J is an interval contained in 7 with r as one
endpoint?

(4.5) What are necessary conditions on m and § near r for r to be a
*-boundary point?
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