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EXISTENCE OF INDEPENDENT COMPLEMENTS IN REGULAR
CONDITIONAL PROBABILITY SPACES

By D. RAMACHANDRAN
Indian Statistical Institute

Let (X, @, P) be a probability space and % a sub-o-algebra of @. Some
results on regular condftional probabilities given % are proved. Using these,
when @ is separable and % is a countably generated sub-o-algebra of @ such
that there is a regular conditional probability given %, necessary and sufficient
conditions for the existence of an independent complement for % are given.

0. Introduction and notation. Let (X, @, P) be a probability space and let R
be a sub-o-algebra of @. A o-algebra % * Cc @ is said to be an independent
complement of % if

(i) B and B * are independent and ,

(i) for every A € @ there exists 4, € 6{PB, B*} such that P(4AA4,) =
0,ie, B \VR*=@& as[P].

It follows by (i) that B N B * = (X, T} a.s[P].

The problem of existence of independent complements has been studied by
Rohlin (1949) and later by Rosenblatt (1959). In this paper, we study this problem
in detail for the case when & is separable and % is countably generated. First we
collect some facts about regular conditional probabilities. With regular conditional
probabilities as our main tool, we next employ Rohlin’s techniques in his treatment
of the problem for Lebesgue spaces to give necessary and sufficient conditions for
the existence of an independent complement.

Let @ be a o-algebra of subsets of a set X. @ is said to be countably generated if
there exists a sequence {4,,n > 1} C @ such that & = ¢{4,}. @ is said to be
separable if @ is countably generated and contains all singletons. 4 € & is said to
be an @-atom if no nonempty proper subset of 4 belongs to @. @ is said to be
atomic if every set in @ is a union of @-atoms. A probability Q on (X, @) where @
is separable is called continuous if Q({x}) = 0 for every x € X. A one-to-one map
f from a measurable space (X, &) onto a measurable space (Y, ®) is called
bimeasurable if both f and f~! are measurable. For other terminology used in this
paper refer to Neveu (1965).

1. On regular conditional probabilities. Let (X, &, P) be a probability space
and let % be a sub-o-algebra of @. A function u(x, 4) defined on X x & is called a
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regular conditional probability given % if

(CP 1) p(x, +) is a probability on @ for each fixed x in X,

(CP 2) u(+, A) is B -measurable for each fixed 4 in @, and

(CP3) P(AN B) = [gu(x, A) dP forevery A € &, B € B.

A regular conditional probability u(x, 4) is said to be proper at x, € X if

(CP 4) u(xo, B) = 1 whenever x, € B € B.

u(x, A) is said to be everywhere proper if it is proper at every x € X. Note that if
u(x, A) is proper at x, and if B is atomic then (CP 4) implies that u(x, ) is
concentrated on the % -atom containing x,.

In this section we prove certain results about regular conditional probabilities,
some of which are of independent interest, while others will be needed in later
sections. ‘

Let (X, @, P) be a probability space and let % be a sub-o-algebra of @. The
following proposition deals with the existence of regular conditional probability
given B in (X, @, P,) where P, is absolutely continuous with respect to P.

PROPOSITION 1. Suppose there exists a regular conditional probability u(x, A)
given B in (X, @, P). Then there is a regular conditional probability u(x, A) given
B in (X, @, P,) where P, is any probability absolutely continuous with respect to P.
If, further, u(x, A) is proper at x, € X then u,(x, A) is also proper at x,

PrOOF. Let f be a fixed version of dP,/dP, the Radon-Nikodym derivative of
P, with respect to P. For every (@-measurable function g on X let u(x, g) =
[g(»)u(x, dv). Then it can be checked that u(x, g) is a version of E(g|®), the
conditional expectation of g with respect to % . It follows that u(x, f) is a version of
the Radon-Nikodym derivative of P,| with respect to P|g. Now let E =
" {x:u(x, f) > 0}. Then E € B and P,(E) = 1. Define p,(x, 4) on X X @ by

p(x, 4) = p(x, fl)/(x.f) ifx€E
= u(x, A) if x € E°.
Clearly p,(x, A) satisfies (CP 1) and (CP 2). If B € % and 4 € @ then
Jsu(x, A) APy = [pp (x, A)u(x, f) dP

= [pnei(x, f1,) dP

= [pnefly dP

=P(ANBNE)=P(ANB)
and so p,(x, A) satisfies (CP 3). Thus p(x, 4) is a regular conditional probability
given B in (X, @, P)).

Finally, if u(x, 4) is proper at x, € E° then u,x, A) is proper at x,. On the other
hand if u(x, A) is proper at x, € E and if x, € B € B then

w(x, B) = p(xg, f15)/ (%0, f) = p(x5 f)/ (%0, f) = 1

since u(xy, B) = 1. Hence p,(x, A) is proper at x,.
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As a consequence of Proposition 1 we have the following corollary on the
existence of regular conditional probability in subspaces of (X, @, P).

COROLLARY 1. Let X, € & with P(Xy) > 0. Consider the subspace (X, & N
Xo Py) where Py(A N Xy) = P(A N Xy)/P(Xy), A € @. Suppose there exists a
regular conditional probability u(x, A) given B in (X, &, P). Then there exists a
regular conditional probability po(x, A N Xy) given B N X, in (X @ N X, Py). If
u(x, A) is proper a.s. [P|g] then po(x, A N X,) is proper a.s. [Polgx,]-

Proor. Define P, on @ by P,(4) = Py(4 N X,), A € @. Then P, is absolutely
continuous with respect to P. Let p,(x, A) be the regular conditional probability
given 9B in (X, @, P,) obtained by using Proposition 1. By (CP 3), there exists
N, € B with P,(N,) = 0 such that p,(x, X,) = 1 for all x & N,. Define po(x, 4 N
Xp on X, X (& N X,) by

;Lo(x,AﬂXO)=u1(x,AﬂX0) ifxeNlﬂXO
=P0(AnXO) ifxENlﬂXO.
It is easy to check that py(x, 4 N X,) satisfies (CP 1) and (CP 2) and that

IBax, (% A N Xo) APy = [pnenx, (X 4 N Xo) APy
= [pan;i(x, 4 N Xo) dP,
=P (BNNfnAN Xy =Py(AN BN Xp).

Hence po(x, A N X,) satisfies (CP 3) and thus is a regular conditional probability
given B N X,

Suppose u(x, A) is proper at every x & N where N € B with P(N) = 0. Then
P,(N) =0 and by Proposition 1, u,(x, A) is proper at every x & N. It can be
verified that Py((N U N;) N X,) = 0 and po(x, 4 N X,) is proper at every x & (N
U N)n X,

One may wonder whether, in Corollary 1, if we start with a regular conditional
probability u(x, A) which is proper everywhere, pg(x, 4 N X,) can also be chosen
to be proper everywhere. To show that such a choice is not always possible we shall
give an example using the following result.

PROPOSITION 2. There exists an everywhere proper regular conditional probability
py(x, A) given B if and only if there exist (i) a[P|g) — almost everywhere proper
regular conditional probability u(x, A) given B, and (ii) an everywhere proper
transition function Q(x, A) given B . ‘

PROOF. Since ,(x, A) is a transition function on X X @ given B the “only if”

part follows.
To prove the “if” part, let N € B with P(N) = 0 be such that u(x, 4) is proper
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at every x & N. Then p,(x, 4) defined by
py(x, 4) = p(x, 4) ifx&N
=Q(x,4) ifxeEN
is an everywhere proper regular conditional probability given % .

EXAMPLE 1. Let X be the unit square and & its Borel o-algebra. Let B be the
o-algebra of vertical cylinders. Let X, be a Borel subset of X which does not
contain any graph and whose vertical sections are all nonempty (see Blackwell
(1968)). Let P, be any probability on (X, & N X,) and let P on & be defined by
P(4) = Py(A N Xy). It is known (see Theorem 5 of [1]) that there is a regular
conditional probability given % which is proper a.s. [P|g]. The function Q(x, 4) =
1,(f(x)), where f on X is the projection to the first coordinate, is an everywhere
proper transition function given % . Thus there is an everywhere proper regular
conditional probability given % by Proposition 2.

In order to show that a regular conditional probability uy(x, 4 N X,) on X, X
(@ N X,) given B N X, cannot be chosen to be everywhere proper, it is now
enough to show that there is no transition function Qy(x, 4 N X,) on X, X (€ N
X,) given B N X, which is everywhere proper. By a theorem of Blackwell and
Ryll-Nardzewski (1963, Theorem 1) the existence of such a Qy(x, 4 N X)) implies
the existence of a B N X,-measurable function g from X, into X, such that the
graph of g is a subset of X, which is impossible by the choice of X,,. Hence there is
no regular conditional probability on X, X (& N X,) given % N X, which is
everywhere proper. .

2. A decomposition of X. Let (X, &, P) be a probability space and let ¥ be
an atomic sub-o-algebra of €. We assume throughout this section the existence of
a regular conditional probability u(x, 4) given B which is proper a.s. [P|g]; that is,
there exists N € 9B with P(N) = 0 such that u(x, A) is proper at every x & N.

A set A € @ is a called a measurable partial selector for % (or simply a partial
selector when there can be no confusion) if 4 N B contains at most one point for
every % -atom B.

Analogous to Rohlin’s results on Lebesgue spaces (see Section 4, No. 2 of [7]) we
have

PROPOSITION 3. Among the partial selectors for B there exists one of maximal
measure.

PrOOF. Let @ = {4 € @ : 4 is a partial selector for %} and let B = sup
{P(4): A € @)}. Let {4,,n > 1} C & be a sequence of partial selectors such
that P(A4,) — 8. We shall construct a sequence {C,, n > 1} of sets such that (i)
C,-€ @, for all n, (ii) lim sup C, € &, and (iii) P(C,) > P(4,) for all n. It will
follow that P(lim sup C,) = B.

Let C, = A, € @. Suppose C,, C,, * - * , C,_, have been defined for n > 1 such
that G, € @, 1 <i<n-—1.LetB,_,={x:px 4, >pux C,_,} and let C, =
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B;_1nN G_)U(B,_;N 4,). Since, by (CP 2), B,_, € B we have C, € @,. Let
{C,, n > 1} be constructed as above. We note that

XxEB,_,— N = p(x, C,) = p(x,C, N B,_,)
(*) = H'(x9 An N Bn—l) = H‘(x’ An) > H‘('x’ Cn—l)
xEB_, - N = u(x, G,) = p(x, C, N B;_,)

wx, Cooy N BiLy) = p(x, C,y) > p(x, 4,)

and hence for all x € N we have u(x, C,) > u(x, C,_,). For every x, let B(x)
denote the % -atom containing x. Let x & N. Then {B(x) N C,} is a sequence of
subsets of B(x) each containing at most one point and such that u(x, B(x) N C,)
> Wux, B(x) N C,_,). Further from (*)u(x, B(x) N C,) = p(x, B(x) N C,,_) = x
€B, -~ N=B(x)n C, = B(x)n C,_,. Hence {B(x) N C,} contains only a
finite number of distinct points. Hence there is a natural number n(x) such that for
all n > n(x), B(x) N C, = B(x) N Cotxyr

Let M; = U,gnB(x) N C,,). Then M, =1lim sup C, € @. M, is clearly a
partial selector and so M, € @,. From (*) we have p(x, C,) > p(x, 4,) for all
x & N. Hence, by (CP 3), P(C,) = [yqu(x, C,) dP > [yqu(x, A,) dP = P(A,), for
every n.

We now prove the main result of this section.

THEOREM 1. There is a decomposition of X of the form X = MyuU M, U M,
U+ UM, U " - where
(i) M, is a measurable partial selector for B for every n > 1,
(i) M, is a set of maximal measure among all measurable partial selectors for B
which are subsets of X,,_, =(UIZ!M,)° for every n > 1 and
(ii) M, contains no partial selector for B of positive measure.

PrROOF.  Let M, be constructed according to Proposition 3. Suppose
M, M, - - -, M,_, have been constructed satisfying (i) and (ii) for some n > 1.
Let X, , =(UIZ{M). If P(X,_)) =0 take M, = @. If P(X,_,) > 0 then by
Corollary 1, there is a regular conditional probability on X,_; X (€ N X,_,) given
® N X,_, which is proper as. [P,_,] where P,_, on @ N X,_, is defined by
P,_(ANX,_))=PAnN X,_)/P(X,_,). Now we apply Proposition 3 in the
subspace (X,_;, &€ N X,_,, P,_,) to the class of measurable partial selectors for
® N X,_, to get a set of maximal measure. Plainly M,_, is an @-measurable
partial selector for 9 and also has maximal measure if one considers only partial
selectors contained in X, _,. Having defined {M,, n > 1} in this fashion we set
M, =(UPM)’. If 4 €@ is a partial selector for B contained in M, then
P(A) < P(M,) for all n and hence P(4) = 0.

In what follows we call any decomposition of X of the form X = M, U M, U
M, U - - - satisfying (i), (ii) and (iii) of Theorem 1, a maximal decomposition of
X.
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3. A sufficient condition. For our future considerations we need the following
theorem of Rohlin (see Section 4, No. 3 of [7]). :

THEOREM 2 (Rohlin). Suppose X is the unit interval, & its Borel o-algebra and P
a probability on (X, @). If B is a countably generated sub-o-algebra of @ such that
there is no measurable partial selector for B of positive measure, then B has an
independent complement.

Rohlin’s proof of the above theorem uses properties of a version of regular
conditional probability given % which is proper a.s. [ P|g]. The existence of such a
regular conditional probability is guaranteed in the setup of Theorem 2 (see
Theorem 5 of [1], for instance). Using the notion of Marczewski function we obtain
the following generalisation of Rohlin’s theorem.

THEOREM 3. Let (Z, @, Q) be a probability space where C is separable. Let C, be
an atomic sub-c-algebra of C such that there is no partial selector for C, of positive
measure. Then C, has an independent complement.

ProOOF. By taking a generator {C,, n > 1} of € and by using the Marczewski
function of {C,} (see [5]) defined by f(x) = =;_,1¢ (x)(2/3") we can assume
without loss of generality that Z c [0,1] and C = {4 N Z: 4 € By, ;;} where
B0, 1) denotes the Borel o-algebra of [0, 1]. Define P on Bo, 1y by P(4) = Q(4 N
Z), A € By ). Let Cg = 0{C,} be a countably generated sub-o-algebra of G, such
that G5 = ©, a.s. [Q] (choice of C is possible since C is countably generated). Let,
for every n, 4, € By ; be such that 4, N Z = C, and let B, = o{4,}.

That there is no partial selector for C, of positive Q-measure implies that there is
no partial selector for %, of positive P-measure. By Theorem 2 there is an
independent complement ®¢* of B,. It is easy to check that Cf = B N Z is an
independent complement of &,.

REMARK 1. Theorem 3 for the case when there is a regular conditional probabil-
ity given C, which is proper as. [Q|c] can be proved by imitating Rohlin’s
techniques in his proof of Theorem 2 by utilising the given regular conditional
probability. But our proof of Theorem 3 is direct and simple. Further, Theorem 3 is
really stronger because there is no assumption about the existence of an almost
everywhere proper regular conditional probability as illustrated by the following
example.

ExaMPLE 2. Let X; = X, =[0, 1] and let A on (X;, B ;;) be the Lebesgue
measure. Let M be a subset of [0, 1] with outer Lebesgue measure one and inner
Lebesgue measure zero. Define a probability P, on & = o{®By ,;, M} = {(B N
M)u(CNM):B,CeRy )by P(BNM)u(Cn M°)) = N(B). Then it
is. well known that there is no regular conditional probability given %[o, j on
X, X @, (see [4], page 210).

Let Z =X, X X,,C =@ ® B ,; and let Q = P; X A. There is no regular
conditional probability given B, ;3 X [0, 1] on Z X @ since there is no regular
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conditional probability given By ;; on X; X @;. But by Fubini’s theorem there is
no partial selector for %[0’ 1 X [0, 1] of positive measure. Thus, in this case there is
an independent complement of %, ;; X [0, 1] by Theorem 3, although neither
Theorem 2 nor Theorem 3 with the condition of the existence of a regular
conditional probability is applicable.

4. Necessary and sufficient conditions. In what follows we let (X, @, P) be a
probability space where @ is separable and let %% be an atomic sub-o-algebra of @.
We assume further that there exists a regular conditional probability u(x, A) given
% which is proper a.s. [P|g]; that is, there exists N € B with P(N) = 0 such that
w(x, A) is proper at every x & N.

We shall give a necessary and sufficient condition for the existence of an
independent complement % * of % . We need the following lemma for later use.

LemMa 1. (i) 4 set B, € @ is independent of B if and only if u(x, B;) = P(B,)
a.s. [PI@].

(ii) A o-algebra B, C @ is independent of B if and only if for every B €
B,, w(x, B)) = P(B,) as. [Pla].

(iii) A countably generated o-algebra B, C @ is independent of B if and only if
there is a set N, € B with P(N|) =0 such that for every x & N,, w(x, B))
EB|E%|P(BI)'

Proor. (i) follows from (CP 3) and hence (ii) follows. The sufficiency part of
(iii) follows form (ii). To prove the necessary part let {B,,n > 1} C B, be a
countable algebra generating %B,. It is clear using (i) that there exists N, € B, with
P(N,) = 0 such that for every x & N, u(x, B,) = P(B,). Now if B, = (C €
B, : w(x, C) = P(C) for all x & N,} then B, being a monotone class containing
%, we have B, = B,.

We first prove the following result.

PROPOSITION 4. The following statements are equivalent.

(a) Almost all the measures { u(x, *)} are continuous.

(b) There is no partial selector for B of positive measure.

(c) There is an independent complement B * of B such that P|g. is nonatomic.

PrOOF. (a) = (b). If u(x, -)’s are continuous for every x & N,, where N, € B
with P(Ng) = 0, then for any partial selector 4 € &, by (CP 3),

P(A4) = f(NuNo),u(x, B(x) N A)dP = 0.

(b) = (c). By Theorem 3, there is an independent complement B * of % which
can, without loss of generality, be taken to be countably generated. There exists
X, € @ with P(X;) =1 such that (% \V B*) N X; = @ N X,. For every B *-
atom B* P(B*) = P(B* N X,) = 0 since B* N X is a partial selector for B.

(¢)= (a). By Lemma 1, there exists N, € % with P(V;) = 0 such that for all
x & N,, u(x, B*) =g*P(B*). Let Ny= N U N,. If x &€ N, and if y € B(x) then
p(x, {¥}) < w(x, B¥(»)) = P(B*(y)) = 0, since P|gs is nonatomic where B(x) is
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the % -atom containing x and B*(y) is the B *-atom containing y. Thus u(x, -) is
continuous for every x & N,.

We shall now introduce, following Rohlin, a sequence {m,, n > 1} of functions
on X and study their properties, after which we shall prove our main theorem of
this section.

Let x &€ N. Then (B(x), & N B(x), u(x, +)) is a probability space where B(x)
denotes the % -atom containing x. Let y;, 5, * * * , 4, - - be an enumeration of
points of B(x) of positive u(x, -) measure such that for every & > 1, u(x, {y,}) >
w(x, {¥x4+1})- If the sequence {y,} is infinite let

mn(x) = .U‘(x’ {yn}), n>1
and if the sequence {y,} contains only r elements let

mn(x) = p.(x, {yn}) lf n<r
= 0 ifn>r.
We have thus defined a sequence of functions {m,, n > 1} on X — N. Let m,, for
each n > 1, be defined to be identically zero on N.
Now {m,, n > 1} is a sequence of functions defined on X such that
(@a)m, > 0; (b)ym, > m,,; and (c) ZX_m, < 1.
Using the decomposition theorem of Section 2 now we shall show that {m,, n >
1} are measurable functions a.s. [P|g]. Let X = Myu M; UM, U - -+ be a
maximal decomposition of X.

PROPOSITION 5. (i) u(x, *)|, is continuous a.s. [P|q] and
Qi) p(x, M) > p(x, M, ) as. [Plg] for every n > 1.

Proor. (i) If P(M,) = O then the first assertion is trivial. If P(M,) > O then
consider the subspace (M, & N M, Py, = P(: N M,)/ P(M,)). Clearly in this
space there is no partial selector for ® N M, of positive measure. Further, by
Corollary 1, there is a regular conditional probability uy(x, 4 N My) on My X (&
N M) given B N M, which is proper a.s. [Py | ] such that

po(x, 4 N Mo) = p(x, A N My)/u(x, M) as. [PMol%nMo]-

By Proposition 4, uo(x, *) is continuous a.s. [Py |g 4, )- It follows that p(x, -)[,, is
continuous a.s. [P|g].

) Let N, = {x : u(x, M,) < p(x, M, )} and let M; = (NS 0 M,) U (N, 0
M, ). Then M, € @ and is a partial selector contained in X,_, =(U=/M,)°. If
P(N,) > 0 then

P(M)) = [p(x, M;) dP
= [si(x, M) dP + [y p(x, M, ) dP
> [u(x, M,) dP = P(M,)

which is impossible since M, is a set of maximal measure among measurable partial
selectors contained in X, _,. Hence P(N,) = 0.
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PROPOSITION 6. There exists Ng€B with P(Ny) =0 such that for all x & Ny UN
w(x, M) = m,(x), n=12---.
In other words for all n > 1, m, is B -measurable a.s. [P|g).

Proor. Using Proposition 5, we can get a set Ny € B with P(Ng) = 0 such
that for every x & N, pu(x, )|, is continuous and u(x, M,) > u(x, M, ,) for all
n > 1. Thus, for every x & Ny U N the sequence {B(x) N M,} consists of sets
containing at most one point and so arranged that their measures form a nonin-
creasing sequence. Further this sequence contains every singleton which has
positive measure. So by definition of {m,} we have

m,(x) = p(x, B(x) N M,) = p(x, M,)
for all n and for every x & Ny U N.

REMARK 2. Observe that the assertion in Proposition 6 is independent of the
choice of maximal decomposition of X. Thus if X = Myu M, U M, U - - - =
Myu M{ U M;U - - - are two maximal decompositions of X, then by Proposi-
tion 6, u(x, M,) = w(x, M) for all n > 1.

The following theorem is the main result of this section.

THEOREM 4. The following statements are equivalent.

(@) B has an independent complement.

(b) The functions {m,, n > 1} are constants a.s. [P|g)].

(¢) Every maximal decomposition of X consists of sets independent of % .

(d) There is a maximal decomposition of X consisting of sets independent of % .

ProoOF. (a)= (b). Since @ is countably generated we can assume without loss
of generality that the independent complement % * of % given by (a) is countably
generated.

Let Bf, Bf, - - - be an enumeration of B *-atoms of positive measure such that
P(B¥) > P(B}) > - - - and let Bf = (U,B¥‘. By Lemma 1, there exists N, € B
with P(N,) =0 such that x € N, and B* € B * = u(x, B*) = P(B*). Since
BVRB* = @ a.s. [P] and since @ is countably generated there exists X; € @ with
P(X,) = 1 such that (BVB*) N X, = & N X,. By (CP 3), P(X,) = 1 implies the
existence of N, € B with P(N,) = 0 such that for all x & N,, u(x, X;) = 1.

Let No= N U N, U N, and let x & N, Then u(x, B(x)) = u(x, B(x) U X)) =
% _om(x, B(x) N B¥).If y € B(x) N By then

p(x, {y}) < p(x, B(x) N B*(y)) = u(x, B*(y)) = P(B*(y)) =0,
where B*(y) C By is the % *-atom containing y. If y € B(x) — X, then u(x, {»})
< w(x, X7) = 0. Hence for every x & N,

. w(x, {y}) >0=y € B(x) N B* N X, (n>1)
and since @ N X; = (BVB*) N X, we have
B(x)Nn B¥n X,={y}.
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Thus for every x & N, and for every n > 1
**) m,(x) = u(x, B(x) N B N X,) = P(B})
or m, = constant a.s. [P|g).

(Notice that (**) togethcr with Proposition 6 implies that X = E* U E* U B—z
U --- where B*=B*N X, if n > 1 and B} = (U, >lB"‘) is a maximal decom-
position and hence (a) = (d).)

(b) = (c) follows from Lemma 1 and Proposition 6.

(c) = (d) is trivial.

(d)=(a). Let X = My U M, U M, U - - - be a maximal decomposition of X
such that M, is independent of B for every n > 0.

Suppose P(M,) > 0. In the subspace (Mo, @ N M, P,,) there is no partial
selector for B N M, of positive measure. By Theorem 3 there exists an indepen-
dent complement B¢* of B N M, in (Mg, @ N My, Pyy).

By Lemma 1 the given condition implies that u(x, M,) = P(M,) a.s. [P|g]. Let

%*=6{%0*,M1,M2,"'} 1fP(M0)>O,
=0{M1’M2""} lfP(AJO)=O
It can be shown using Lemma 1 that % * is independent of 9B . Since each M, is a
partial selector for B and since (BFV(B N Mp)) = & N M, as. [Py, ] if P(My) >
0, it follows that BVRB * = @ a.s. [P]. Thus B * is an independent complement of
B.

ReEMARK 3. Theorems 1, 3 and 4 are applicable in many situations where no
assumption of Lebesgue spaces is made. For instance, consider the mixture
problem for probabilities where we have a probability space (X, @, A), a Borel
space (Y, B) and a transition function u(x, B) given @ on X X % . The measure p
on % defined by u(B) = [u(x, B)dA is a A-mixture of u(x, -)’s. When @&, B are
separable consider the space (X X Y, @ ® B, Ap) where Au is the product
measure. Clearly the transition function gives rise to an everywhere proper regular
conditional probability on (X X Y) X (€ ® %) given & X Y and so Theorems 1,
3 and 4 are applicable in this setup. By doing so one can study the properties of the
product space and of the mixture measure p which is a marginal. Using this
approach, in a subsequent paper, we will study perfect mixtures of perfect
measures. '
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