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FIRST EXIT TIME OF A RANDOM WALK FROM THE BOUNDS
f(n) = cg(n), WITH APPLICATIONS

By T. L. Lat' AND R. A. WISMAN?

Columbia University and University of Illinois at Urbana-Champaign
Let X;, X5, -+ be iid. real-valued random variables with EX; =0,
EX? < o,and S, =X, +--+ +X,, n=12,--. . For a chosen positive
integer m and real ¢ > 0 the exit time N, is the least integer n > m such that
f(n) — cg(n) < S, < f(n) + cg(n) is violated, where the functions f and g (0 <
g7100) are both defined for all real x > m. Under certain conditions on f and g,
a function ¢ (unique up to an asymptotic equivalence), satisfying Y(x)/x—>0
as x — oo, is constructed on [m, o) such that Y(N,) is exactly exponentially
bounded. This result generalizes earlier theorems of Breiman; Chow, Robbins,
and Teicher; Gundy and Siegmund; Brown; and Lai. A consequence is that N,
itself is not exponentially bounded. In a multivariate generalization the X’s take
their values in R? and N, is the first exit time of L, from (— /(c), /(c)), where
L, = n®(S,/n) — h(n), and certain conditions are imposed on ® and h. Here
¥(x) = fZh(t)t! dt. The results are applied to show, both in the sequential
F-test and in the Savage-Sethuraman sequential rank-order test, that for certain
distributions of the X’s the stopping time is not exponentially bounded.

1. Introduction. Let X, X, X,, - - - be iid. real-valued random variables,
with EX =0, EX> < o0, and S, = X; + - - - +X,, n=12,- - - . The random
walk S, is allowed to proceed as long as it stays between the bounds f(n) = cg(n),
where ¢ > 0, and f and g(> 0) are real-valued functions defined on the positive
integers. In this paper certain aspects will be studied of the first exit time (or
stopping time) N, of the random walk; i.e., N, is the least integer n > 1 such that

-(L1) f(n) — cg(n) < S, <f(n) + cg(n)
is violated. The interest lies in “widening” bounds, that is, g is eventually nonde-
creasing and g(n) — oo as n— co. The function f may take both positive and
negative values, although the €ase where f is also increasing to oo (“tilted” bounds)
is of greatest interest.

The discussion will be facilitated by employing the notion of exact exponential
boundedness, defined below. Also, it will be convenient to adopt throughout this
paper Vinogradov’s symbol < instead of Landau’s big 0 notation. Thus, the order
relation f;(x) < f,(x) between two positive real-valued functions f; and f, means
that there exist constants ¢ > 0 and x, such that f,(x) < cf,(x) for all x > x,. The
domain of the functions may be an arbitrary subset of the real line, but in this
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EXIT TIME OF A RANDOM WALK 673

paper the domain will be either an interval extending to infinity on the right, or the
set of all integers greater than a given integer. In the latter case x is usually written
as n or k. In Section 4 comparison will be made between sequences of nonnegative
random variables, say {X,} and {Y,} (the latter is usually a sure sequence). Then
X, < Y, means that there exist a nonrandom integer n, and a nonrandom number
¢ such that X, < ¢Y, for all n > n,.

DEerFINITION 1.1. A random variable Z with values in a Euclidean space will be
said to be exactly exponentially bounded if there exist constants p,, p,, with 0 < p,
< p, < 1, such that

(12) pi < P(IZ]| > x) < p3,

in which || Z|| is the norm of Z. If Z satisfies the right-hand order relation in (1.2),
it is said to be exponentially bounded.

It is easy to establish that Z is exponentially bounded if and only if E exp(¢||Z||)
< oo for some ¢ > 0. It is also true that the left-hand order relation in (1.2) implies
(but is not implied by) E exp(¢||Z||) = oo for some ¢ > 0. Therefore, (1.2) implies
that there exists #, > 0 such that E exp(f|| Z||) < o0 or = oo according as ¢t < or
>t

The study in this paper was motivated by a problem concerning the stopping
time N of invariant sequential probability ratio tests. Such tests are usually based
on a sequence X, X;, X,, - - - of iid. random vectors from which is formed
(depending on the testing situation) a sequence L,, L,, - - - of real-valued statis-
tics, where L, depends only on X, - - -, X,; then N is the first exit of L, from a
fixed interval (/,, /). The distribution of N depends on /,, /,, and on the true
distribution P of X (where P need not belong to the model that produced the
sequence {L,}). It is desirable that N be exponentially bounded under P for every
choice of /;, [,. If this is not the case, then P is termed obstructive. In all testing
problems studied, examples of both kinds of distributions P have been found (see,
e.g., [15], where also references to other work are listed).

It is often possible to prove exponential boundedness of N for a large family of
distributions P (cf. [15]). Of the remaining distributions, which can be called
“suspect,” it has to be investigated whether they are obstructive. Sometimes the
problem reduces to one where L, = n®(X,), in which X, = S,/n and ® satisfies
some smoothness conditions. Then Theorem 2.1 in [13] may be applicable (a better
version is Proposition 3.2.1 in [15]), from which obstructiveness of P can be
concluded. But two examples have appeared, one the sequential F-test ([15],
Section 3.3), and. the other a nonparametric test for the equality of two distribution
functions ([16], Section 6), in which for the suspect distributions P the problem
reduces to one where L, = n®(X,) — alogn, with ® > 0 and a > 0. In the
simplest possible situation of this type, X is real-valued, EX = 0, EX? < o0, and
L, = nX? — alog n. Also, without loss of generality, take the stopping bounds
symmetric: —/; = [, = I, say. Then the first exit time of L, from the bounds */
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comes no sooner than the first exit time of S, from c,(n log n)% * cy(n/log n)% with
the positive constants ¢, and ¢, depending on / and a. This is of the type (1.1).

The random walk problem of (1.1) is treated in Sections 2 and 3 for various
classes of functions f, g. Some of the results are generalized in Section 4 to the
multivariate case where X is vector-valued, but require more assumptions. The
results are applied in Section 5 to the statistical examples mentioned earlier. The
basic method is an extension of that in [9] and consists of finding a function y
having the property y(x)— oo but Y(x)/x -0 as x — oo, such that Y(N,) is
exactly exponentially bounded (for sufficiently large c). It follows then that N,
itself is not exponentially bounded. For instance, when f(n) and g(n) are propor-
tional to (n log n)% and (n/log n)%, respectively, Theorem 2.1 shows that y(x) is
asymptotically equivalent to 3(log x)2. Consequently, for large enough ¢, (log N,)?
is exactly exponentially bounded and therefore N, is not exponentially bounded.

The results contained in Sections 2 and 4 are of two kinds. One is of the type
that proves

(13) pi < P{W(N,) > x}
for some p, > 0 and c sufficiently large. The other is of the type
(14) P{y(N,) > x} < p}

for some p, < 1 and all ¢, i.e., Y(NN,) is exponentially bounded for every c. Lack of
exponential boundedness of N, follows from (1.3) alone, whereas (1.4) merely
provides added information about the behavior of the tail probabilities of N,. The
relations (1.3) and (1.4) together imply that {(N,) is exactly exponentially bounded.

~ The functions f and g need to be defined only in the positive integers. However,
it will be much more convenient to define f(x) and g(x) for all real x > 1 and
express some of the conditions on the growth of these functions in terms of their
derivatives. This is only done for convenience. It is, of course, not essential and
differences instead of derivatives could have been used. It is also convenient
sometimes not to have to define f and g on [1, c0) but only on [m, o0), where m is
some positive integer. Then the stopping time N, will be redefined as the smallest
integer n > m such that (1.1) is violated. This does of course not at all affect the
behavior of the tail probabilities of N,.

2. First exit time of S, from the stopping bounds f{r) = cg(n). In this section
the tail distribution of N, will be investigated, where N, was defined in Section 1 as
the smallest positive integer such that (1.1) is violated. Under certain conditions on
f and g we shall give a simple method of constructing (in terms of f and g alone) a
strictly increasing continuous function y with lim,_,  {(x) = oo such that y(N,) is
exactly exponentially bounded, i.e., for some 0 < p, < p, < 1

@2.1) pi < P{Y(N,) > x} <p3.
Using the bijectivity of ¢, (2.1) is equivalent to
22) p¥® <« P(N, > x) < p¥™.
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Suppose ¢* is another strictly increasing continuous function such that
lim, | y*(x) = oo and Y*(N,) is also exactly exponentially bounded for some
¢ > 0. Then it follows from (2.2) that ¢ and y* are asymptotically equivalent in the
sense that Y(x) < Y*(x) < Y(x). Hence the strictly increasing continuous function
¥ satisfying (2.1) is unique up to asymptotic equivalence. In fact, by (2.2), y(x) has
to be asymptotically equivalent to [log P(N, > x)|.

In [9] the case where f = 0 is studied under the assumption that g(7) < t7 and g
is eventually nondecreasing with lim sup,_, . g(af)/g(f) < co for every a > 1.
Earlier, Breiman [2], Chow, Robbins, and Teicher [5], Gundy and Siegmund [6],
and Brown [3] have considered the particular example f = 0 and g(¢) = t%, where
Y(N,) in (2.1) turns out to be log N,. These earlier results are extended in [9] to
other lower-class boundaries g(f) as an answer to an open question raised by
Breiman in [2], pages 15-16. For the sequential tests mentioned in Section 1 and
treated in Section 5, however, the stopping region in terms of some suitably defined
random walk not only involves the widening bounds =+ cg(n), but is also tilted with
tilt f(n) at stage n. Theorem 2.1 below extends the results of [9] to such tilted
regions when the tilt f varies sufficiently slowly with g. It also gives a simpler
description of the function ¢ satisfying (2.1) than [9] does. Portnoy ([10]), using
different methods, studies the first exit time from the lower boundary f(n) — cg(n)
in the absence of the upper boundary f(n) + cg(n), and for such one-sided exit
times is led to lower bounds of the type (1.3) with essentially the same  as defined
in (2.5). Other results, touching on ours, were obtained by Kesten [7] for Brownian
 motion rather than random walk. The function ¢ defined by (2.4) also figures
prominently in his Proposition 2.5 (see his Remark 2.7).

Before stating Theorem 2.1 it will be advantageous to state separately the
conditions placed on f and g, both the ones needed for Theorem 2.1 and those
needed for Theorem 2.2. The same assumptions on f and g will be needed again in
Section 4. Limits of functions of a real argument, say x, will be understood to be
taken as x — 0. The same holds for lim inf, lim sup, and order relations. If a
statement is qualified by a phrase such as “for large ¢,” or “for all large ¢,” or “if ¢
is large,” this means that there exists ¢, such that the statement is true for all
c > ¢y '

AssUMPTION 2.1. Let m be a positive integer and let f, g be real-valued func-
tions on [m, o) satisfying the following conditions: (i) g is positive, continuous,
and eventually nondecreasing with lim g(x) = oo; (ii) lim sup x'%g(x) < oo; (iii)
lim sup g(ax)/g(x) < oo for every a > 1; (iv) f is contiriuously differentiable and
lim sup| f'(x)| g(x) < 0.

AssuMPTION 2.2. Let m be a positive integer and f, g real-valued functions on
[m, co) satisfying the following conditions: (i) f is continuously differentiable and
for all a > 1, lim infmin, ¢ , ¢ ., f'(»)/f'(X)] > 0, lim sup[max,  , ¢ ., f'(»)/f (X)]
< o0; (ili) g is positive and lim inf f'(x)g(x) > 0; (i) lim f'(x) = 0; (iv)
lim inf x2f'(x) > 0.
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ASSUMPTION 2.3. Let f, g satisfy the conditions of Assumption 2.2, and, in
addition, (i) g(x) = o(f(x)), (i) [7(f' (1)) dt < f3(x)/x.

THEOREM 2.1. Suppose X, X, X,, - + - are ii.d. real-valued random variables
with EX =0,0 <K EX?< 0 and S, = X, + - - - +X,. Let f, g satisfy Assumption
2.1 and define, for ¢ > 0,

(2.3) N, =inf{n > m: S, > f(n) + cg(n) or S, < f(n) — cg(n)}.
Set

(24) Wx) = [r(g)*a,  x>m.

Then log x < Y(x), Y(x)/x — 0, Y(N,) is exponentially bounded for every c, and
Y(N,) is exactly exponentially bounded for all large c.

The proof of Theorem 2.1 will be given in Section 3. For a typical example
arising in our applications, take m > 2, f(x) = b(x log x)2 (x) = (x/log x)2
where b > 0. Then clearly Assumption 2.1 is satisfied and y(x) ~3(log x)>. Hence
(log N,)? is exactly exponentially bounded for all large c. More generally, ifhisa
continuously differentiable function on [m, o) such that inf A(x) >0, lim
sup xh'(x)/h(x) < 1, lim inf xh’(x)/ h(x) > — oo, and hm sup h(x)/h(ax) < oo
for all a > 1, then f(x) = (xh(x))2 and g(x) = (x/ h(x))2 satisfy Assumption 2.1.
An example of such a function 4 is h(x) = x?(log)? in which 0 <y < 1 and B is
any real number. In this case Y(x) ~ vy~ 'x"(log x)~.

The condition (iv) in Assumption 2.1 means that f cannot vary too fast compared
with the growth of g. In particular, since g(x) — oo, it implies f'(x) — 0. Theorem
" 2.1 says that the ¢ function in this case is defined in terms of g alone when g
satisfies (i) of Assumption 2.1. What happens if lim| f'(x)| g(x) = co? In view of our
applications in this situation we shall only consider the case where f is eventually
monotone with g(x) = o(f(x)) and f’(x) — 0. By replacing, if necessary, X; with
— X,, it further suffices to restrict to the case where f'(x) > 0 eventually. Further
assumptions on f and g, embodied in Assumptions 2.2 and 2.3, entail that the ¢
function that makes the next theorem true is defined entirely in terms of f'.

THEOREM 2.2. Suppose X, X, X,, - + - are iid. with EX =0, 0 < EX 2L
and S, = X, + - - - +X,. Let f, g satisfy Assumption 2.2 and, for ¢ > 0, define N,
by (2.3). Set

(2.5) Y(x) = [5(f @) d, x>m.

Then log x < Y(x), Y(x)/x — 0, and there exists p, > 0 such that (1.3) holds for all
large c. Hence N, is not exponentially bounded for large c. If f, g satisfy Assumption
2.3 and X is exponentially bounded, then there exists p, < 1 such tnat (1.4) holds for
every c. Hence, under these assumptions Y(N,) is exactly exponentially bounded for all
large c.
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Theorem 2.2 will be proved in Section 3. Note that (iii) and (iv) of Assumption
2.2 imply that X1 f(x) = o(x). To give an example of functions f satisfying
Assumption 2.3, let 1 < a < 1 and let f(x) = x*h(x), where 4 is a positive continu-
ously differentiable function such that

(2.6) lim xh’(x)/h(x) = O.

Note that (2.6) implies that A(x) + (h(x))~!' = o(x") for all y > 0. It can be
verified from (2.6) that f(x) = x“h(x) satisfies (i), (iii) and (iv) of Assumption 2.2.
To show that (ii) of Assumption 2.3 is also satisfied, use integration by parts and
(2.6) to obtain that

w(F(0) dt = (o + o(1)) 527 H(1) dt
= {a?/ Qa — 1) + o(1) }x**~ h?(x).

Hence if 0 < g(x) = o(x*h(x)) and g(x) > x'~*/h(x) (so that (ii) of Assumption
2.2 and (i) of Assumption 2.3 hold) and X is exponentially bounded, then
N22~1p%(N,) is exactly exponentially bounded for all large c. Examples of functions
h satisfying (2.6) include (log, x)?, where B is any real number, k is a positive
integer, and log, means the k-times iterated logarithm. More generally, combina-
tions of such functions, such as sums and products, also satisfy (2.6).

REMARK. In [9] where the exit time is studied for the case f = 0, it is assumed
that X, X, - - - are independent with EX, =0, EX?=1,n=1,2,- - -, and

(2.7 n T R EX x> e > 0

uniformly in k£ as n — oo for every ¢ > 0. The condition (2.7) is a uniform version
of the Lindeberg condition and is obviously satisfied when X, X,, - - - are iid.
with zero mean and finite variance. This formulation in [9] was motivated by the
earlier work of Gundy and Siegmund [6] and Brown [3] who studied the connection
between the central limit theorem and the finiteness of moments of N, in the
special case f =0 and g(x) = x7. Since our results in this paper are mainly
motivated by their statistical applications, we have stated the theorems in this
section only for the i.i.d. case. However, Theorem 2.1 and the first part of Theorem
2.2 still remain true in the more general setting where X, X,, - - - are independent
with EX, =0, EX2=06%,n= 1,2, - - (0 <o < o0) such that the uniform Linde-
berg condition (2.7) is satisfied. Moreover, the second part of Theorem 2.2 still
remains true in this more general setting if it is assumed that there exists a > o2
and #, > 0 such that E exp(X,) < 1 + jar* forall 0 <t < fyandn=1,2,- - -
(this is obviously fulfilled in the i.i.d. case if X is exponentially bounded). These
extensions of Theorems 2.1 and 2.2 can be proved by a straightforward modifica-
tion of the arguments in Section 3, together with the application of a uniform
invariance principle established in [9].
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3. Proofs of Theorems 2.1 and 2.2.

LeMMA 3.1. Let f, g satisfy Assumption 2.1 and define y(x) by (2.4). Then  is
strictly increasing and log x < Y(x) = o(x). Let v = ¢~ be the inverse of y, so that
v'(x) = g%(¥(x)) and therefore v is also strictly increasing to oo. Define, for any
positive integer k, n(k) = [v(k)] (= greatest integer < v(k)), and define An, =
n(k + 1) — n(k). The following statements hold as k — co:

3.1 An, — o0 and n(k + 1) < n(k),
(32) M, < < 1) — F(K)| < (Ane),
(33) (An)7 < g(n(k)),
(3.4) g(n(k + 1)) < (An,)?.

Proor. To prove (3.1) note that
(3.5) v(x + 1) — »(x) = V(x*) = g*(r(x*)),

where x < x* <x + 1. Since x — o0, so does x* and then so do »(x*) and
g(»(x*)), using Assumption 2.1 (i). Since An, differs from »(k + 1) — »(k) by at
most 1; the first statement of (3.1) follows. By Assumption 2.1 (ii) there exists
A > 0 such that g%(f) < A~ for ¢ sufficiently large. Therefore, for x sufficiently
large,

1= g(r(x + 1) = $(n(x)) = L33 (g(2)) 7 dr

> Af:"(»z;;l) t'dt=A log(v(x + 1)/"(-"))’

and so »(x + 1) < »(x). This proves the second part of (3.1) since 0 < v(k) — n(k)
<l

The relations (3.3) and (3.4) follow easily from (3.5) and Assumption 2.1 (iii). To
prove (3.2), first note that f'(x) — 0 by Assumption 2.1 (iv). Then for k sufficiently
large and n(k) < y < n(k + 1),

|f(y) = fin(R)| < 2G5 P ()] at
= [ PLF (D)) de + o(1)

v (k)

(3.6)

3.7 <[ ’,’,("(Z)')(g(t))_1 dt + o(1) by Assumption 2.1 (iv)
= [¥*'g(v(u)) ™ "v'(u) du + o(1)
= [¥*'g(v(w)) du + o(1)
< g(n(k)) by (3.1)  and Assumption 2.1 (iii).

Then use (3.4) to obtain (3.2). [J

ProoF oF THEOREM 2.1. Set Am = n(k + 1) — n(k), Af, = f(n(k + 1)) —
f(n(k)), and AS; = S,441) — Spap kK = 1,2, - - . In view of (3.2) and (3.4) there
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exists a positive constant B such that

(3.8) |Af| + 2cg(n(k + 1)) < B(An,)?
for all k > k,, say. By the central limit theorem, using the first part of (3.1),
1
P{|AS,| < B(An)?} — p, < 1. Therefore, by (3.8) there exists k, > k, and p < 1
such that k > k, implies
(3.9) P{|AS,| < |Afe| + 2cg(n(k + 1))} <p.
Without loss of generality it is assumed that g(x) is nondecreasing for x > n(k,),
using Assumption 2.1 (i). Then for k > k,,
P{y(N,) >k} = P{N, >v(k)} = P{N. > n(k))
(3.10) < K2 P{IAS)| < |Af] + 2¢g(n(i + 1))}

<pkk by (3.9).
Hence y/(N,) is exponentially bounded for every c.
It remains to show (1.3) for large c. It is sufficient to demonstrate the existence
of p, > 0 such that for all large ¢

(3.11) pf < P{Y(N,) > k}.
By (3.2) and (3.3) one can choose y > 0 and k; > k, such that for k > k,
(3.12) maX,;) <y <nk+ )| f(¥) — f(n(k))| < yg(n(k)).

Define the following events:
c
(3.13) Ay, = Ne > n(R), 1,0 = fnR)] < Z8(n(k) ],

4
By, = [max,y < <nesnl S~ Syl < 58(n(k))]

(3.14)
n[-7&0k) < A5, — a7, < 0],

.15 Dy . =[maxn(k)<,'<n(k+|)|5} = Syl < %g(n(k))]
3.15
n [0 < AS, — Af, < %g(n(k))].

Then for ¢ > 4y and k > ks, by (3.12),
(3.16) maX,qe) <y <k + pIAY) = Fn(R))] < 7 8(n(K)).

Using (3.16) it can easily be checked that 4, ., . contains the union of the events
Ay o O [Syy 2 fn(k)] N By, and A4y . 0[S,y <S(n(K)] N Dy .. Since By . and
D, . are independent of 4, ,, it follows that

(3.17) P(Aisr, A, o) > min(PB, ., PD; ).
By (3.2) and (3.3) there exist constants a, 8 > 0, and k, > k; such that |Af| <
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a(Any and g(n(k)) > B(An)? if k > k,. Hence for ¢ > 8a/B and k > k,,
(3.18) PB, . > p{ A%, a5 < ,B(Ank)z and

- (58- a)(8n)7? < Sy < -a(Ank)f} = b, sy
(3.19) PD, . > P{maxKA,,kISjI <% B(An)?  and

1 4 1
a(Ank)z < SAnk < (ZB - a)(Ank)z} = dk, o Say.

By Donsker’s functional central limit theorem ([1], page 72), assuming without loss
of generality that EX2 = 1, as k — oo,

(320) b, . P{max0<,<,|W(t)| < %B, - (%,B - a) < w() < —a},

(21)  do— P{maxgc, WO <GB a < W) < 8- al,

where W(f) is the standard Wiener process. Therefore, choosing ¢, >
max(4y, 8a/B), by (3.17)-(3.21) there exists ks > k, and p, > 0 such that for
k > ksand ¢ = ¢

(322) P(Ayir, |4k, ) > pr-

Since obviously the events B, . and D, , are nondecreasing in ¢, so is the
right-hand side of (3.17). Consequently, (3.22) is valid for k > ks and ¢ > c,.
Moreover, 4, . defined in (3.13) is obviously also nondecreasing in ¢, and for any
fixed k, P4, .—1 as ¢ —> co. Thus, there exists ¢, > ¢, and p > 0 such that
" PA,, . >pif ¢ > c, Then for such c and k > ks, P(Y(N, ) > k) = P(N, > v(k)) =
P(N > n(k)) > PA, , > PA, JIiZ0 P(Aih, o4 0) > ppk=*s, using (3.22), so that
(3.11) has been shown to hold. []

LEMMA 3.2. Let f, g satisfy Assumption 2.2. Define Y by (2.5) and let v = Yy !so

that v'(x) = (f'(v(x))) "% Define n(k) and An, as in Lemma 3.1. Then (3.1), (3.2),
and (3.3) still hold.

PrOOF. The proof of (3.1) proceeds as in Lemma 3.1, using Assumption 2.2 (iii)
and (iv). Since »'(x) = (f'(»(x))) " and (3.1) holds, Assumption 2.2 (i) implies that
there exist 8, > 8, > 0 such that
(3.23) Sv'(k) <v(y) <op'(k), k<y<k+]
for sufficiently large k. Write »(k + 1) — »(k) = »'(x*) with k <x* <k + 1, and
note that An, differs from »(k + 1) — »(k) by at most 1. Then using (3.23) one
obtains
(3.29) v'(k) < An, < v'(k).

In order to prove (3.2), first observe that by Assumption 2.2 (iv) f is eventually
increasing. Therefore, it suffices to show (3.2) with its left-hand side replaced by
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f(n(k + 1)) — f(n(k)). Compute
(3.25)
f(n(k + 1)) = f(n(k)) = 25 °f(2) dt + o(1)
= (&Y' (w(w))v'(u) du + o(1)
= (W) du + (1) since ¥ (u) = (f(»(w)) 2

<&((K)T+o(1) by (323).
Then use (3.24) to obtain (3.2). Lastly, to prove (3.3) use Assumption 2.2 (i) to
obtain g(n(k))f'(n(k)) < g(n(k))f'(v(k)) = g(n(k))(v’(k))“%. From this and
Assumption 2.2 (ii) it follows that lim inf g(n(k))(v’(k))”% > 0. Then use the
right-hand inequality in (3.24) to obtain (3.3). []

LemMmA 33. Let f,g be real-valued functions on [m, o) such that g > 0,
1
lim x~'f(x) = 0, lim x~3f(x) = o0, and lim g(x)/f(x) = 0. Let ¢ :[m, 00) >
[0, o) be continuous and eventually increasing, satisfying the condition

(3.26) Y(x + 1) < x 7 (x).

Let X, Xy, X,,* + - be iid. real-valued random variables with EX = 0 and X
exponentially bounded, and let N, be as defined in (2.3). Then y(N,) is exponentially
bounded for every ¢ > 0.

Proor. Fix any ¢ > 0. Without loss of generality it may be assumed that ¢
is strictly increasing on [m, o) and lim Y(x) = 0. Also, f(x) — co so that f is
eventually positive. For convenience it will be assumed in the proof that f is
positive everywhere. Let » = ¢ ~! and set n(k) = [»(k)]. Then » is strictly increasing
and lim »(x) = 0. Take a > EX?, then there exists #, > 0 such that for 0 < ¢ < ¢,

3.27) E exp(tX) < exp(}ar?).
Since f(x) = o(x) one can choose k, such that for k > k,
(3.28) f(n(k)) < 2atgn(k).

Furthermore, since g(x) = o(f(x)), it may be assumed that k, is so large that for
k >k,

(3.29) cg(n(k)) <3f(n(k)).
Compute, for 0 < ¢ < 1, _
P{y(N,) >k} = P{N, >»(k)} = P{N, >n(k)}
: < P{ Sy > f(n(k)) — cg(n(k))}
(3.30) < P{S,u >if(n(k))} by (329
< CXP[ _%tf(”(k))]E exp(£S,(x))
< exp| — 3 #f(n(k)) +3a’n(k)] by (327).
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In the inequality (3.30) set ¢t = f(n(k))/(2an(k)), which is < ¢, by (3.28), to obtain
that for k > k,

(3.31) P{Y(N,) > k} < exp[ —f*(n(k))/ (8an(k))].

By (3.26) there exists p > 0 such that f3(n(k))/n(k) > py(v(k)) = pk for k
sufficiently large. Substitution of this into (3.31) leads immediately to the exponen-
tial boundedness of Y(N,). []

PrOOF OF THEOREM 2.2. The part of the theorem dealing with (1.3) follows
from Lemma 3.2 and the fact that in our previous proof of (1.3) in Theorem 2.1
only (3.1), (3.2), and (3.3) were used (but not (3.4)). The part dealing with (1.4)
follows from Lemma 3.3 after showing that the conditions of that lemma are
satisfied. Now it follows from Assumption 2.2 (iii) that f(x) = o(x), and from
Assumption 2.2 (iv) that y(x) given by (2.5) is > log x. By Assumption 2.3 (ii),

(3.32) Y(x) < x7If(x).

Since lim y(x) = oo, it follows from (3.32) that lim x'%f(x) = oo. Moreover, in
view of Assumption 2.2 (iii), y(x + 1) — Y(x) — 0, and therefore (3.32) implies that
(3.26) holds. []

4. Stopping time of a higher dimensional random walk. In this section the
random walk S, = 37X, is based on a sequence X, X, - - - of iid. random
variables taking values in R¢ with 4 > 1. Let X be a random variable with the
same distribution as that of the X;. It will be assumed throughout that X has a
finite covariance matrix 3. In some propositions X will be required to be exponen-
tially bounded. As in Section 1 it will be convenient to put S,/n = X,. The
stopping time of the random walk will be governed by a sequence of statistics
L,L,---, with L, real-valued and depending only on X}, - -, X,, and for
chosen / > 0 and integer m > 1

4.1) N = smallest integer n > m such that
|L,] <!  isviolated.
Sometimes / will be a function of a positive variable ¢ : / = I(c), in which case N

will be denoted N, as in Sections 2 and 3. In connection with the statistical
applications in Section 5, the statistic L, is assumed to have the form

4.2) L, = n®(X,) — h(n), =mm+1],---,

in which ® and 4 are real-valued functions defined on R“ and [m, o), respectively.
In the theorems that follow, various assumptions will be made on ®. On A the
following assumption will be made:

ASSUMPTION 4.1. There exist an integer m > 1 and 0 <7 < 1 such that 2 > 0
on [m, »), h(x) < x", h is continuously differentiable with A’ > 0, xh’(x) < h(x)
for all large x, and lim sup A(ax)/h(x) < oo for all @ > 1.
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REMARK. The last two conditions in Assumption 4.1 are implied by: A’ is
eventually decreasing.

Functions f and g satisfying Assumption 2.1 or 2.2 will be employed again. They
are now defined in terms of 4 and an integer p > 1 as follows:

(43) f(x) = xP/P*D(p(x))/2+D,
(4,4) g(x) = xp/(p+l)(h(x))—p/(p+l),

for x > m. Then it can be checked easily that f, g satisfy Assumption 2.1 if p = 1
and Assumption 2.2 if p > 1. Consequently, the function ¢ will be defined by (2.4)
ifp=1and by 25)ifp > 1, ie,

(4.5) W(x) = (g at i p=1,
(4.6) Y(x) = [R(f @) a i p>1.,
It follows immediately from (4.4) with p = 1 that (4.5) can be written
4.7) W(x) = (Xt~ 'h(r) dt if p=1.

We first consider conclusions of the type (1.3) in the following theorem. Conclu-
sions of the type (1.4) will be given later in Theorems 4.2 and 4.3.

THEOREM 4.1. For any given | > 0, let the stopping time N be defined by (4.1)
with L, of the form (4.2). It is assumed that EX = £ € R% E(X — §)(X — & = 3
nonsingular, and ® is of the form

(4.8) O(x) = Q(x — &) + b(x)||lx — gP+'+

Jor some € > 0 and integer p > 1, in which Q is a homogeneous polynomial of degree
P + 1, not everywhere < 0, and b is bounded on compacta. Furthermore, it is assumed
that h satisfies Assumption 4.1, with 1 = ¢/(p + 1 + €). Define y by (4.7) ifp =1
and by (4.6) if p > 1. Then there exist constants | > 0 and p > 0 such that

(4.9 P{Y(N) >k} > p.
Consequently, N is not exponentially bounded.

REMARK. The condition on @ is satisfied with ¢ = 1 if ® possesses all continu-
ous partial derivatives of order p + 2, all derivatives of order < p vanish at x = £
and @ is bounded on compacta.

The proof of Theorem 4.1 relies on a generalization of its counterpart in
Theorem 2.1 and it will be convenient to deal with this part of the proof in the
following lemma.

LemMa 4.1. Let X, X,, X,,- - - be iid. random variables with values in R?
(d > 1), EX=0, EXX' =X nonsingular. Put S, = 21X, = (S;,,* * * , Sz,). Let
L, L, - be a sequence of statistics with L, depending only on X,,- - -, X,.

Suppose there exist functions f, g satisfying Assumption 2.1 or 2.2, and a function I on
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the positive half line, such that for every ¢ > 0 the following two inequalities

(4.10) f(n) — cg(n) < Sy, <f(n) + cg(n)

(4.11) ~cg(n) <S8, <cg(n), i=2---,d
together imply |L,| < I(c) (in case d = 1 (4.11) is omitted). Define N, by (4.1), with
I = Ilc), and ¢ by (4.5) or (4.6) depending on whether Assumption 2.1 or 2.2 is
satisfied. Then there exist constants p > 0 and c, > 0 such that for all ¢ > c,

(4.12) P{y(N,) >k} > p*.

Proor. The proof will be given for d > 1. The necessary modifications if d = 1
are obvious. The proof is in essence the same as the corresponding parts of the
proofs of Theorems 2.1 and 2.2, but slightly more complicated. Only the changes
will be indicated here. The quantities An, and Af, were defined in Section 3 and
will also be used here. Further, define AS,, = S, 41y — S; n and

(4.13)
Ak, c

=V > #(K); 181,000 = SO < GBI, ol < 58(nKD,T =2, - d].

The event defined in (4.13) takes the place of 4, . introduced in (3.13). In (3.14)
and (3.15) were introduced the two events B, . and D, ., corresponding to the two
possibilities AS, — Af, < 0 and > 0. In the present situation, however, there are 2¢
events corresponding to the 2 combinations of the signs of AS,, -
- Afy, ASy, - -+, AS,. These events will be labeled by a vector A = (A}, - - -, A),
with A, = =+ 1. Thus, define

@14 BY. =18, = .ol < G8(0), 1K) < <l + 11 =1, -, d]

A [o < NSy, — Af) < F8(n(K), AAS, > 0,i =2, - - - ,d].

Note that Bk’jc is nondecreasing in c. Choosing ¢ > 4y as in Section 3, where v is
defined in (3.12), it can be verified that the event 4, . N [A (S ,x) — f(n(k))) < 0;
ANSinty <0, i=2---,dIN B}, implies the event A, . for all large k. It
follows that for all large &

(4.15) P(A4y c|Ar, ) > min,PB) .

Furthermore, introducing a, 8 as in Section 3 and takiné ¢ > 8a/ B, the inequali-
ties analogous to (3.18) and (3.19) are now

PB), > P{max,cn,|S,| < A@)% i =1,- - -, ds

(4.16) 0 < NSy ay = a(Bn)?) < (58 — 2a)(Bn)?5 A S,

>0,i=2,---,d} =B, sy,
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provided k is sufficiently large. Finally, as k — oo,

bl)c\,c_)P{ma’x0<t<llpVi(t)l < %ﬁ’ i= 1’ ttt 9d;
(4.17) c
0 < N(W(1) = a) < B =25 AW(1) > 0,i =2,- - - ,d} >0,
in which (W,(-), - - -, W(*)) is d-dimensional Wiener process with covariance

matrix 3. The rest of the proof is identical to the relevent parts of the proofs of
Theorems 2.1 and 2.2. []

PROOF OF THEOREM 4.1. In the proof it will be assumed thatd > 1. If d =1, a
few trivial modifications are necessary. After making an affine transformation in
R4, it may be assumed without loss of generality that £ = 0 and

(4.18) O(x) = xf*! + Q)(x) + b(x)||x[|7*1*,

in which Q, is a homogeneous polynomial of degree p + 1 which is of degree p in
x;. The functions f, g are defined by (4.3) and (4.4). The conclusion of the theorem
will follow from Lemma 4.1 if it can be shown that there exists ¢ > 0 such that for
n > m the inequalities (4.10) and (4.11) together imply |L,| < I(c). Take (4.10),
raise all members to the power p + 1 and divide by n”. The result is

(4.19) |nX2+rY — h(n)| — c(p + 1) < 1/h(n).

(The reader is reminded that the constant implied by the order relation <« is
understood to be nonrandom.) From (4.19) follows

(420) X1, < (h(n)/m)"/ PP,

Inequalities (4.11) and (4.4) together show that

(4.21) |X,,| < n= VPO (p(n))P/P*D =2 ... 4,
Combining (4.20) and (4.21) it is seen that

(4.22) 1,11 < (h(m)/m)"/?*D

so that (4.10) and (4.11) imply that_||1\7n|| remains bounded. By assumption on b in
(4.8) the same is then true for b(X,) : |b(X,)| < B for all n, for some B > 0. In
(4.18) replace x by X,, and use (4.20)—(4.22). It is found that

(4.23) |n®(X,) — nX2}| < 1.

Combining (4.2), (4.19), and (4.23) it follows that |L,| < 1. Therefore, there exists
! = I(c) such that for all n > m, (4.10) and (4.11) together imply |L,| < /. [
The following lemma will be used in the proof of the next theorem.

LemMA 4.2. Let Z,, Z be random variables with values in R? and let Z, — Z in
law, where the distribution of Z is equivalent to d-dimensional Lebesgue measure. Let
A be a set with nonempty interior. Then

(4.24) lim inf,_, inf, coa)P(UZ, € 4) > 0,
where O(d) is the group of d X d orthogonal matrices.
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PROOF. There exists an open ball 4, and e > 0 such that the e-neighborhood of
A, is contained in 4. Let B be an upper bound for the norms of the vectors in 4,.
If U, U, €d) and ||U; — U,|| <e&/B = §, say, then U;x € 4, implies U,x €
A. Since O(d) is compact, there exist U}, - - -, U, € 0(d) such that for every
U € 0(d) there is some U, such that |[U— U <$é. For this U and U, if
UZ, € A,, then UZ, € A. Therefore, for every U € 0(d) and every n, P(UZ, €
A) > min, ;. P(U,Z, € A)). Since the distribution of U,Z is equivalent to Le-
besgue measure, P(U,Z € A)) = 2p,, say, with p, > 0. Since U,Z, — U.Z in law,
there exists 7, such that P(U,Z, € 4)) > p; if n > n,. It follows that P(UZ, € A4) >
min, ;. p; for all U € 0(d) and n > max, ;7. ]

THEOREM 4.2. Let EX = §{ € R? E(X — §/(X — & = 2 nonsingular. Let | > 0
be fixed and let N be defined by (4.1) and (4.2) with h satisfying Assumption 4.1 for
some 0 < n < 1. About ® the following is assumed. Either Case (a): ®(x) = (x —
Y A(x — &) with A a symmetric d X d matrix; or Case (b): ® > 0, ®(¢) = 0, there
exists a neighborhood V of & such that on V the function ® has continuous second
partial derivatives with positive definite matrix A(x), and ® is bounded away from 0
outside V. Define Y by (4.7). Then y(N) is exponentially bounded.

Proor. Define f, g by (4.3) and (4.4) with p = 1, so that they satisfy Assump-
tion 2.1. Hence the results of Lemma 3.1 apply. In particular, it follows from (3.3),
(3.4), and (4.4) that
(4.25) 1 < An.h(n(k))/n(k) < 1.

Here n(k) and An, were defined in Lemma 3.1. In the following only n of the form
n(k) will be considered. To prove the theorem it suffices to show that for some
p; > 0 and all large &,

(426) P{N >n(k+1)|F,) <1—p, ontheevent [N >n(k)],

where "Zj denotes the o-field generated by X, - - -, X.

For notational convenience the dependence on k will usually be suppressed in
the following. Thus, » means n(k), An means An,. Also, S, X, AS, and AX mean
Sy f,,(k), Suk+1) — Spky and )7',,(“1) - )?,,(k), respectively. Limits are taken as
k — oo, which implies n — oo. If stopping has not occurred yet at stage n, then

(4.27) n(h(n) — 1) < n?®(X) < n(h(n) + I).
Setting An*®(X) = (n + An)’®(X + AX) — n*®(X), let B, denote the event
(4.28) —An*®(X ) > 2nl.

We shall only consider the case lim A(n) = o0. A straightforward modification
(replacing 2n/ in (4.28) by rnl with r sufficiently large) can be used to deal with the
case lim A(n) < oo. For all large n, say n > ny, h(n) > I. Then (4.27) and (4.28)
together imply (n + An)®(X + AX) < h(n) — | < h(n + An) — [ so that stopping
will occur by stage n + An. Therefore, for n > ny we have N < n + An on the
event B, N[N > n]. Hence to prove (4.26) it suffices to show that there exists
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P; > 0 such that for all large n, say n > n; (> ny),
(4.29) P(B,|%,) >p, ontheevent [N >n].

It will be shown that if n is sufficiently large and (4.27) holds, then (4.28) can be
implied by an event of the type

(4.30) E,(u) =[WAS > c,(An)?, |AS|| < 2¢,(An)? |

with suitably chosen constant ¢, > 0 and random vector ¥ € R? such that ||u|| = 1
and u is %,-measurable. Since AS/ (An)%—> N(, 2) in law, Lemma 4.2 can be
applied with the result that for every ¢, > 0, there exists p; > 0 such that for all
large n, PE,(u) > p, for every fixed u € R? with ||u|| = 1. It will follow then that
(4.29) holds for all n.

By making a translation in:R“ and projection on a linear subspace, if necessary,
it may be assumed that ¢ = 0 and 4 nonsingular. In Case (a) (i.e., ®(x) = x'4x), if
A is negative definite, then from (4.2) it is obvious that stopping occurs by a
predetermined # so that the theorem is trivially true. It may be assumed then that 4
is positive definite or indefinite. By making a suitable linear transformation it can
be assumed that ® takes either of the following two forms in Case (a):

(4.31) ®(x) = Z¢x? = ||x||>>  Case (al),
(4.32) ®(x) = 3,;x2 — SypxP: Case (a2),

where in (4.32) £, denotes summation over i from 1 to d;, say, and =, over d; + 1

to d.
The left-hand inequality in (4.27) implies the following order relation:

(4.33) IS |?> > nh(n).

In Case (a) this follows by (4.31) and (4.32) from || S I? > n*®(X) (equality in Case
(al)). In Case (b) there exist r > 0 and ¢, > 0 such that ®(x) < ol x| if || x|| < r;
then || X|| > r or ¢,|| X|* > ®(X), i.e., ||S|| > rn or ¢)|| S| > n*®(X).

In Case (al) the left-hand side of (4.28) is ||S|*> — ||S + AS|? = — 28'AS —
|AS|%. Take in (4.30) u = — S/||S||, then E,(x) implies —2S'AS — lAS|? >
2¢,||S ||(An)% — 4c?An. The first term on the right-hand side of the above inequality
sign can be made > 3nl/ by choosing ¢, sufficiently large in view of (4.25) and
(4.33). With this choice of ¢, the second term is < n/ for all large n, by (4.25). In

Case (a2) choose 4, = — S;/||S||fori=1,---,d;,andu, = S;/||S| fori = d; +
1, - -, d, then the same inequality for the left-hand side of (4.28) is obtained as in
Case (al).

Thus it has been shown that in Case (a), if » is large and (4.27) holds, then for
suitably chosen u and c, in (4.30), the event E,(u) implies (4.28). It remains to be
shown that the same is also true for Case (b). Without loss of generality it may be
assumed in Case (b) that the positive definite matrix A(x) equals the identity
matrix at x = 0. Since ®(0) = 0 and ® > 0, grad ®(0) = 0 so that ®(x) = ||x|* +
o(||x|]) (as x — 0). Put H(x) = ||x|> The assumptions on @ imply that given
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e > 0, there exists 8 > 0 such that if ||x|| < 8, then x € ¥V and

(4.34) |grad @(x) — grad H(x)| < ¢ x|,

(4.35) |®(x) — H(x)| <ellx|/>

From (4.34) it follows that if ||x|| and ||x + Ax|| are both < §, then
(4.36) IA® — AH| < el|x|| [[Ax],

in which A® = ®&(x + Ax) — ®(x), and similarly AH. Finally, on V
(4.37) ®(x) > c,||x|?

for some ¢, > 0.

Note that replacing ® by H leads to Case (al). In order to achieve (4.28), choose
u and ¢, in (4.30) so that —An*H(X) > 3nl on the event E,(u), assuming that n is
sufficiently large and (4.27) holds. It has been shown in Case (al) how this can be
done. With this choice of u and ¢, it remains to be shown that if » is large and
(4.27) holds, then

(4.38) |An¥(®(X) — H(X))| <nl  ontheevent E,(u).

The assumptions on ® imply that there exists &; > 0 such that ®(x) < ¢, implies
|x|| < &/2. Therefore, if n is large and (4.27) holds, then | X|| < 6/2. This implies
that on E,(u), where [|AS|| < 2¢,(An)?, | X + AX|| < 8 for large n. It follows that
(4.34)—(4.36) are valid, with x replaced by X, for large n on the event E,(u),
provided (4.27) holds. A computation, using (4.35) and (4.36), reveals that the
left-hand side of (4.38) can be bounded by c,e(||S|| ||AS|| + n~'||S||*An), in which
¢, is some positive constant. By (4.27) and (4.37), ||S|* < nh(n). Therefore, on
" E,(w), |IS| |AS] + n7YS|*An < (nh(n)An)% + h(n)An < n by (425), and it
follows that (4.38) will hold by taking & small enough. []

Theorems 4.1 and 4.2 can be combined to show that if & satisfies the union of
the conditions stated in both theorems, then for some /, > 0, Y(N) is exactly
exponentially bounded whenever / > /,, where ¢ is defined by (4.7).

The condition in Theorem 4.2, Case (b), that ® be bounded away from 0 outside
V can be dispensed with if X is exponentially bounded, for then X, will lie in the
neighborhood V of ¢ with a probability that converges to 1 exponentially fast.

THEOREM 4.3. If in Theorem 42 it is also assumed that X is exponentially
bounded, then the conclusion of that theorem holds if the assumption on ® in Case (b)
is replaced by: ® has continuous second partial derivatives in a neighborhood of £ with
a matrix A(x) that is positive definite at x = &; ®(§) = grad ®(§) = 0.

PROOF. Since A(-) is continuous there is a neighborhood ¥V of ¢ such that 4 is
continuous and positive definite on V. By Chernoff’s theorem ([4], Theorem 1) the
event [X, & V] is exponentially bounded, i.e., P(/\_’;, & V) < p{ for some p, < 1.
Introduce the event C, = [X_',,(k) € V1], C{ its complement, where n(k) is as defined
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in Lemma 3.1. Then

(4.39) PCf < p1® < pk.

Set 4, = [N > n(k)]. Now use Lemma 1 in [14], with n in that lemma replaced by
k. The condition P4, C{ < pf in that lemma is satisfied, as evidenced by (4.39). In
the proof of Theorem 4.2 it was shown (see (4.26)) that for large k, P(A4, . |4, C,)
<1 — p, for some p, > 0 so that the condition P(4,,,C;,,|4,C,) <1 — p, of
Lemma 1 in [14] is also satisfied. The conclusion PA, < p*, for some p < 1,
follows. []

COROLLARY 4.1. Let N be defined by (4.1) with L, of the form (4.2). Let X be
exponentially bounded and EX = §. Suppose that ® is bounded on compacta, has
continuous partial derivatives of the third order in a neighborhood of &, the matrix of
second order partial derivatives is positive definite at §, and ®(§) = grad ®(§) = 0.
Lastly, suppose that h satisfies Assumption 4.1 withm =3 + and define by (4.7). Then
Jor every 1 > 0, Y(N) is exponentially bounded, and there exists ly such that for
! > Iy, Y(N) is exactly exponentially bounded.

ProOF. Follows from Theorems 4.1 and 4.3. ]
5. Applications.

5.1. Sequential F-test. Independent observations Z,, Z,, - - - are made on a
random vector Z = (z,,* - -, z;)’. The (canonical) model specifies the z; to be
independently normal with common variance o while Ez; = p, is known to be 0
fori=s+1,---,k where 1 <s <k. Let y =39u2/0? in which 1 < g <s.
-The problem is to test sequentially y = v, against Y = v,, where it is assumed that
" <72 Let Z =(z5,* - - ,2,),j=12,---, and put z, = (1/”)2,-1 s 1=
1,- - - k. For notatlonal convenience the summations 2,_,, DI PR DA
be abbreviated by X,, 3,, 2, respectively. Of these, the middle sum disappears if
q = s. Define

(5.1) Y, = n2\25 /2 22 + 2oz — ) + el |-

Lai ([8], Section 5) showed that within a uniformly bounded constant the log
probability ratio L, at the nth stage is

(5.2) L,=n(Y,—B)—alogn,

in which B and a are constants dependingon y, and v,; 0 <8 < 1;a=0ify; >0
and @ = ¢(q — 1) for some ¢ > 0if y; = 0. Let N be defined by (4.1) and let P be
the true distribution of Z (not necessarily normal). Wijsman ([15], Section 3.3)
showéd that N is exponentially bounded under P unless

(53) P(S(z— B7'w)' + oz — w) + Ty = (B2 =~ B7)Z, w2} =
Furthermore, if a in (5.2) equals 0, then every P satisfying (5.3) was shown in [15]
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to be obstructive. It will be shown now, using Theorem 4.1, that the same
conclusion can be drawn if a % 0. Note that this happens if and only if v, = 0 and

g > 1, and thena > 0.
In order to apply Theorem 4.1, introduce z, = 3%z? and take at first X =

(zg 215+ * + » 25)'. Define
(54) o(x) = 2|xi2/ (xo - 22xi2) - B,
and define A(?) = a log ¢. Then h satisfies Assumption 4.1 for any m > 2 and every

1 > 0, and it follows from (5.1), (5.2), and (5.4) that L, has the required form (4.2).
Equation (5.3) can be written

(55  P{zo—2B7'Z iz — 22,z + BTIZ W + 2yt =0} =1

so that with probability one X lies in the s-dimensional hyperplane

(5-6) xo - 2B_IEI[L,~xi - 222u,~x,~ + B_lzlpf + 22“,2 - 0.

In this hyperplane the denominator in (5.4) equals

(5.7) Xo = Zpx = BTS2 = BTIS (% — w) = Byl — )

Now redefine X = (z,- - -, z,), x = (x, - * * , x,), and (using (5.4) and (5.7)):
(5.8) o(x) = lexiz/[zlxiz - Z(x — M')z — BE,(x; — I";)z]-

Putting £ = EX = (p, - - -, ), it is immediate that ®(§) = 0. Expanding &
about ¢, one finds easily

(59)  @(x) = BEi W) [Zu(x — w) + BZa(x — w)’] + O(11x — £I).

. From (5.8) it is obvious that ® possesses derivatives of all orders and that ® is
bounded on compacta. From (5.9) it follows that ® has the form (4.8) with p = 1,
e = 1, so that Theorem 4.1 applies with y(x) ~1(log x)>. The conclusion (4.9) then
implies that for / sufficiently large N is not exponentially bounded. Theorem 4.2
also applies since by (5.9) ®(§) = grad ®(£) = 0 and the matrix of second order
partial derivatives is positive definite at £ while from (5.8) it is seen that outside
any neighborhood of £ @ is bounded away from 0. Hence for sufficiently large /,
(log N)? is exactly exponentially bounded. The same conclusion also follows from
Corollary 4.1 since by (5.5) the support of Z, and therefore of X, is bounded.

5.2. Sequential test for the equality of two distribution functions. Let U, V be
real-valued random variables with distribution functions F and G, respectively.
Independent observations (U,, V), (Uy, V), - - -+ on (U, V) are taken. Let P be
the true joint distribution of U and V. Savage and Sethuraman [11] and Sethura-
man [12] investigated the stopping time N of a sequential rank-order test for testing
F = G against the Lehmann alternative G = F4, 4 # 1. Strongest results were
obtained in [12] where it was shown that N is exponentially bounded under every
P, except for P belonging to a certain family. These exceptional P’s were further
investigated in [16] and it was shown that all exceptional P’s under which F and G
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are continuous are obstructive. One discrete P was also investigated but L, turned
out to be of the form (4.2) and it is only with the results of Section 4 that
obstructiveness of P can be concluded. Specifically, the expression for L, given by
(6.1) in [16] and rewritten in the notation of Section 4 is

(5.10) L, = n®(X,) + ilog n,

in which X}, X,, - - - are ii.d. Bernoulli variables with expectation &= p in [16]).
The function ® depends on 4 (which is assumed to be > 1) and is given by
(5.11)

®(x) = —x log(3x) — x log(x(1 + %A))
-(1- x)log(% + (A +%)x) - (1- x)log(l +34(01 + x)) + log44 — 2.

There is exactly one value of A4, say 4, and one value of £ say &, such that
D) = ®'(%) = 0 and ®”(£,) < O (these values, accurate to 10 places, are 4, =
1.320015126, &, = .1401865276). Then — L, is of the form (4.2) with h(n) = 3log n.
Since a Bernoulli variable is bounded, Corollary 4.1 applies to show that for all
sufficiently large /, (log N)? is exactly exponentially bounded. Therefore, N itself is
not exponentially bounded so that for 4 = 4, the P under which ¢ = ¢, is
obstructive.
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