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ASYMPTOTIC COVERAGE DISTRIBUTIONS ON THE CIRCLE!

By ANDREW F. SIEGEL
University of Wisconsin-Madison

Place n arcs, each of length a,, uniformly at random on the circumference
of a circle, choosing the arc length sequence a, so that the probability of
completely covering the circle remains constant. We obtain the limiting distri-
bution of the uncovered proportion of the circle. We show that this distribution
has a natural interpretation as a noncentral chi-square distribution with zero
degrees of freedom by expressing it as a Poisson mixture of mass at zero with
central chi-square deviates having even degrees of freedom. We also treat the
case of proportionately smaller arcs and obtain a limiting normal distribution.
Potential applications include immunology, genetics, and time series analysis.

1. Introduction and summary. Coverage problems arise in a wide variety of
applications. The particular problem of the coverage of a circle by n random equal
arcs, each of length a,, has been associated with research in immunology (Moran
and Fazekas de St. Groth (1962)), genetics (Stevens (1939)), and time series analysis
(Fisher (1940)). In a previous paper (Siegel (1978a)), exact formulae for the
moments and distribution of coverage were obtained for this problem. The purpose
of the present paper is to explore the asymptotic behavior of the coverage
distribution for large n, because the exact distributions become difficult to evaluate
numerically in this case. It is hoped that these limiting distributions will prove to be
useful approximations in more general coverage problems.

Definitions, notation, and a distributional representation of the coverage are

. given in Section 2. The asymptotic distribution of the vacancy is found in Sections
3 and 4, under different behavior of the arc length sequence. In Section 3, the arc
length is chosen so that the probability of complete coverage of the circle remains
fixed as n grows. The limiting distribution is found to be a mixture of a discrete
mass point at zero with a positive continuous random variable, and may be
interpreted in a natural way as a noncentral chi-square distribution with zero
degrees of freedom. Section 4 treats proportionately smaller arc lengths, and a
limiting normal distribution is obtained.

2. Definitions, notation, and a distributional representation of the coverage. Let
n arcs, each of length a, be placed independently with centers uniformly distributed
on the edge of a circle of circumference one. Denote these arcs by A, - - -, A,.
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The coverage is defined as
@2.1) C(n,a) = }L( U’ 1A,.)

where p denotes Lebesgue measure on the circle. C(n, a) is the (random) propor-
tion of the circle that is contained in at least one arc. The vacancy is defined as

(2.2) V(n,a) =1— C(n, a)

and is the random proportion of the circle that is contained in no arc. It is
introduced because it is generally easier to work with mathematically than is the
coverage. For a thorough treatment of the foundations of coverage problems, the

reader is referred to Ailam (1966).
The event V(n, a) = 0 represents complete coverage of the circle by these arcs.

Its probability will be denoted by P(n, a), and was found by Stevens (1939) to be
(2.3) P(n, a) = P(V(n, a) = 0) = Z5_o(—1)'( ] )(1 = ta)y”"
where (¢), = max(¢, 0).

Fisher (1940) discovered a link between this coverage problem and the analysis
of time series, from which we obtain a useful representation of the vacancy. Let

X,, - -+, X, be independent and identically distributed x2 (or alternatively, any
exponential distribution). Normalize them so that they sum to one by defining
(24) Y, = X,/30.. X,

Fic. 2.1. Y}, - -, Y, generate n random arcs of size a on the circle, in the case n = 5.
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Then a distributional representation of the vacancy is given by
2.5) V(n, a) = Sy, - a), .

This follows because the Y; may be interpreted as the spacings between adjacent
counter-clockwise endpoints of arcs, as is illustrated in Figure 2.1.

3. Limiting coverage distribution: constant coverage probability. In this section
we find the limiting distribution of the vacancy in the case in which the coverage
probability stays constant. Thus for an experiment in which » random arcs are
placed, the length of each arc will be a, and is chosen so that P(n, a,) = y, where y
is the fixed coverage probability and lies strictly between zero and one. It is
important to note that in a given experiment, all arcs placed are of the same length.
The treatment of random arcs of different sizes is considerably more complicated
(Siegel (1978b)).

In Theorem 3.1, the behavior of the sequence a, is characterized, and in
Theorem 3.2, the asymptotic distribution of the vacancy is found. Following this is
a discussion of the interpretation of this distribution as a noncentral chi-square
distribution with zero degrees of freedom.

THEOREM 3.1. Let B = log(1/y). Then

oo o)
and
3.2) lim,,_,wn[a,, - —:Tlog(-;—;-)} =0

where, we recall, a, satisfies P(n, a,) = v.
Note that (3.2) is a much stronger statement than a, ~ (1/n)log(n/ ), meaning
their ratio tends to one in the limit. A stronger result is clearly needed because

(1/n)log(n/ B;) ~ (1/n)log(n/B,) for any positive 8, and B,.

PrOOF. Let G, = max, ,,Y,, using the representation in Section 2. The circle
is covered by n arcs of length (1/n)log(n/B) if and only if G, < (1/n)log(n/B).
Barton and David (1956) showed that

(3.3) 2n exp(—nG,) —>ax3.
Hence
(34) P(n, %log(%)) = P(2n exp(—nG,) > 2,8‘) sef=y

and (3.1) is established. For (3.2), we choose B8, and B, that satisfy 0 < 8, < 8 <
B,. Then vy, = exp(— 8;) <y < exp(—B,) = v,, and therefore for sufficiently large
n we have

(3.5) P(n, %log(-'g—z)) < P(n,a) < P(n, %mg(-g;))
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using the convergence result (3.1) just established. But P(n, ¢) is an increasing
function of ¢, so

(3.6) —-log( ,82) <a, <= log( .31)
and therefore (for sufficiently large n)

| B _Lioe(2 B
3.7 log( ,82) < n[a,l nlog( ,B)] < log( B, )

By choosing B8, and B, close to 8, we can make the outer terms in (3.7) as near to
zero as we wish, completing the proof.

A proof of Theorem 3.1 can also be given using the distribution of the random
number N(a) of arcs of length a needed to cover the circle, when the random arcs
are placed sequentially. The definition of a, so that P(n, a,) = e~ # for all n implies

(3.8) P(N(a,) <n)=e# foralln.

Theorem 2.6 in Flatto (1973) says that

(39) lim, . P(N(a,) < (log(1/a,) + log log(1/a,) — log(B))/a,) = ¢~".
Setting X, = a,N(a,) + log(a,) — log log(1/a,), (3.8) and (3.9) may be written as
(3.10) P(X, < na, + log(a,) — loglog(1/a,)) = e #  foralln

and

(3.11) lim,_, P(X, < —log(B)) = e~
" These last two equations force
(3.12) na, + log(a,) — log log(1/a,) - —log B

which we will write as
(3.13) n[a,, - %log(%)} + log[ — na, /log(a,)] >0

Dividing (3.12) by log(a,), which tends to — oo, we see that
(3.14) log[ — na,/log(a,)] — 0.
Equations (3.13) and (3.14) now prove (3.2). []

THEOREM 3.2. The limiting distribution of the vacancy V(n, a,), where the arc
lengths a, are chosen so that the coverage probability remains fixed at v, is given by

(3.15) nV(n, a,) >qY
where Y is the mixture
(3.16) Y =0 probability Y

= Z probability 1 — v,
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and Z is continuous with density
. 1 o BI tl_l -t
fﬁ(t)— eﬁ— 1 I=1 1! (l_ 1)!e
(3.17) . )
2 e~ 1
A 105

eﬂ—l t%

where we recall B = log(1/v), and I, denotes a modified Bessel function (see, for
example, Chapter 9 of Oliver (1964)). The cumulative distribution function of Y is
K

)
G190 R <0 = St t3t L

where 0 < t < o0.

It is interesting to interpret the limiting distribution 2Y of 2n¥V(n, a,) as x3(8),
the noncentral chi-square distribution with zero (!) degrees of freedom and non-
centrality parameter 8. Recall the representation of x2(8), » a positive integer, as a
Poisson mixture of the central chi-squares x(2,, +25) Where K ~Py(B); see, for
example, Chapter 2.4 of Searle (1971). We see from (3.16) and (3.17) that 2Y is a
Poisson mixture of the central chi-squares x2, where K ~ Py(B) so that P(K = /)
= e~ PB'/11, and we use the convention that xZ is the distribution concentrated at
zero. Thus the distribution of 2Y naturally extends the noncentral chi-square
distribution x2(8) to the case » = 0. Having zero degrees of freedom allows a
mixture of discrete mass at zeto (corresponding to complete coverage of the circle)
with continuous variation (corresponding to partial coverage of the circle).

Proor OF THEOREM 3.2. Set

(3.19) b, = %log(%).

We will use ¥(n, b,) as an approximation to ¥(n, a,). Moments of vacancy were
found by Siegel (1978a), and are
(3.20)

E[nV(n, b,)]" = n'"(m +’:t - 1)‘1 '1"=1(’7)(’;__ 11)(1 ——’l;log(%))m-m_].

It may be verified that

. l n m+n—1
I — — — = I
(3.21) lim, , n (l p log .3) B

by taking logs and doing a Taylor series expansion. Using this, the limit of (3.20)
may be calculated, and we define

)
0 s T <3 (718
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The moments of Y may also be calculated:

m oym - © BI om+i—1_ —
(3.23) EY =(l _Y)fotfﬁ(t)dt=e BE,=1'I'T(I—_1_)!\0t + Ie tdt,

where we use the monotone convergence theorem in order to exchange sum and
integral. The integral is easily done, and we obtain

m o o—Byw _ B _
(3.24) EY e PR, T =11 —(m+ -1
Now if we expand e 2, multiply the two series, and gather powers of 8, we get
m _ / _nk+fm+ k—1\(1 B’
(3.25) EY" = m!ml[z (=1 ( PP )(k)]F

The term in brackets is ( m— 1

— )~ *D = (1 — f)~™~*D and equate coefficients of ¢'~!. Thus, comparing
with (3.22) we have

); to see this, simply expand the identity (1 — £)(1

(3.26) EY™ = p, = lim, , E[nV(n, b,)]".

Convergence of moments implies convergence in distribution provided
, | Bl

3.27) lim sup,,_, ., p < o0

(see Section 8.12 of Breiman (1968)). To establish (3.27), we use Stirling’s formula:

(3.28) W = MIZTL ( 11 ) ’f' < m! (m/2) ~ 2+ lePpme—m

- from which (3.27) now follows easily. This proves that

(3.29) nV(n, b,) —>qY.
To now prove (3.15) it will suffice to show that
(3.30) W, = n[V(n, a,) — V(n, b,)] —>p0.

From Theorem 3.1, a, = b, + (¢,/n) where ¢, — 0. Using this and the representa-
tion of Section 2, we have

P(W,| > e) = B(niZi{(¥ - b, - 2) - (1= 8).)1>¢)

(331) "
<P(| o _II{Y,.>b,,—T"} >e)

where I{A} is 1 if A holds and O otherwise. Applying the Markov inequality to
(3.31) we have ‘

(332) p(W,| > )<'"'[ (Y,>b e, ')}

It can be verified directly that if 0 < ¢ < 1, then
(3.33) P(Y,>t)=(1-09)"""
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Using this, we now show that the bracketed term of (3.32) is bounded. This term is
(3.34) nP(Yl >b, — '—Cn—l) - n(l — b+ %)H.
Taking logs and expanding, we have

log(n) + (n — 1)10g(1 - b, + l‘_';gl_)

(3.35) - —tm-nld (ﬁ) _lal (kﬂ)’
log(n) — (n — 1) nlog 3 Pl o p
= log( B) + o(1).
Using this in (3.32) and recalling that ¢, — 0, we have
(3.36) P(|W,| >¢€) < l%'il- o(1) -0

completing the proof of (3.15). (3.18) follows from term-by-term integration of
G.17. 0
4. Proportionately smaller arcs. The previous section treated the case of con-

stant coverage probability, in which the arc size behaved like (1/n)log(n/B). Now
we consider proportionately smaller arcs, of length

n

4.1) = %log( ,B)

where 0 < A < 1. Because in this case the coverage probability P(n, d,) tends to
zero, as may be verified from (3.1), there are no mass points in the limiting
distribution of the vacancy. The main result of this section is

THEOREM 4.1. The vacancy V(n, d,) is asymptotically normal with mean (B8/n)*
and variance 2B ~*V, That is,

V(n, d,) — (B/In)A 00, 1).
(ZB)‘n—(l+}\))i

(42)

Proor. We will use

X,
=>n [Zi_
(4'3) V: x-l( 2n dn)+
as an approximation to
(44) V(n d,) = Zi.(X,/ Cj-1X) — ),
where X, - - -, X, are independent and identically distributed x3, from the repre-

sentation of Section 2. Since V}* is the sample mean of shifted and censored
exponentials, it is easily seen that

(4.5) E(V}) = (8/n)
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and

(4.6) Var(V) = 28~ *V[1 - 3(8/n)].

Thus the mean and variance of V¥ and V(n, d,) from (4.2) are asymptotically
identical. The proof of asymptotic normality will follow immediately from the
following two lemmas. The first will show that ¥} is asymptotically normal with

the right mean and variance, and the second lemma will show that V¥ is close
enough to V(n, d,) to imply (4.2).

LeMMA 4.1. For V} defined in (4.3) and (4.1),

_ A
V2= B/ | s, 1).
(2B~ +0)i

Proor. It will suffice to verify the Lindeberg condition for triangular arrays,
which may be found in Loéve (1960). This requires that

(4.8) g,(e) = nEZ{|Z,| > ¢} >0
hold for each ¢ > 0, where

1
X 18] [2(B} _l(_g)* ~2
(49) Z"_[(Zn d")+ n(n)] [n(n) I 2\n
is the first term, ((X,/2n) — d,),, in the sum for V*, normalized to have mean zero
and variance 1/n. To establish (4.8), we bound g,(¢) using the fourth moment:

(4.7)

R P
gn(s) < EEZ,l

3421 . 4
o B s - Iy /n)er[(Z% -4), ‘%(é)x] '

We do a binomial expansion of the expectation term and calculate the moments
from

X, " _ m! A

21 =— 1.
(@.11) B(52 - d) =28/, m >

Thus (4.10) becomes

248 242  128% 3%
g.(e) < 0(1)- { A - A+ + i+ T Taran

-ofz5) |

which completes the proof. []

(4.12)
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LeMMA 4.2. Using the notation of this section,
V(n’ dn) - V:

— —>p0.
(n=1+M)2

(4.13)

Proor. Using the representations (4.3) and (4.4), we must show that

X, X
ol —=-4d,] - (——'— d) | >en=(*N/21 50
nX . 2n ")+

n

(4.14) P

as n — oo, for each ¢ > 0, where X, = %2;‘_,)(,.. For convenience, let B, denote

the event in (4.14). Because

X
(4.15) n%(—zi - 1) —oI0(0, 1),
given § > 0 we can find K such that
(4.16) P(O<—Z—— l<—1f—)>l(l—8)
Xn n2 2
and
(4.17) P(——’%<%—1<o)>%(1—a)
nt X,

wherever n is sufficiently large. Then P(B,), from (4.14), satisfies
(4.18)

-1 X— f -1
P(B,,)<P(B,,,(1+—Kl—) <=<1 +PB,,,1<—1<(1—£l) + 8.
ns 2 2 ns
We consider the two main terms in the right-hand side of (4.18). The first one is
(4.19)

X, X, -l X
T,=P ';=,(—_'—d,,) —(—i—d,,) >en‘(l+>‘)/2,(l+£,) < S <.
nX, + 2n + n? 2 '

The largest any single difference can be in the above sum is KX,/2n%2 and this
1
difference will be zero whenever X; < 2nd,/(1 + Kn~?2). Thus

2nd, '
(4.20) T, < P(E'i‘-lxil{xi > —"—l} > gfn'""/z).
1 K
. . 1 + Kn2
The Markov inequality yields
A/2 2nd
(4.21) T, < fn—Ex,l{x, > }
2¢ _1
1+ Kn™2
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This expectation is straightforward to calculate, and is

(422) 2{1 . ‘HLZ;"_—% }(%)—A/(Hm‘%) <21+ ndn}(%)—(%ﬂ)x

for sufficiently large n, where { is any number strictly between 0 and 1. Thus the
first term of (4.18) satisfies

@) 1< B a(2))(5) N = otrog ),

The second main term, T, of the right-hand side of (4.18) may be treated similarly
to obtain

(4.29) T, = O(n"*Mog n)
as well. Thus
(4.25) P(B,) = 6 + O(n**og n)

holds for all § > 0 and § € (0, 3), completing the proof. [J

Because convergence in distribution in Theorem 4.1 does not, by itself, imply
proper behavior of the moments of V(n, d,), this is treated in the following
theorem.

THEOREM 4.2. The asymptotic mean and variance of V(n, d,) are

(4.26) u, = EV(n, d,) ~(B/n)’
and
4.27) o2 = Var(V(n, d,)) ~2B8*/n'* .

Proor. Exact formulae for the moments are available in Siegel (1978a). The
first moment is

n_ 1 _ A (m))
(4.28) wo=(—d) = (1 ;log(ﬁ)) .
Expanding log(u,) in a Taylor series, we have
1 n\?
(4.29) log( p,) = log(B/n)" + 0(;log(—ﬁ-) )

which proves (4.26). The exact formula for the variance is
) n+1 n—1
n+1 (1-4d) + n+1

The first of the three terms on the right side of (4.30) is ~28*/n'*?, using the
same expansion technique we just used for u,. To complete the proof, we will show
that the remaining two terms combined are o(1/n'**). Write the second term from
(4.30) as

(4.31)

(4.30) o2 = (1 -=2d)""' - (1 - d)*™"

:; 1(1 — 24yt = - —2 (1 - 2g)™!

n+1
-2d,(1 —2d,)" + (1 —2d,)".
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The first term on the right is O(1/n'*?), hence o(1/n'**), and may be ignored.
The second term is 0(log(%) / n‘”"), hence also o(1/n'**). It remains only to

consider the sum of the last term in (4.30) with the last term of (4.31), namely

(4.32) (1-24)" -1 - d)"
Factoring (4.32) as a” — b", it becomes
(4.33) —d2snzi(1 - 2d)' (1 - 2d, + 43"\,

The sum itself is bounded above by (n — 1)(1 — 4,)*"~P = O(n'~?). Thus (4.33)
is O((log(n/B))*/n'*?) = o(1/n'**) as was to be shown. []
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