NOTE ON A SQUARE FUNCTION INEQUALITY

By A. O. PITTENGER

University of Maryland, Baltimore County

Let X be an L_p martingale, $3 \le p < \infty$. Let $M = \sup |X_k|$ and $V^2 = \sum (X_k - X_{k-1})^2$. We show that $||X||_p \le (p-1)||V||_p$ and, consequently, that $||M||_p \le p||V||_p$.

Let p > 1 and let $(X_n, \mathbb{F}_n, n \ge 0)$ with $X_0 = 0$ be an L_p martingale: $\sup(\|X_n\|_p) < \infty$. Let $M = \sup|X_k|$ be the usual maximal function, and let $V^2 = \sum (X_k - X_{k-1})^2$ be the usual square function. It is well known (e.g., [3] and [4]) that $X_n \to X$ a.s. and in L_p and that there exists a constant C_p , independent of X, such that $\|X\|_p \le C_p \|V\|$. Also

$$||M||_{p} \le p(p-1)^{-1}||X||_{p}$$

is a standard result. In [2] Klincsek showed that for $p \ge 2$

$$||M||_p \leqslant A_p ||V||_p$$

with $A_p < (p+1)$, $A_p/p \to 1$ as $p \to \infty$ and $A_p = p$ for integer p. He conjectured that (2) was valid with $A_p = p$ for all $p \ge 2$. In this note we refine the techniques of [2] to establish $||X||_p \le (p-1)||V||_p$ for $p \ge 3$, thus confirming the conjecture in $[3, \infty)$.

The proof is based on the following result which can be easily verified by elementary calculus:

LEMMA. Let $p \ge 2$. Then for any real a, b

$$|a|^p - |b|^p - p(a-b)\operatorname{sign}(b) \cdot |b|^{p-1}$$

$$\leq p(p-1)(a-b)^2 \int_0^1 s((1-s)|a|+s|b|)^{p-2} ds$$

with equality if a and b have the same sign.

THEOREM. Let $p \ge 3$. Then $||X||_p \le (p-1)||V||_p$ and, consequently, $||M||_p \le p||V||_p$.

PROOF. Let $V_n^2 = \sum_{1}^n (X_k - X_{k-1})^2$. By the lemma,

$$E[|X_n|^p - |X_{n-1}|^p] \le p(p-1)E[(V_n^2 - V_{n-1}^2)\int_0^1 s((1-s)|X_n| + s|X_{n-1}|)^{p-2} ds].$$

Since $p - \ge 1$, we have a.s.

(3)
$$[(1-s)|X_n| + s|X_{n-1}|]^{p-2} \le [E(((1-s)|X| + sM)|\mathbb{F}_n)]^{p-2}$$

$$\le E([(1-s)|X| + sM]^{p-2}|\mathbb{F}_n).$$

Received February 1, 1978.

AMS 1970 subject classifications. Primary 60G45; Secondary 60H05.

Key words and phrases. Martingale, maximal function, square function.

Hence, using (3) and summing over n,

$$E[|X|^p] \le p(p-1) \int_0^1 sE[V^2((1-s)|X|+sM)^{p-2}] ds,$$

and by Hölder's and Minkowski's inequalities

$$||X||_{p}^{p} \le p(p-1)\int_{0}^{1}s||V||_{p}^{2}||(1-s)|X| + sM||_{p}^{p-2} ds$$

$$\le p(p-1)\int_{0}^{1}s||V||_{p}^{2}((1-s)||X||_{p} + s||M||_{p})^{p-2} ds$$

$$\le p(p-1)||V||_{p}^{2}||X||_{p}^{p-2}\int_{0}^{1}s((1-s) + sq)^{p-2} ds$$

where $q = p(p - 1)^{-1}$. Another application of the lemma gives

$$||X||_p^2 \le (p-1)^2 ||V||_p^2 \{1 - q^p - p(1-q)q^{p-1}\}$$

= $(p-1)^2 ||V||_p^2$,

completing the proof.

The above proof fails at (3) if p < 3. However, if we replace $|X_n|$ and $|X_{n-1}|$ by M in the inequality preceding (3), we can obtain $||X||_p^p \le {p \choose 2} ||V||_p^2 ||M||_q^{p-2}$ or

(4)
$$||X||_{p} \leq (p-1) \left[\frac{1}{2} \left(\frac{p}{p-1} \right)^{p-1} \right]^{\frac{1}{2}} \cdot ||V||_{p},$$

a result obtained in [1] by a different argument. This suggests of course that for all $p \ge 2$ we have $||X||_p \le (p-1)||V||_p$. Note that if we relax (4) slightly we have the more concise relation

Note that if we relax (4) slightly we have the more concise relation $||X||_p \le (p-1)(e/2)^{\frac{1}{2}}||V||_p$.

Added in proof. In *Proc. Amer. Math. Soc.* 68 pages 337-338, Dubins and Gilat construct an example which shows the constant $p(p-1)^{-1}$ in equation (1) is sharp. That same example can be used to show that $p-1 \le Cp$, and hence p-1 is sharp for $3 \le p$.

REFERENCES

- DUREN, P. L. (1970). Theory of H_p Spaces. V. 38, Pure and Applied Math. Academic Press, New York.
- [2] KLINCSEK, G. (1977). A square function inequality. Ann. Probability 5 823-825.
- [3] MEYER, P. A. (1972). Martingales and stochastic integrals I. Lecture Notes in Math 284. Springer, New York.
- [4] Neveu, J. (1975). Discrete-Parameter Martingales. North-Holland, Amsterdam.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF MARYLAND, BALTIMORE COUNTY 5401 WILKENS AVENUE BALTIMORE, MARYLAND 21228