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THREE LIMIT THEOREMS FOR SCORES
BASED ON OCCUPANCY NUMBERS

By M. P. QUINE
University of Cambridge

Let N balls be distributed independently and at random into n boxes. Let
p, denote the number of balls in the jth box. Let (cg, ¢y, ¢,, - - - ) be a sequence
of real numbers. Three limit theorems are proved for the sum X7_,c, as N and
n tend to infinity in such a way that N/n — 0.

0. Let N balls be distributed independently and at random into # boxes, in such
a way that each ball has probability 1/n of landing in any given box. Denote by p,;

the number of balls in the jth box. Let (cg, ¢y, ¢, - - - ) be a sequence of real
numbers, and denote by m = m(c,, ¢, ¢;, -+ + - ) the unique integer (m > 2) such
that

co—c=(c;—c)/2=" "+ =(c_1 — co)/ (m—1) #(c, —cp)/m.

We assume that m < oo, for in the case m = oo, the quantity of interest in this
paper, Ecp'v — nEc, , vanishes. We will show that as N and n tend to infinity in
such a way that N/n — 0, convergence in distribution to a normal, Poisson, or
degenerate law may occur. Theorems 1 and 2 generalize results of Békéssy (1963).
We impose a condition on the sequence (c;) in terms of

d; = max(le; — col, [e; = ol /2, - - -, e = €l /i), i=1,2,---.

1. Normal convergence. The result of this section generalizes a result of
Békéssy (1963), who dealt with the case ¢; = §;;, kK > 0. A discussion of this and
other special cases may be found in Johnson and Kotz (1977). The analogue of the
theorem in the case N/n — a, 0 < a < oo, was first proved by Harris and Park
(1971) although special cases were known much earlier (see Johnson and Kotz);
Quine (1979) contains a discussion of extensions in this case. The case N/n — o
has been dealt with (Békéssy (1963)) when ¢; = §,;, but there seem to be no general
results available.

THEOREM 1. Let n, N - o0 and N/n— 0. If 2d%*"*?/i!< o0, and N™ /n™"!
— 00, then
_1
(Nm/nm=1) 7225 (c, — Ec, ) —>qN(0, 0%,
where

o® = (m(c, = co) = (& — €))*/ml.
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The mean Ec, may be replaced by Ec, , where 7, is a Poisson random variable (1v)
with mean N / n.

Proor. We consider the boxes in groups of size k, = [n/N], [x] denoting the
largest integer < x. There are /, = [n/k,] (> N) groups of this size. Put

By = Ba(-vi 1€, Oy = ZiEG- 1k, 1P 1<j<l;
i = E(Bulot = 1), op = Var(Bylo} = i), 0<i<N.
Note (8,1, - - - » Ba) are exchangeable rv’s, as are (¢, ,* * * , ¢, )

LEMMA 1. As n— oo,
i = knto + ey = c) + () (e = o = mley = )/ + 01/ k),
=0 i<m
= (';l)(cm —co— m(c; — ¢))’/k + O(1/k) iz m.
Proor. If we can prove the lemma when ¢, = 0, then the general case follows

trivially by considering ¢/ = ¢; — c,. Indeed the same remark applies to Theorem 1.
So for the rest of this section, we will assume ¢, = 0. Then

i = KnE(c,, lo¥ = i)
= k({:lzl_oj( ) (1 - 1/k) ™ + 3¢ ,(j) (1 - l/k)")

= knclE(pnll(pnl < m)lpnl = l) + Cm(,ﬁ,)/kr:"_l + O(I/k,:");

wetake(’;)=0ifi<m.Since

i/ky = E(p,d(0s > m)lo}y = i)
ik, — m(’;)/k,:" + 0(1/ k7Y,

the first part of the lemma now follows.
Next we note

E(p,1(pm < m)|oy = i)

E(cp,,, p,,zlpnl l) = clE(pnlanI(pnl’ On2 < m)lpnl = l)

+2eicnli = m)( ) /K 01/,
and

E(¢3,,|P:| = ) = clE(pnlI(pnl < m)lpnl l) + c,f,(rZ)/k,:" + O(I/kr:”+1)’
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If i <m, then B,; = ic, and ¢, vanishes. If i > m,
oy = k(E(ch lof = i) = E(c,, ¢, o = i)
+k,f(E(cpMcp"Jp,’:‘1 =i) — E*(c, lo¥ = i))
= ¢} Var(Zfz 10, 1(py < M)l = i)
+ k,,""“(’;)(cz, + 2¢,¢,,(i = m) — 2¢c,,i) +0(k, ™)
from the above results. Now
Var(Sf 10, 1(py < m)lpfy = i) = Var(Zfe 10, 1(0,; > m)lo} = i)
and it is easy to check that
B2 1(on > mlot = i) = mik( 1) + 00k ),

m21!
E(p,10,21(Pp1> P >m)pn =i)= + 0(1 k:"”'l.
( 1 2( 1 2 | 1 ) 3( !)2(1 )! (/ )

Combining these with earlier results gives
Var(Zf:, lpnjl(pnj < m)lp:l = l) = man—m+l(r£l) + O(I/k;:")a
and the second part of the lemma follows.

ReEMARK. Examination of the proof of this lemma shows that the order term in
the expansion of p,; is dominated by 24,i™*V/k™.
We now define a random function

X,(6) = 1773 _ (B, — EB,), 0<r< 1.

If (8,85, - ) are independent and identically distributed (i.i.d.) rv’s and
P(8{" < x) = P(B,, < x|p¥ = i), then E(8§”) = u,;, Var(8§”) = 02. For 0 <t <
1,0 < i < N, write

X9(t) = 1778 (8 ~ ),
QO(e) = 1,773 103 = i);
put
V() = 472 (S o m S o}y = i) ~ [ 4] EB,y).
Then the finite dimensional distributions of X, coincide with those of
SN XD o QD + Y,

Let = denote weak convergence in (D, d), i.e., in the space of right-continuous
functions with left limits, endowed with the Skorokhod topology.

LeMMA 2. Ifi > m, then
0, X = w,
where W is a standard Brownian motion; W® and W are independent for i # j.
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PROOF. According to, e.g. McLeish (1974), we need only check

8 — m— gy \
( ”‘m) b 811 M >elo0
o2 1,02

n n

for each & > 0. But |§{”| <iZ'_|¢|, so this Lindeberg quantity vanishes for
sufficiently large n so long as [, 02 — o0, which in view of Lemma 1 is equivalent to
n/k" — o0, ie., N"/n™" ! 5 c0.

LEMMA 3. Write QO(f) = e~ 't/i!. Then QO = Q0.
Proor. Take 0=, <t < -:- <t, =1 Then
Plmaxoe < J90(5) — 2O(5)| > &) < S1.P(90(5) - 0()] > e),

and an argument based on Chebyshev’s inequality shows that each member of this
finite sum — 0 (note Cov(I(p}, = i), I(p}, = i)) » 0). Thus the f1n1te-d1mens1ona1
distributions of QY converge as required. If ¢, < ¢ < ¢,, then

E|RP() = RO(1)| RO (1) — RP()] < E3H(RP(1) — RO(1)’
x E3(RO(t;) = RO(1)’,
where R = Q¥ — QO and the right-hand side — 0 since, for example,

B(R(0) = RO = 175( 310y = ) — L2 L0l

—0.

The lemma now follows from, e.g. Billingsley (1968, page 128).
LEMMA 4. As n — oo,
kG 2(X,(1) = Y, (1)) >oN(0, 6?).
Proor. Lemmas 1, 2 and 3, and Theorem 4.2 of Serfozo (1973), imply
Km=D/23N XD 0 QO o5 36 W o QO
where
o} = (&)(mc, -¢,)?

(note Serfozo (1973, Section 5) and Billingsley (1968, Section 17)). The lemma
follows on taking ¢t = 1.

LEMMA 5. As n— oo,
k{m=Y/2x (1) ->¢N(0, 6?).
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PrOOF. In view of Lemma 4, it suffices to show k¢~ "/2Y,(1) —,0, or a fortiori,
0)) k"N T 'Var(Zh_ i pps) >0,

which we now prove. Write a, = Nk, /n; note a, < 1. Routine analysis shows that
ifi <N/2,

. ale % q(i
PGy = i) — 25— ] <@,

where ¢(i) is a quadratic in i, and for i > N/2,
P(pY = i) <ale %/i!

once N > 4, in which case, therefore,

e % 1y ;e %
Eﬂfp;. - 2i<N/2p‘:iar:_ii_(l + N 1‘1(1)) < 21>N/2M:ia,:_ir

The result

2 Epl,. = S phaie™/il+0(1/N)

now follows so long as Si%u% /i! = 0(1). Conditional on (p¥ = i), S,, is of the form
ajc; + - - - +a,c, where =i_, ja; = i. Thus

| Bl < 2;’-ljajdi = id,
so that (2) is true if 2i%d?/i! < oo.
Similar arguments show that
i - .1\2
Eflps, g, = (Z puaje™*/it)" + 0(1/N)
and
Cov( Hgss P'np;,) == N_l(2 Mnine (i — a”)/i!)z + O(I/Nz)-
Using these two equations together with (2), we obtain
Varz}=ll“'np,; = ln(2 u,f,-a,fe_“'-/i!—- (2 I“‘niane_a"/i!)z)
— 2N V(2 puai(i — a,)e%/i1)* + 0(1).

According to the remark after Lemma 1, y,, is of the form

My = icl + kn_m+l(r£l>ﬁ + kn_mwm"

with B8 = ¢,, — mc,, |w,| < 24,i"*Y. Thus tedious calculations show that, subject
to w2 /il = 0(1),
Varzlf'_l ,.L”p’; = O(N/k,:") + 0(1),

J
and since Sd%*™*2/i! < oo by assumption, (1) and the lemma now follow.

LEMMA 6. As n— oo,

-1
(N™/nm= )220 (e, — Ee, ) —,0.
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Proor. It is easy to see that
Ele, | < Nle)|/n + Zolcl(N/n)'/ it
< Nl¢,|/n + (N/n)*SN_,id,/ ! once N <n
= O(N/n).
Thus
E|=7 i, +i(c,, — Ec, )| < 2k,Ele, | = 0(1),
and the lemma follows.
The main part of Theorem 1 follows easily from Lemmas 5 and 6. As for the
mean, routine calculations based on
o = o ¥t - 1/
show that Ec, = Ec, + 0(1/n).

2. Poisson convergence. The result of this section appears, in case ¢; = §;;, in
Békéssy (1963); more extensive work on this case has been done by V. F. Kolchin
(see Johnson and Kotz (1977) for references).

THEOREM 2. Ifn, N > 00, N"/n™ ' 5 4,0 < A < o0, and Td*™*?/il < oo,

then
{em — co— m(c, — CO)}_1{2;=1(Cp,,j = ¢p) = N(e; — co)} —qP(4/m!),
where P()) is a Poisson tv with mean A.

Proor. The proof follows roughly the lines of that of Theorem 1. We again
assume without loss of generality that ¢, = 0. We now divide the boxes into groups
of size k, = [n/BN], where B > 1 will be specified subsequently. The quantities
bys Byjs P> Mnis o2, are then defined in terms of this new k, just as in the previous
section. We observe that the statement and proof of Lemma 1 remain unchanged.

Furthermore, if 2 is defined in terms of the new k,, then Lemma 3 continues to
hold with

QO(r) = te= /BB 1 /il.
Write
X, (1) = Z=\(B, — EB,)
XP(e) = R85 — p),
Y, (8) = ZV( pgy — Ebngy)-

Then, as in the previous section, X,, has the same finite dimensional distributions as
SV XD Q0+ Y,
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LEMMA 7. Fori > m,
(¢, — me) 'XP = v,

where (VO(t) + A t, 0 < t < 1) is a Poisson process, i.e., a process with independent
increments and with

P(VO®) + Nt = k) = \o)e ™ /k!,
= a5 ).

PrOOF. Since X is composed of i.i.d. rv’s which are asymptotically negligible,
it is necessary only to show that (c,, — mc;) "X ?(1) converges in distribution to
P(AB"‘( ;1 )) (see Prohorov (1956, page 197)). According to Brown and Eagleson
(1971), sufficient conditions for such convergence are that

lnE(8l(ln) - I"‘m’)2/ (cm - rncl)2 ——)ABm(’;’),
and that for each ¢ > 0,

&M —
3) LE(SS — uni)zl( 2w

E _ 1|>£)—->0.

¢, — mc,

The first of these conditions follows directly from Lemma 1. The indicator in (3) is
bounded by

8P — wa
I(8) = ic,)) + I( S TR > e 0 = Cm + (i — m)c,)

¢, — mc,

+I(8P # icy, 8 # ¢, + (i — m)cy).

The second of these indicators vanishes for all sufficiently large values of n because

of the asymptotic behaviour of ;. Thus for all large n,
&M —
m _ o Vol 20T P
E(8,l ,U,m) I( ¢, — me, ll > 8)

<2 [ Y (en = met/ K2 + (IS ) PSP # ey, #cp + (i = m)ey)
and since this last probability is not greater than
P(Ufzi(oy > m)lof = i) < kyP(p,y > mlpk = i)
= 0(k, ™),

(3) now follows. Let P(A\) = P(A) — A.

LEMMA 8. As n— oo,

(G = mey) "SI XD 0 QO(1) P (4/ml).
Proor. c.f. the proof of Lemma 4.
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LEMMA 9. As n — oo,
VarSh_ pyps < i/B + O(N/n).

Proor. The result follows easily from the ‘tedious calculations’ involved in
proving Lemma 5.

LEMMA 10. As n— oo,
E|2;=k,,l,,+l(cp,,» - Ecp’v)| < 2|ey|/B + O(N/n).

ProOF. cf. the proof of Lemma 6.
We come now to the proof of the first part of Theorem 2. Write

S, = Zj_i(c,, — Ee,,)/ (e — mey).
Lemmas 8, 9 and 10, together with the discussion preceding Lemma 7, show that
Sn = an + Zn2 + Zn3’
where Z,, »>qP(A/m"), EZ,, =0,i=1,2,3,
Var Z,, < ¢?B~Y(c,, — mc,) "> + O(N/n),
and
E|Z,| < 2|¢)|B ™Y e, — mey|™" + O(N/n).

If ¢; = 0, the first part of Theorem 2 follows easily (with B = 1, say). If ¢; # 0,
we argue as follows. Given & > 0, choose B so large that for some integer ng,
Var Z,, < ¢* and E|Z,| < * for n > ng. Then

P(Sn < x) < P(Sn <X, |Zn2| <g, |Zn3| < 8) + P(Izn2| > 8) + P(|Zn3| > 8)
SP(Z,<x+2)+2 ifn>ng
< F(x + 3¢) + 3¢

for all sufficiently large n, where F is the distribution function of P(A/m!).
Similarly,

F(x —3e) — e < P(Z,; < x —2) <P(S, <x)+ z¢

for all large n, and the convergence in distribution of S, now follows. Theorem 2
now follows from the result (still assuming ¢, = 0)

Ec, = n_'(Ncl + —’-’14!—(0," — mcl)) + o(1/n),
which follows in turn after some algebra from

Ecp,,l = clEpnlI(pnl < m) + cm( In\i)n_m(l - l/n)N_m + o(N/n)""”.

3. Degenerate convergence.
THEOREM 3. If n, N — 00, N™/n™"' -0, then

P(Z5_sc,, = nco+ N(c; — ¢g)) > 1.
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PrOOF. Once more, we assume without loss of generality that ¢, = 0. Then
P(2]-c,, #Ney) = P(U]-i(p, > m))

< nP(p,, > m).
Now
P(p, <m) =3Zm ! ( iv)n"'(l - 1/
= (1 = 1/m)"E7/ (N /nY /it + o(1/n)
= 5772, G v/ 4 01 /)

=1+ O(N/n)'" + o(1/n)

=1+ o(1/n),
so that

P(2}.1c,, # Ney) = o(1).
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