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MATRIX NORMALIZATION OF SUMS OF RANDOM VECTORS IN
THE DOMAIN OF ATTRACTION OF THE MULTIVARIATE
NORMAL!

BY MARJORIE G. HAHN AND MICHAEL J. KLASS
University of California, Berkeley

Let S, be a sequence of partial sums of mean zero purely d-dimensional
iid. random vectors. Necessary and sufficient conditions are given for the
existence of matrices 4, such that the transform of S, by 4, is asymptotically
multivariate normal with identity covariance matrix. This is more general than
previous d-dimensional results. Examples are given to illustrate the need for the
present approach. The matrices 4, take a particularly simple form because of a
degree of uncorrelatedness between certain pairs of 1-dimensional random
variables obtained by projection.

0. Introduction. For a sequence of independent and identically distributed
(ii.d.) 1-dimensional random variables Z;,, not assumed to possess finite second
moments, Lévy and Feller obtained necessary and sufficient conditions for the
existence of constants g, such that 37_,Z;/a, converges weakly to the standard
normal random variable. We are interested in the central limiting behavior of
R¢valued random vectors, especially those without finite second moments. This
problem has received little attention since it seemed to require only straightforward
extension of the 1-dimensional case via application of the Crameér—Wold device.
Indeed, for vectors Z;, whose components have finite variances, scalar norming
2ieiZ; by a, = n? does yield a multivariate normal limit. In general, however,
norming by scalars is not appropriate in higher dimensions because any such
sequence of scalars must have the same order of magnitude as the maximum of all
the componentwise 1-dimensional norming constants. The limit will be degenerate
for all components whose normalizing constants are of lower order than the
maximum. This results in considerable loss of information and thereby prevents
accurate approximation of joint distributions in R?

As an alternative, it is reasonable to consider componentwise normalization, in
effect using d-dimensional norming constants. However, this type of norming fails
for random vectors whose components have truncated pairwise correlations which
do not converge (see Examples 2 and 4), or which converge to a singular limiting
covariance matrix (see Example 1).
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To remedy these difficulties, we use matrices for normalization. Specifically, we
find necessary and sufficient conditions for the existence of d X d matrices 4, such
that the random vectors obtained by pre-multiplying the transpose of 2}_,Z; by 4,
converge weakly to the standard multivariate normal. Thus we avoid the degener-
acy inherent in scalar normalization and obtain convergence for a larger class of
laws.

The method of proof gives a construction of the normalizing matrices A4,. They
are not arbitrary but assume a rather special form. For instance, in the 2-dimen-
sional case the matrices 4, may be selected to be the composition of a diagonal
matrix with a rotation, defined as follows: first we specify a canonical method for
finding 1-dimensional norming constants. Then among all lines through the origin,
we choose the one for which, at the nth stage, the norming constant for the
1-dimensional random variable obtained by projection on this line is the smallest.
This line determines what we call the “nth minimal direction.” Next we truncate
the random variable in the “nth minimal direction” at its nth norming constant and
use the remarkable fact that it is uncorrelated with the random variable obtained
by projection on the perpendicular subspace. After rotating the plane to bring these
two directions to the x- and y-axes, componentwise norming does the job. The
necessary and sufficient condition for matrix norming to work is merely an
application of the 1-dimensional criterion uniformly in all directions.

In Section 1, we state a slight generalization of the classical normal convergence
criterion and establish some asymptotic relationships needed in the rest of the
paper. Section 2 treats the 2-dimensional case as described above. The generaliza-
tion of R? follows in Section 3. In Section 4 we investigate the relationship between
norming constants in various directions. Examples are provided in Section 5, the
first two of which illustrate the failure of various norming methods. Example 4 is of
particular interest. It shows that the uniform sufficient condition is genuinely
needed and may fail to hold even when the 1-dimensional condition is satisfied in
each direction separately. This situation is new. It does not occur when each
component of the random vector has finite variance.

1. Preliminaries. @~ We assume familiarity with the classical normal conver-
gence criterion for triangular arrays. The following formulation will be the most
useful for our purposes (see e.g., Loéve, Sec. 22.5).

Normal convergence criterion. 1f {X, ,,k=1,---,j} are iid. random vari-
ables, then
(21X, ) > N(0, 1)
if, and only if, for every ¢ > 0 and a 7 > 0,
() lim, ., Jj, P( X, | > &) = 0;
(i) lim, o j, EX) I(x 1< =15
(i) lim, , j,EX, Igx, < = O.
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This formulation does not include the u.a.n. condition, lim,_,,, P(|X,, ;| >¢&) =0
for each ¢ > 0, in the “only if”” direction because it is automatically satisfied for
row-wise i.i.d. random variables whose sums converge in law.

We need the following slight generalization of this condition.

PROPOSITION 1. Let J be a nonempty set. Suppose that for each n > 1 and o € J,

X, 1w " "X, o are iid. random variables. Then for every sequence {a,, n =

1,2,- -} fromJ
R(Za1Xn 1a) = N(O, 1)

if, and only if, for every € > 0 and a v > 0,
(1) limn—>oo supaEJjnP(IXn, l,al > 8) = 0;
(i) lim,_,, sup,e, |aner 1, aI(IX,,_,,a|<1) -1 =0
(lll) limn—>oo supae.ljnlEXn, I,aI(|X,,, ,,¢|<'r)| =0.
Observe that (i) and (ii) are equivalent to (i) and
(ii)’ lim,_,, Sup,es [, B(X;2 1 o AT?) — 1] =0.

In order to simplify notation, for a one-parameter family of random variables
{Y,a €J} let
Ly (1) = L(1) = EY2Ly,1<n
and
My (1) =M (1) = E(YZ N\ 7).

Whenever J is a singleton, the subscript « on L and M will be suppressed.

Let Y, ;, k=1,2,- - beiid. and g,(a) a sequence of positive constants. If
X, k.« = Yo 1/ a,(a) then the following lemma will be helpful in checking (i)-(iii)
of Proposition 1.

EQUIVALENCE LEMMA. For a one-parameter family of random variables {Y,, a €

J } the following are equivalent:
(l) 1imt—>co supaEJ t2P(| Yal > t)/Ma(t) = 0;
(2) for every ¢ > 0and all 0 < B <2,

t—>o0 SUPqes tz_ﬁEI YaIﬁI(|Y,|>£t)/Ma(t) = O;

(3) 1imt—>oo SUPyes Ma(2t)/Ma(t) = 1;
(4) lim, ,, sup,c; M (1)/L,(2) = 1.

PROOF. Assuming (1),
0 < M,Q21)/ M, () — 1
= 2[JuP(|Y,| > u)du/ M,(?)
< 2P(|Y,] > 1) fRud/ Mif1)
= 32P(|Y,| > t)/ M,(¢) = O uniformly in a.

lim

Hence, (3) is true.
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Now, assuming (3),
limt—»oo supaEJ t2P(| Yal > t)/Ma(t)
< limt—»oo SUPyes 8[:/21‘})(' Yal > u)du/sMa(t)
< lim,,, sup,e; (M () — M,(1/2))/3M (1)
=0.
Consequently, (1) and (3) are equivalent.
Clearly (2) = (1). Assuming both (1) and (3) we will prove (2). Fix 0 < 8 < 2.
Let 0<e<1l, C>4/Q2*F—-1), 0<8§<2*#—-1-4/C, and y=1+ 8.
There exists T such that ¢+ > T implies

(1.1) Sup, ey M (26)/ M, (2) <7v
and
(1.2) sup, ;s 1*P(|Y,| > et)/ M, () < 8.

Note that (1.2) follows since M, (ef) < M, (¢). Thus, assume B8 > 0. Then, for any
aEJandt > T,

PPE|Y Pl v 5y = — P TPUPP(Y,| > w)[7-, + £7PBIGuP'P(|Y,| > u)du

< 1%ePP(|Y,| > ef) + 2PBZZ_ [2% uPT'P(|Y,| > u)du
< eBSM (1) + 27832 (2%et)PP(|Y,| > 2" et) by (12)
<ePSM (1) + 8352 ,2e)P 2" )M (2" ) by (1.2)
< eBM,(H)(1 + 2852 ,(v/22 %)) by (L))
= eBM,()(1 + 28/ (1 — v/227F))
< (C + DePsM (o).

Hence,

sup,c; 2 PE| Y|Pl v, 5/ My(2) < (C + 1)

lim

t— 00

Since 8 > 0 is arbitrary, (2) holds.
The equivalence of (4) and (1) follows immediately from

L(8)/ M (1) = 1 = £P(|Y,| > 1)/ M(2)-

Hence the equivalence of (1)-(4). [] .

Feller ((1966), pages 312-13) was the first to notice that a random variable
belongs to the domain of attraction of the normal if and only if L(¢) is a slowly
varying function, i.e., for each s >0, lim, , , L(st)/ L(f) = 1. In order to verify that
an increasing function g is slowly varying it suffices to show that

lim,_, g(2t)/g(t) =1,



266 MARJORIE G. HAHN AND MICHAEL J. KLASS

because if 1 < 2*~! < s < 27, for example, then
1 = lim,_,, II;Z} g(27)/g(2“~ ") < lim,_,, g(s1)/g(?)
< lim, | IT;_, 2(2%)/2(2* ") = 1.

Therefore, by the equivalence lemma, X is in the domain of attraction of the
normal if and only if M is slowly varying, a condition which is in turn equivalent to

(1.3) lim,_, ., y’P(IX| > y)/M(y) = 0.
As a final remark, notice that if the triangular array X, , = Y,/a, k =
1,- - -, n, satisfies the normal convergence criterion with Y,, Y¥,, - - - 1ii.d. ran-

dom variables, then the norming constants a, are determined up to asymptotic
equivalence by

lim, . nL(a,)/a? = 1.
By the equivalence lemma, the a,’s also satisfy

lim nM(a,)/a? = 1.

‘n— o0

2. Central limit theorem in R%. Given a random vector Z = (X, Y) in R?, the
perpendicular projection of Z on the line of angle # through the origin is defined
by

Xy = X cos @ + Y sin 6.

The random vector Z is purely 2-dimensional if and only if P(X, # 0) > 0 for all
§ € [0, 277]. This is equivalent to 0 < EX;> < oo for all 4. If W is either a column or
row vector, let ‘W denote its transpose.

The main result of this paper is

THEOREM 2. Let (X,, Y}), (X5, Y,), - * + be ii.d. purely 2-dimensional mean zero
random vectors. There exist matrices A, such that

'(Anz’i'- lt(*’Yi’ Y:)) _)®N(6, I)’
where I is the 2 X 2 identity matrix, if and only if,
(2.1) lim, ., sup, ©°P(|X,| > 1)/ My(1) = 0.
Moreover, let a,(0) be the largest real number satisfying aX() = nMy(a,(9)).
There exists 0 < vy, < such that a,(y,) = inf, a,(0). When (2.1) holds we may let

4 = ((cos )/ @,(Y,) (siny,)/ a,(v,) )
"\ = Giny,)/a (v, + 7/2)  (cosy,)/a,(v, +7/2) ]

PROOF OF NECESSITY. Let the norming matrices 4, be denoted by

r, t
ae(zf)
n n
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Let ¢2 = (1 + )~ 'and & = (42 + v})~". Let 4, and 4, satisfy
cos 8, = r,c,,sin b, = t,c,

cos b, = u,c,sin b, = v,é,

n-n’

Assuming normal convergence,
"(Ei-1(Xy),/ e Zioi(X3),/ )
=/(27-1(X; cos 6, + Y;sin8,)/c,, Z7_,(X, cos §, + ¥, sin 4,)/¢,)
=2 X + 6,27.,Y, w21 X, + 0,27, Y)
='(4,Z1- (X, Y))) > N, I).
At this point, in order to obtain (2.1), we require a strengthened version of usual

weak convergence results. The following lemma, due to R. Rao, can be found in
Billingsley ((1968), Problem 8, Page 17).

LEMMA. Let S be a separable metric space and { fy} a uniformly bounded family
of real-valued functions defined on S, equicontinuous at each x (for each x and ¢ > 0
there exists 8 > 0 for which p(x, y) < 8 implies sup, | fo(x) — fo(»)| <e). Let P, and
P be probability measures on S such that P, converges weakly to P. Then
(22) limn—»oo Supy Uf0dPn - ffﬂdpl = 0.

Since this result holds for pairs { g,} and {h,} of uniformly bounded real-valued
equicontinuous families of functions on S, it holds if f; is complex-valued. We
apply the lemma with § = R?,

5(X) = fo(x, x2) = exp{iu(x, cos  + x, sin §)},
Pn = B(E?-I(Xﬂn)i/cn’ 2?-1(X0.,,)i/5n)’
and
P = N(O, I).
The family {f, 0 < # < 27} is equicontinuous at X. Hence, for each u € R,

cos 0, sin 0 , _
P EJ_,(Xon)j + T”Ej_,(Xgn)j)] — e ¥/2

= 0.

lim,_, ., Supycypcan|E exp{ iu(

By the Lévy continuity theorem, for each sequence of reals {y,} with 0 <y, < 27,

cos ‘Pn n sin n "
E( c, 2j=l(X0,,)j + 6':!} EJ-I(XH;){) —_ N(O’ 1).

Since (for all n sufficiently large), X,, and X; are not linearly dependent, for
each 0 < ¢ < 27, there exist unique constants 8,(¢) and B;,(¢) such that

X¢ = Bn(¢)X0n/cn + B'n(d’)Xﬂ.,,/én’

Let bX(¢) = BX(¢) + ,é,,z(cp). This is positive, so there exists 0 < g,(¢) < 27 such

n
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that cos g,(¢) = B,(¢)/b,(¢) and sin g,(¢) = B.(¢)/b,(¢). Hence, for each
sequence {¢,},

2_';-1 (X@,)j/bn((pn) = COs gn(¢n)2;-l(X0,,)j/cn
+ sin gn(¢n)2_';- l(Xo”n)j/En -9 N(O’ l)’

Applying Proposition 1 with X, , , = (X,)x/b,(¢) gives

(2.3) lim, _,, sup, nP(|X,| > eb,($)) =0  foreach ¢ >0,
and
(24) lim,,_,,, sup,|nM,(b,($))/b3(¢) — 1] = 0.

We assert the validity of (2.1). If not, there exists § >0, 0 < ¢, < 27 and
t, > oo such that

2P(1X,| >1)/M, (1) > 38.
Take integers j, so that
(2:5) lim, ., 2j,M, (3,)/t = 1.
Then j,P(X, | >1t,) > 6 for n sufficiently large. However, since M,(2)/1* =

E(X,/ )2 A\ 1) decreases as ¢ increases, (2.4) and (2.5) imply that b, (¢,) <t,forn
sufficiently large. Referring to (2.3),

JnP(1 X | > 1) <J,P(X,| > b,(4,)) >0,
which gives the desired contradiction. Hence, (2.1) holds. ]

In order to prove sufficiency it is convenient to have a canonical definition of the
- norming constants a,(#). Let y, = sup{y > 0:P(|X,| > y) = P(|X,| > 0)}. Clearly,
since P(|X,| > 0) > 0, My(y)/y? is strictly decreasing and continuous on [y,, o),
varying from P(X, # 0) to zero. Therefore, for each u > 1/P(X, # 0) there exists
a unique a(u, 8) with y, < a(u, #) < oo such that

= = My(a(u, 0))/a(u, 0).

It is easily shown that u* = sup, 1/P(X, # 0) < co. Hence, as the canonical
norming constants we choose a2(8) = a*(n, 9) for n > u*. In the sequel we always
assume n > u*.

One nice property of this definition is that 8 — q,(6) is continuous: note that
Xy — X,, as 6 — 6,. Hence, an application of the dominated convergence theorem
shows that M,(y)y ~2 is, in fact, jointly continuous in y and 6. Due to this and the
strict monotonicity of M,(y)y~2 for y >y, for each fixed #*n >u* and
sufficiently small 8 = 8§(8*, n) > 0; there exists ¢ > 0 such that |§ — §*| <& and
|y = a,(6*)| > & together imply

G o) =[ Moy ™ = = | = M)y ™ = Mi(a,(0¥)/ 38| >e.
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Since G, 4(a,(0)) = 0, it follows that § — §* implies a,(0) — a,(0*), proving the
asserted continuity.

PROOF OF SUFFICIENCY. Let a,(#) be the canonically defined norming constants
for X,. Note that there exists y, € [0, #] such that C, = inf,a,(8) = a,(y,) > 0.
This follows from the compactness of [0, 2#], the continuity of § — a,(@), and the
fact that a,(8) > O for n > u*. Since a,(8) > (n/n*):a*(8) > C,(n/n*)2, we con-
clude that lim,_,  inf,a,(8) = oo. In view of the equivalance lemma, (2.1.) now
implies

(2.6) lim,_, . sup, nP(|X,| > ea,(0)) =0  forall ¢>0
and in fact the stronger statement
2.7) lim,_, , supy nE|Xy|l(x, >ea0))/,(0) =0  forall &> 0.

Since X, uses the minimal canonical norming constant at stage n, so we call y, the
“nth minimal direction”. Let ¥, = vy, + = /2.
We suppress the dependence on n and write

Xy = Xol(x, <a0) T Xol(x5>a,6)
=X, + X].

U, =2joi(X,),  Ur=Z.4(X),
Vo=Zj.(%;),  Vi=Zj(X),
The proof of sufficiency will be completed once it is shown that
(2.8) E(U/ 8,(%a), Va/ anl(#)) > N(O, 1)
To see that this suffices, define
4 = ( 1/a,(,) 0 )( cosy, sin Yn)
! 0 1/a,(,) )\ —siny, cosy,)
Clearly,
A2 (X;, V) ="(Un/ a,(Yn)s V! 3(7))
and by (2.6),
P((Up/ a(Ya)s Va/ 0,(3a)) # (U / a,(Yn)s ¥/ 3(7))
< nP(|X, | > a,(v,) + nP(X;| >a,(7,)) >0 as n—oo.
Therefore,
lim, ., £(U,/a,(Ya), Va/ @(3)) = lim, ., £(U;/a,(v,), ¥/ ay())-
Weak convergence in R* holds if and only if all fixed linear combinations of

components converge appropriately (see Billingsley (1968), Theorem 7.7, Page 49).
Sealing, in order to prove (2.8), it suffices to show that for all fixed 9,

(29) U,(cos 8)/a,(v,) + V,(sin 0)/a,(7,) >N (0, 1).
Let W,(0) = X, (cos 0/a,(y,) + X (sin 8)/a,(7,). Note that Liw, @< =1 as.
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Hence, invoking the normal convergence criterion, we require the three conditions

(2.10) lim,_,,, nP(|W,(0) >¢) =0  foreverye>0
(2.11) lim,_,,, nEW2(8) = 1

(2.12) lim, ., nEW,(8) = 0.

Now,

nP(|W,(9)| >e¢) < nP(IXY"I > ea,(v,)/2) + nP(lX;,"I > ea,(¥,)/2) =0
by (2.6), which proves (2.10).
Since EX, = 0, EX; = — EX,'. Therefore,
nIEVVn(g)I < nEle,,II(lx.,nl>a,,(y,,))//an(7n) + nEIX}';,,II(lX.;nl>a,,(f,,))/an(?n) -0

by (2.7). This verifies (2.12).
Finally,

nEWX) = n cos® 8(M,, (a,(v,)) — @ (v) P(1X,,| > a,(v,)))/ ax(v,)
+n sin® O( M; (a,(7,) — @i (F.)P(1X;,| > a,(7,)))/ a3(5)
+n sin 20EX; X! / a,(v,)a,(¥,)
= cos? § + sin’ § + o(1) + n sin 20EX; X% /a,(Y,)@,(7,)
— 1 + sin 26 lim,_,, nEX; X’ /a,(v,)a,(7,)-
To treat the above limit, we use the fact that EX v/,.X G = 0 which will be proved in
Corollary 4 below. Hence,
n|EX; X2 |/ a,(¥,)a,(F,) = nlEX} X; I(1x; 1> a,(7.))| / 9 (Ya) @n(¥,)
< nE|X; |I(1x; |>a,(3.))/ %(¥a) >0
by(2.7). Thus, (2.11) holds.
This substantiates (2.8), completing the proof, modulo Corollary 4. []

Observe that condition (2.1) is simply the uniform version of condition (1.3),
which was noted to be necessary and sufficient for the CLT to hold in R.

Before attending to Corollary 4, we remark that the above proof only requires
that the CLT hold for two sequences of random variables X, and X, which are
“asymptotically uncorrelated” in the sense that

(2.13) lim, nEXé.Xe’n/an(ﬁ,,)a,,(&n) =0.

Choice of the “nth minimal direction”, vy,, for 8, becomes natural since for the
perpendicular direction, ¥,, EX; X; = 0, which, in turn, easily yields “asymptotic
uncorrelation”. It is also possible to construct two “asymptotically uncorrelated”
random variables by considering the “nth maximal direction” and its perpendicu-
lar. This is a conceptually different but, nevertheless, essentially equivalent ap-
proach.
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The next lemma, on which Corollary 4 is based, is basic to our construction of
“asymptotically uncorrelated” random variables. It was motivated by the observa-
tion that for random variables X and Y with finite second moments, EX? =
inf, EX? if and only if EXY = 0 and EX? < EY>

LEMMA 3. Let X and Y be arbitrary random variables with finite expectations. For
t>0,let 0<86, < satisfy-
E(X2 N 1) = inf, E(X] A\ £).
Then
(2.14) EXy Xy 1 npod(x,)<r) = 0.

PrOOF. For ¢ = 0 the result is trivial. Fix z > 0 and let g(8) = E(X}2 N t?). We
first show that such a 6, exists. Note that x> A\ #* is a bounded continuous function
and X, —» X,. as. as § — 6*. Hence g(#) is continuous in 6. Since [0, 27] is
compact, there exists 4, € [0, 2«] such that g(d,) = inf,g(#). Now because g(f) =
g(8 + kn) fork = + 1,+2,- - -, we may take 0 < §, < #. Next note that

{X:0 <0 <27} ={X,cos0+ X,,,,sin¢:—7 < ¢ <7}

Hence, it suffices to assume #, = 0, and operate on —7 < 8 < 7. Thus g(0) =
inf, g(8). We will show that g has both a right and a left hand derivative at § = 0.
Since E|Y| < oo, limy_o P(|Y| > |1/8])/0 = 0. Hence, there exists a symmetric
continuous function f(#), monotone increasing on [0, #] with f(0) = 0, f(7) < 1
such that lim, .o P(|Y sin 8| > £(0))/0 = 0. Let 4, = {|Y sin 0| < f(9)}.
We intend to consider the difference quotient (g(f) — g(0))/6 and apply
dominated convergence. Let

0(8) = (X7 N — X2 N\ 1) /6.
Observe that attention may be restricted to the event 4, since
E|Q(0)|1,; < *P(45)/10] >0 as 6 —0.
First of all,

(2.15)

. . XY sin 26 . sin 6
lim,y o Q(0) 1, Ix|<r) = hmﬂ—)O(_—o—— + Y(Y sin 0)T)IA,I(|X|<1)

= 2XYI(|X| <?) a.s.

Second,
(2.16) IM9_)0 Q(0)1A01(|X|>,) = 0 a.s.

In order to deal with pointwise convergence when |X| = ¢, we must distinguish
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between two cases:
Casel. 0 >0.
(2.17) lim0¢0+ Q(0)1A01(|X|=t)

. 1 . .
= llm0¢0+ 5(1‘2 0052 0+ XY sin 20 + Y2 Sll'l2 g — t2)1A01(|X|-t)I(|X,|<t)

= 2XYI (x|, xv<0) a.s.
Case 2. 08 < 0. Similarly,
(2.18) limgyo- Q)L I(xj=r) = 2XY (x|=t, xy>0) @S-
To bound the variables, note that | X2 A 12 — X2 A 2| < | X} — X? so that
[Q(O)IL,, = | Q) LI (x cos o] <1+1(8)
< (X2 siIn;IB XY sin020

<(+1)7%+ [2(¢+ 1) + 1]]Y] for |@| sufficiently small,

sin 0

| + |Y2 l IA,1(|xcos0|<t+f(0))
0

which is integrable.
Hence, using (2.15)-(2.17) and dominated convergence,

g4 (0) = limy o (g(0) — 8(0))/6 = limyor EQ(0)L,,
= 2EXYI(|x|<,) + 2EXYI(|x|_,,XY<0).

Similarly, using (2.15), (2.16), (2.18) and dominated convergence,

g/(0) = limyyo- (8(9) — 2(0))/6
= 2EXYI(]X|<I) + 2EXYI(|X|=,’XY>0).

Since g(8) > g(0) it follows that
£/(0) <0< g, (0).
Thus,
0 < g4(0) — g(0) = —2E|XY|I4x|-5 < O.

Hence, E|XY|[jx., =0 and g'(0) exists and equals zero. Consequently,
EXYI x|, = 0, as desired. []

CoMMENT. Letting ¢, satisfy E(X, A #°) = sup, E(X; A\ %), essentially the
same proof goes through as above except that now

4 £.(9) <0< gl(¢):
This implies
(2.19) IEX¢'X¢’+,”/2I(|X¢J <t)| < tEIX l+ﬂ/2|1(|xﬁl-‘)‘

COROLLARY 4. Let X and Y be arbitrary random variables with finite expecta-



MATRIX NORMALIZATION 273

tions. Let a2(0) = nMy(a,(9)), a,(v,) = inf, a,(9), and ¥, = v, + 7 /2. Then
(2.20) EX; X; =0.

Proor. Fix n. By continuity of a4,(-) and compactness of [0, 27], such a vy,
exists. Let £, = a,(y,). (2.20) holds trivially if 7, = 0, so suppose #, > 0. Define
8(0) = My(ty). Then since a,(0) > ¢, > 0, we have

8(0) = BE((X,/ 1) A1)
> BE((Xy/a,(8))* A 1)
- &/
Hence, g(v,) = inf, g(#). Now apply Lemma 3. []

CoMMENT. When considering the “nth maximal direction”, 8,, and its per-
pendicular, §, = 6, + = /2, the analogue of Corollary 4, assuming condition (2.1),
becomes

lim, ,,, nEXy X, /a,(0,)a,(£,) = 0.
Using both (2.1) and (2.19),
n|EX; X, |/ a,(0,)a,(&,)
< nE|X; |I(x, = a,6,))/ 9n(§2)
< nP(|X,| = a,(6,)) + nE|X; |1 (1% | >an(&))/ Fn(6n)
-0

by (2.6) and (2.7). From this fact, (2.13) also follows.

3. Central limit theorem in R?. Theorem 2 has an exact analogue in d-dimen-
sions. A direction in R? will be denoted by a unit vector ¢ = (¢, - - - , ¢,). If
Z=(X, -, X)let Z; = (Z @) = ¢ X, + - -+, X,

THEOREM 5. Let Z,, Z,, - - - be iid. copies of a purely d-dimensional random
vector Z = (Xy,* - ,X,;). Assume EX;=0 for i=1,---,d. There exists a
sequence of d X d matrices A, such that

(4,27-12;) >aN(0, 1)
where I is the d-dimensional identity matrix, if and only if
(3.1) lim,_,, SuP{$:||$||=1}y2P(|X$I >)’)/M$()’) =0.

Proor. The proof of necessity is analogous to that given in the 2-dimensional
case so we sketch only the barest essentials. Let the d X d matrix 4, have the
representation 4, = (c; ; ). Since ‘(4,2}_,'Zi) - ¢N(0, I), the range of 4, is R? for

A i=1
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all n sufficiently large. Hence det A,, # 0 for all n sufficiently large. Thus,
(zjﬂ Cijn )_

is finite so that

b, n= Qi,n(ci, Ln """ ci,d,n)
is a unit vector in R?. These directions 0, , are used to construct the 4 basis random

variables Wy which are asymptotically ii.d. N(O, 1). Define

1m Q‘ "Ej-l i, J, nXIk
Then
(Wé',_,,s Tt Wé,',',,) = 2';<=1(2"}',,,,,k/Q1,m s Zg i/ Qs n)
=(4,2%-1Z,).

The goal 1s to show that central limiting behavior occurs uniformly along each
d1rect10n ¢ € R?. Since det 4, # 0 for all n suff1c1ently large, for each unit vector
¢ € R’ there exist unique constants B, ,,(¢) , ,Bd,,,(cp) such that

k= Bl,n(‘i’)zei,_,,, W/ Quat +.Bd,n(¢)zi,,‘,,, x/ Qa, n-
Applying Rao’s lemma, for any sequence of unit vectors :1;,, € RY,

e 1/2
B(Ek-,Z% o/ (Z4o1 B2 (,) / )—)oDN(O, 1) as n—oo.
To complete “necessity”, use Proposition 1 with J as the collection of unit

vectors in R? and proceed exactly as in the 2-dimensional case.

SUFFICIENCY. We must construct the n-stage coordinate system. Recall that
Z;=(Z,4)and aX(¢) = nM3(a,(¢)). There exists a unit vector ¥, , such that
a,(¥1,) = inf Gy31=1) a,(6)-
Let ¥, , = (v{", - - -, ¥{%)). For any unit vector & such that

1, n>
(¢» Yi,n) = 2019710 =0,
Y1, n 1s the minimal direction in the plane spanned by 4> and ¥, ,. Furthermore,
since ¢ and 7 Y\, » are perpendicular,
where for any 0, Zy =751 7« <a.@)
Having defined ¥, ,,- - -, ¥;_; , where k — 1 < d, let.¥, , be a unit vector in
T, satisfying
. an(‘?k,n) = inf;el‘,f_, an(¢)
where T, = {¢ € R*:||¢|| = 1 and ($,,,) =Ofori=1,2,- - -, k — 1}. Thus,
Yk, n is the “nth minimal direction” in the orthogonal complement in R, of the
subspace spanned by (¥, ,, * * *, Ya—1,n}-
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Take 1 <i<j<d. Clearly, Y, . is the “nath minimal direction” in the plane
spanned by ¥, , and ¥;,. Hence EZI L= 0. Consequently, the truncated
covariances are “asymptotically uncorrelated” in the sense analogous to (2.13).
Then using exactly the same analysis as in Theorem 2, one may prove that

E’( Ul,n/an('?l, n)’ Tt Ud,n/an(yd,n)) _)GDN(a’ I)
where U, , = 2} _(Z;, )i [0

4. Determination of norming constants for X,. Theorem 2 indicates how to
determine norming constants which yield one-dimensional central limiting be-
havior of X,. These are defined in terms of the norming constants of two
asymptotically uncorrelated, time varying directions. It is natural to inquire when
fixed directions which are not necessarily uncorrelated can be used. The next
proposition supplies a sufficient condition.

PROPOSITION 6. Suppose X, and X, ,,, both satisfy the one-dimensional CLT
with norming constants a, and b respectwely Define

To = NEX Xyt 2 /201X, <anlXpsnp <b2)

and r}(0) = a? cos*(0 — ¢) + b? sin*(0 — ¢) + 7, sin 2(0 — ¢). If there exists q >
0 and N such that for n > N,

(41) ITnI/anbn <l1l- s

then each X, satisfies the one-dimensional CLT and r,(0) is an appropriate sequence
of norming constants.

PrOOE. Without loss of generality, we assume ¢ = 050 (X, X4,/2) = (X, Y).
Let c2(0) = a? cos? § + b? sin® §. By (4.1),

rX(0)/c0) =1+ 7,sin20/cX(0) > 1 —|1,|/a,b, > .
Since X and Y both satisfy the CLT, given ¢ > 0,
(4.2) nP(|X,| > er,(9))
< nP(|X cos 8| > er,(0)/2) + nP(|Y sin 8| > er,(0)/2)
< nP(|X cos 8] > enic,/2) + nP(|Y sin 8] > enc,/2)
< nP(|X| > a'q%a,,/2) + nP(|Y| > en%‘b,,/2) -0 as n—o0.
Moreover,

(43)  REXH(x,>r,(8)/x|<ay|v| <t/ T2(0)
< 2(c,(8)/r.(0))*nP(IX,| >r,(8)) >0 as n—>co.
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Hence, using “~  to denote “is asymptotic to,”

(44) nL(r(0))/8) ~ s

~ nEX021(|X|<a,,,| Y|<b,,)/r3(0)'
Expanding X;? and using the fact that
nE(X? cos” 01 x| <a,ivi>by + Y $i0* 0Lx150,171<6)/ 62(0)
< nP(|Y| >b,) + nP(X| >a,) -0,

EXFL( %,/ <r,(0), 1X| <l Y| <5,)

(4.4) is asymptotic to

o

[nLy(a,)cos? 8 + nL, (b, )sin® 8 + , sin 20]/r3(6)
~ (a2 cos® 8 + b2 sin? § + 7, sin 20)/r3(6) = 1.

So the r,(#) are indeed appropriate norming constants.

We show that X, satisfies the CLT by verifying condition 1.3. Because X, and
X, 4n/, satisfy the 1-dimensional CLT, a3,/a; ~ 2 ~ b3,/ b;. Moreover, 1,,/1, ~
2. Therefore, lim,_,  r2,()/rX(@) = 2. Now if r,(8) < y < r,,(9), again utilizing
(4.2) and (4.4),

Y2P(1Xy| > )/ My(y) < y*P(1X,| > )/ Lo(¥)
< 12,(0)P(|X,| > r,(0))/ Ly(r,(8))

= (r2,(0)/r(0))’F2(8) P(1X,| > 1,(8))/ Ly(r,(8))
~ 2nP(|X,| > r,(0)) > 0as n— oo.
Hence (1.3) holds. []
Note that c,(9) is asymptotic to 7,(#) and so is an appropriate norming constant
for X, when lim,_,, 7,/a,b, = 0. This holds when X, and X, , are independent
and more generally when ¢ = v,.

5. Examples. To shed further light on the main theorem, we present a number
of examples. The first illustrates one way in which componentwise normalization
may fail even though matrix normalization succeeds. It also shows that the
norming constants for X, cannot always be computed by calculating r,(6).

ExaMPLE 1. Let (X, Y) be a rotation of the independent variables (U, V)
belonging to the domain of attraction of the normal distribution with norming
constants a, and b, respectively;

(X,Y)=(Ucos¢ — Vsing, Using + V cos o).

If a,/b, >0 as n— oo, then it is clear without any calculations that one has to
rotate back ¢ (mod 7 /2) and normalize componentwise in order to get a nondegen-
erate limiting distribution.
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Furthermore, X, = U cos(d — ¢) + V sin(d — ¢) and hence a,(0) ~
|sin(d — ¢)|b, if 6 # ¢p(mod =) and a,(¢) ~ a,. So if ¢ 7 O(mod 7 /2),

13($) ~ EX2I(x| <00 ¥| <ar(n/2))
~ nEle(,Xd“n)
= nL,(b,).

Consequently, r2(¢)/aX(¢) ~ Ly(b,)/ L,(a,) - o provided L, is properly chosen.
0

The second example illustrates that componentwise normalization may also fail
because the truncated correlations p,(6, 8') = nEX;X;./a,(0)a,(8’) vary without
tending to a limit as n increases. To obtain fixed correlations here, a varying
coordinate system is required. An amusing aspect of this example is that although
Y is strictly functionally dependent on X, nevertheless, along an appropriate

subsequence j,2/%,Y; is asymptotically independent of /2 X

ExaMPLE 2. Let X be a symmetric random variable with infinite variance such
that lim,_,, *P(IX| >y) = 0. Let Y = XIjx|c ) Where 4 = U2 (¢3¢, 1) and
c, satisfies My(c,) = E(X2 A ¢2) = n!.

The pair (X, Y) obeys the CLT in R? since

supy y°P(| X5 >y) < yA(P(X| >»/2) + P(IY| >y/2))
< QWP(X|>y/2)>0 as y—>o
so that condition (2.1) is satisfied. )
Suppose for the moment that componentwise normalization gives weak conver-
gence to N(O, ). Then
0 =lim,  nEX'Y'/a,b, = lim,_ nE(Y')*/a,b,
= limn—-)oo bn/an’
where {a,} and {b,} are the appropriate norming constants for X and Y, respec-
tively, and X’ = XI(|X| < a,), Y’ = YI(|Y| < b,). Select j, such that a, ~ ¢,. For

k even, b, = o(a;) and the truncated pairwise correlations do tend to zero.
However, for k odd, bjk ~a and jLEX'Y'/ ajkl;-k — 1 5 0, which gives a contradic-

tion. Not too surprisingly, for § = — 7/4 and n tending to infinity along {/,, )},
cos 027.,X;/a, + sin 0X7_,Y,/b, tends to zero rather than N(0, 1) in distribution.
0

The next example shows that X, satisfying the CLT for all 8 € [0, m) ~ {¢} does
not imply the CLT for X,,. Moreover, it illustrates that a sum W + Z of indepen-
dent random variables, W and Z, being in the domain of attraction of a normal
does not guarantee that both W and Z are in the domain, contrary to a conjecture
of H. Tucker.

ExaMpLE 3. Let W and Z be independent symmetric random variables such
that My,(¢) is slowly varying, M,(¢) is not, and M,(#)/ M,(¢) >0 as t > . If q,
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are the norming constants for W, then £(a, 'S7W;) - N(0, 1), but £(a, '=7Z) —»
8, because (by Feller, page 235),

nlL (ea
P(|21Z]| > ea,) < —2( 2") + nP(|Z| > ea,)
e“a,

_ an(&In) MZ(ean)

= 5~ -0 as n-—o0.
e“a; e’My/(ea,)

So with appropriately chosen Z and W we have
Xy = Z cos(6 — ¢) + Wsin(8 — ¢)
and hence X, belongs to the domain of attraction of the normal distribution except
when 0 = ¢(mod 7).
For a specific example let
P(W|>t) =172 t>1
P(|Z| = €¥) = c2"/?/e¥""  for n=1,2,---. 0
One might wonder whether or not the uniformity condition, (2.1), is equivalent
to
(5.1) lim, , ,, y*P(1X,| > )/ My(y) =0
for each # € [0, 27). Somewhat surprisingly, this is weaker than (2.1). By a
modification of Example 3 we obtain a pair (X, Y) which does not satisfy (2.1)

even though each X, satisfies (5.1), and hence the CLT. Such a situation can never
occur for random vectors with finite second moments.

ExaMPLE 4. As in Example 3, select symmetric random variables W and Z such
that My, (¢) is slowly varying, M,(¢) is not, and M,(t)/ M,(t) — 0. To construct X,
we slowly rotate the coordinate system, picking off various sections of W and Z.
Since M,(¢) is not slowly varying, there exists ¢ > 0 such that lim sup,_, t?P(t <

|Z| < 2¢)/ Mx(t) > 2¢e. Choose 0 = t, < t, <t, < - -+ 2 oo such that

(52) My(t_1) = o(Lz(%/2))

and

(53) #2P(4,/2 <|Z| < 1) > 8eMy(t,/2).

Now set

(54) Xy = 2= 1(cos(8 — 0k))ZI(tk_|<|Z|<tk)
+27-,(sin(0 — 6,)) W, - <\wi<s)

where 1 > 0, >0, > - - - tends to zero slowly enough to satisfy

(5.5) 0’;:‘ S,

(5.6) lim, ,, sup, </, My(1)/82M,(t) = 0,
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and
(5.7) limy_, o, sUp, <<, Mw(2/6;)/ My(t) = 1.

By a slight abuse of notation, write X, = Z, + W,. For fixed § with 0 < 4 < 7,
Ly, (1) ~ sin® Ly (1) ~ sin® OM,(f) as t — co. This is a slowly varying function of
t.For 0 =0and ,_, <t <4, Ly () ~ O2Ly(t/0,) ~ 02M,(1/6,). By (5.7) this
in turn is asymptotic to 62My,(#), which by (5.5) is also slowly varying as ¢ — oo.
Observe that for fixed 6,

Mg, (0) M,(2)
. Z, .
lim sup, _, m < lim sup, |, -Xff(-t—)-
() %

M(?)
su. — =
PSS g, (1)
Therefore, by the independence of Z, and W, it is not difficult to show that

Ly (t) ~ Ly, (¢). Thus, for each fixed 8, Ly (¢) is slowly varying. This implies that
X, is in the domain of attraction of the normal law and

PP(X,| > 1) _ 0

< lim sup,_, ., by (5.6).

e L0

(Here Ly(¢) = Ly, (?).) The convergence, however is not uniform in 8, since

. 12P(|1X,| > 1) 12P(1X, | > 1./2)
lim sup,_,, supy ————— > lim sup,_, S
Pien SWP0 1 (0) Phee AL, (4,/2)

GP(4,/2 <|Z| < t,, W Z > 0)
4M4(4,/2)

>'lim sup, _,,

by (5.2)and the independence of Z and W

12P(1,/2 < |Z| < 1)

by symmet
8M,(1,/2) Y Symmetry

> lim sup,_,

>e>0 by(5.3).

Consequently, the pair (X,, X, ;) does not generate matrix normalized sums
converging to a two-dimensional normal distribution.

An example of such an X, is afforded by taking the specific W and Z of
Example 3, letting 6, = 1/k and £, = exp 2%

REMARK ADDED IN PROOF. Hahn and Klass, in (1980a) and (1980b), respec-
tively, derive an extension of Theorem 2 in the nonidentically distributed case and
an analogue for spherically symmetric stable limits in the i.i.d. case. Resnick and
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Greenwood (1979) consider stable limit distributions in R* using componentwise
norming. Using linear operators, Kandelaki and Sazonov (1964) give a Hilbert
space analogue of the Lindeberg-Fuller theorem when the random elements have
finite second moments. As discussed in Hahn (1979), the infinite variance case in
Hilbert space presents new pathologies. Sharpe (1969) characterized all possible
limit laws in R“ (called operator stable laws) arising from affinely transformed
partial sums of i.i.d. random vectors. Urbanik and others have pursued the study of
operator stable laws.
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