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A LIMIT THEOREM FOR THE NORM OF RANDOM MATRICES

BY STUART GEMAN
Brown University

This paper establishes an almost sure limit for the operator norm of
rectangular random matrices: Suppose {v;;}i=1,2,---,j=12,.- are
zero mean ii.d. random variables satisfying the moment condition E|v|* <
n°® for all n > 2, and some a. Let 02 = Ev}; and let ¥, be the p X n matrix
{9 ;11<i<p; 1< j<n If P, is a sequence of integers such thatp,/n —y as n — oo,

for some 0 <y < oo, then 1/n|¥, ,V,T| >(1 + y1)%? almost surely, where

|A| denotes the operator (“induced”) norm of A. Since 1/n|V, VI | is the

maximum eigenvalue of 1/nV,, fo,,, the result relates to studies on the

spectrum of symmetric random matrices.

Generate an increasing sequence of matrices by choosing new elements i.i.d. We
will discuss the existence of a limit for the induced norm of such matrices. The
motivation is twofold: (1) Several authors (cf. [1]-[11]) have identified limiting
spectral distributions for sequences of symmetric real-valued random matrices. (See
discussion following the theorem.) In connection with these results, it is natural to
ask for the behavior of the largest eigenvalue, but this can not be inferred from the
limiting spectral distribution. In many cases this behavior is identified by the
theorem below, since, for symmetric matrices, the induced norm coincides with
the largest eigenvalue. (2) We have been studying large and randomly connected
systems in the hope of finding limit laws (CLT’s and LLN’s) for the behavior of the
system as its size grows to oo. The “connectivity” of these systems is described by a
random matrix of the type studied here, and in several examples the desired limit
can be established based on the theorem below.

To illustrate the theorem, let {v;;}i=1,2,---,j=1,2--- beiid. N(O, 1)
Define V,, to be the n X n matrix

{Uij}l<i<n; 1<j<n
and, for any n X n matrix M, define
IMI = supxeR"; M-IIMxI

(using Euclidean norm in the supremum). How does 1/n|V,,V,I| (ie., |1/ n%V,mlz)
behave for large n?
An upper bound s
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but this goes to oo almost surely. On the other hand, if u(n) =1/ n%(v,.l, C e, U,
1
then u(n) - u(n) —» §;; as., so 1/n2V,, “looks” orthogonal when 7 is large. This
1 1
suggests |1/n2V,,| — 1. In fact, [1/n2V,,| - 2 a.s., which is a special case of:

THEOREM. Suppose {v;;}i =1,2,---,j=1,2,- - areiid. random variables
with

(a) Ev;; =0, and

(b) E|vy,|* < n®* for all n > 2, some a.
Let ¢* = Ev?, and

Vpn = {Uij}l<i<p; 1<j<n’
If p, is a sequence of integers such that
limnaw—‘p—" >y for some 0<y < oo,

then

1 12
~ |V VIl—>(1+y2)0* as

Of course 1/n|V, ,V,I.| = Ap,,(n) (the maximum eigenvalue of 1/nV, ,¥,7), so

Pnht " Paht
the theorem is relevant to studies of the spectrum of symmetric random matrices. If
M,p=12--- is a sequence of such matrices, with eigenvalues A(p), i =
1,2, - - - p, then we can define a sequence of random distribution functions by
1
(1) F,(x) = > {number of \,(p) < x}.

Beginning with Wigner ([10] and [11]), and depending upon how M, is constructed,
the asymptotics of F,(x) have been the topic of numerous papers (cf. [1] through
[9). It can often be shown that F,(x) converges almost surely to a specified
nonrandom distribution function. For the most up-to-date results in this direction,
see the papers by Jonsson [4] and Wachter [8].

LetA(p,)i = 1,2, - - - p, be the eigenvalues of 1/nV, , VE’T,,, and define F, (x) by
(1). Under conditions somewhat more relaxed than those of the theorem, a
nonrandom distribution function F,(x) can be identified such that F, (x) = F,(x)
uniformly in x with probability one (see Wachter [7], Theorem 7.7 or Jonsson [4],
Theorem 3.2). Since the support of F,(x) is [(1 — y1)%2, (1 + y7)%?], together with
{0} when y > 1, this result implies

lim inf Ag(n) > (1 +y2)°0®  as.
But the other inequality, '

lim sup A, (n) < (1 + yil)zo2 as.,
réquires special treatment. ‘

PROOF OF THE THEOREM. Fix z > (I + y2)%02. We will show

limsup A, (n) <z  as.
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by showing
k’l
2 2:0_15[(2\2?:(_")) ] < oo,
where
3) k, =[wlogn]

= greatest integer less than or equal to w log n, and w is any constant satisfying

4 w > 3 ]
log(z/ (1 + yzl)zoz)

and

(5) w > 5,

Usually, the subscript, n, in k, and p, will be dropped.
For a bound on EA_,(n)* we have

k
© Ehuu(®* < Ets{ 5 ¥, ¥2)

1\*
= (;) 21y iy i< P21z i< B PO O Vi

The discussion of (6) will make use of the following definitions:
1. A “V-path” is an ordered sequence of 2k elements of V,, (with repetitions
allowed) such that
(a) the first element is arbitrary,
(b) the second element is in the same column as the first element, the third
element is in the same row as the second element, etc. .
(c) the last element of the path is in the same row as the first element of the
path,
(d) every element appearing in the path appears more than once.
Notice that every nonzero contribution to (6) is from a V-path.
2. r (¢) will denote the total number of rows (columns) entered by a given
V-path.
Evidently, r + ¢ must satisfy 2 <r + ¢ <k + L
3. B, is the number of V-paths such thatr + ¢ = /.
4. o, will denote an upper bound on

Ev; 0,50, 031

given that the v, ’s form a V-path with r + ¢ = /.
With these definitions we can write

k
EAmax(n)k < (%) 2k:ZIaIBI'
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Accept, for now, the following two lemmas:

LEMMA 1. Two suitable choices for o, are
(@) @, < 2k)***, and

(b) o < (02)k(6k)6a(k—1)+6a.

LeMMA 2. For all n sufficiently large:

(a) There exists a constant B such thar

:BI < Blnll4k
Jorall2 <1 <k+1.
(b) There exist constants &, and &, such that

B, < (1 + (p/n)%)anka.(k—I)Hz

whenever
[(Ww—=1logn] <I<k+1
Then
Amax(P) ¥ (INE(INE
() E( Z ) < (;) (;) {2}(.:2 D log ]0‘1.31 + zlk-*-[(lw—l)logn]alﬂl}
k k
(Y (e
1\5( 1\* a(k — o
(8) + (;) (;) 2;c:l(lw—l)l<>gn](‘:'2)k(6k)6 =hre

1\ 2k
(1 + (%)2) nlckik—D+&

for large n. Letting 4, denote the expression in (7), and B, denote the expression in

@®):

INECTNE ook oy ak [(w—1)log n],,!
A< (3) (3) oty
ZZaB k
< ( ) k(2a+4)k+1nl—logn.
z
From (3),

log 4, .
Tog n when n is large.

So A, is summable.

12 '
(1+(&)) =)
B = EEEE— 66ak6a+£22;(-+[(lw—l)logn](

n

66ak6a+£| k—1
n ) )
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When n is large, replace the sum by k times its last term:

1\2
f(1+(£)2) o2k
____n__ 66ak6a+£2+1 n

" z 66ak 6a+¢;

= | — kfz—fr"ln.

Since p/n -y, (3) and (4) imply

log B,

fog 1 < -2 for large n.

Hence B, is also summable.
It remains to prove the lemmas.

PrROOF OoF LEMMA 1.
(a) Suppose
i 1% % " O i
is a V-path with (say)
ny O u’S,

b4
Ny O y,’S,

and
ny okj,/’s.
Thenn  +ny+ -+ +n=2kandnm, >2 i=12---f
Hence
Evilflvizilviziz Cr 00 <nafme.. nf""?
< (2k)**.

(b) If a V-path has r + ¢ = /, then it must contain at least / — 1 distinct o, e
Hence, there must be at least
(I-1)—-{2k-2(0~-1)}=31-2k-3

v;;’s appearing exactly twice. It follows that

Oivji

< (02)max(0,31—2k—3){6(k _ l) + 6}6a(k—1)+6a

Ev, ;v 0,

i P Cinjy © T Y

iJk

(where we have used the reasoning of part (a) to bound the contribution from the
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6(k — 1) + 6v;,’s possibly not appearing in pairs)
< (02)k(6k)6a(k—1)+6a.

ProoF OF LEMMA 2. Define a “canonical V-path” to be a V-path with the
following properties:

1. the first element is v,

2. each time a new row (column) is entered, it is the next available row (column)
(i.e., that empty row (column) with the lowest index).

Let m, . be the number of canonical V-paths having r rows and ¢ columns.

If we relabel the rows and the columns of any V-path, in such a way that distinct
rows and distinct columns remain distinct, then we have again a V-path. E.g., for
k=3,

D57027021021027057
is a V-path. Making the row associations

5-4 253
and the column associations
72 1-3
gives the new V-path
042032033033035043.

By labeling the first row (column) entered “1”, and the next new row (column)
entered “2”, and etc., we can associate a unique canonical V-path with every
V-path. In the above example, the V-path

Us57027021021027057
is associated with the canonical V-path

0110210220201 013-
Assuming that p and n are greater than k, there are

p! n!
(p—=nt(n-o)
V-paths associated with every canonical V-path containing r rows and ¢ columns.
Hence

n!

=Sl p! :
) B =214 =1 (o — ) (n— (I = P)!

r,l—r

< 2Ir_-ll’nr, 1—-pn
- AV
= n12£=11'n‘r,l—r(;) .
So, for part (a), if we take 8 > 1 and

B> suP,,>1p—’: (recall that p—n" - y),
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then
B < Bn'E’\m, ,_,.

Any canonical V-path with » + ¢ = /is contained in the upper left / X / submatrix
of V,,. Since each V-path contains 2k elements, there are certainly less than

(12)%
canonical V-paths with r + ¢ = [

2{';llrnr, I—r < l4k’

which proves (a).

For (b), we will first develop a bound on m, ,_,. Make the following definitions:
An element of a canonical V-path is a “row innovation” (“column innovation”) if
it is the first entry into a row (column). The first element of a canonical ¥-path will
be considered a column innovation. We distinguish 4 types of elements:

type 1: row innovations

type 2: column innovations

type 3: elements which are the first to repeat a row or column innovation

type 4: all other elements.

When r + ¢ = /, there are
r — 1 type 1 elements,
I — r type 2 elements,
I — 1 type 3 elements, and

2(k — 1) + 2 type 4 elements.

The r — 1 type 1 elements must be distributed among the k elements which
result from row moves (elements taken by choosing from the column of the
previous element). The / — r type 2 elements must be distributed among the k
elements which result from column moves (to which category we assign the first
element). And, finally, the / — 1 type 3 elements must be distributed among the
remaining 2k — (r — 1) — (I — r) = 2k — I + 1 elements. Hence, the number of
ways in which the four types of elements can be distributed among the 2k elements
forming a canonical V-path is bounded by

(10) (rfl)(lfr)(zkl_—lrl)'

Next, we bound the number of canonical V-paths associated with each distribu-
tion of the four types of elements. Begin with the observation that a row (column)
innovation is always unambiguous; it must be that element of the same column
(row) as the previous element, but in the empty row (column) with lowest index.

Each of the type 4 elements can be chosen from at most k elements of V,,, since
the entire canonical V-path is contained in the k X k upper left submatrix of V,
and any given entry in the path must be chosen from a particular row or column.
Therefore, the type 4 elements introduce at most the factor

(11) k2(k—1)+2.
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We can distinguish 3 types of type 3 elements:
(a) Those which follow an innovation element. These elements are unambigu-
ous, as they must repeat the previous element (there being no other element in
the relevant row or column).
(b) Those which follow a type 4 element. Repeat the argument used in the
discussion of type 4 elements to show that these elements can introduce at most
the factor

(12) k2<k_1)+2.

(c) Those which follow type 3 elements.

Here, we reason as follows:

Fix some column “;”. j is first entered by an innovation element. The next
element must be taken from j, and if it too is an innovation, then j will have 2
unpaired innovation elements. Then, the following element either pairs the previous
element or it is taken from a different column. In any case, at this point in the
V-path there are at most two unpaired innovation elements in j. There can never be
more than two unpaired innovation elements in j, unless j is first reentered from
another column by a type 4 element. Then, once the V-path again leaves j, there |
will be at most one additional unpaired innovation element.

And, of course, the same discussion applies to rows.

Now consider a type 3 element of the ¢ type. Suppose, for example, that it must
be chosen from the same column as the previous element (which was also of type
3). If this choice is ambiguous, then before the preceding type 3 element there must
have been 3 or more unpaired innovation elements in that column. Evidently, this
ambiguity can arise at most as many times as there are type 4 elements. In other
. words, there are no more than 2(k — /) + 2 type 3 elements of the c type for which
there is an ambiguity.

For a given path, let i be the number of type 3 elements of the c type for which
there is an ambiguous choice. These may be distributed among the / — 1 type 3
elements in no more than

("7")
i

ways. Each such element certainly represents less than k choices, from which we
arrive at the factor
( I — 1 ) ki.
i

So, the factor introduced by type 3 elements of the c type is bounded by
(13) LGS LR 13

In light of (3) and (5), and the restriction [(w — 1) log n] </ < k + 1, the largest
term in (13), for large n, is the i = 2(k — /) + 2 term (since 2(k — ) + 2 < ({ —



260 STUART GEMAN

1)/2 for large n, and (l _z 1) is maximum near (/ — 1)/2). Hence (13) is bounded
by

/=1 2k ~1)+2
(14) k(2(k )+ 2)"

for large n.
Putting together (10), (11), (12) and (14):

k k )(Zk — I+ 1) Wk—1y+2\( p2(k—1)+2
m”'_’<(r—1)(l—r -1 J* )k )

Xk( =1 )k2(k—l)+2

20k —-10)+2
_ ( k )( k ) 2k =1+ 1)! SU—D+7
r—1UNL=r) {Qk — 1) + 2)1}*(3] — 2k — 3)!
< (k)2 {(k = ")!}2{’!}2 Rk =1+ 1)! K SKk=D+7
S\ k= r+ D)= D (k—=1+ (=) (3] —2k—3)!

2 (k —r)rir A(k—1)+4Y 1 6(k—1)+T
<(%) T T e L

< (k)2k12(k—1)+l4
r

for large n. Then, using (9),
2
B, < nlkl2(k—1)+l421’—=ll(k) (
< nlklz(k—1)+l4(2k 0( k)(g)r/z)z
r= n

— nIkIZ(k—I)+I4(1 + (_

S|
N—
N
—
N
x
-

which completes the proof.

Acknowledgment. The approach was suggested by Professor Grenander: try to
show (2) by using the bound A, (n)* < tr(1/nV,, V7). Moreover, his assurance
that the conjecture was true made it much easier to prove.
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