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MAXIMA OF PARTIAL SUMS AND A MONOTONE REGRESSION
ESTIMATOR

By R. T. SMYTHE
University of Oregon
Let {#} be a sequence of points in d-dimensional Euclidean space. Let
{ Xk} be a sequence of random variables with zero mean, i.i.d. or nearly so. If @
is a class of subsets of R¥, let
M, (w) = sup,ceZk<n: nea)Xp(w).

M, is related to a commonly used estimator in monotone regression. Under
various conditions on @ and the points {7}, we study the a.s. convergence to
zero of M, /n as n — oo.

0. Introduction. Let {7} be a sequence of points (not necessarily distinct) in
d-dimensional Euclidean space. Let {X,} be a sequence of random variables
defined on a common probability space (2, J, P) and centered at their means; we
think of X, as being associated with the point ¢, for k = 1,2, - - . Let F(y) =
sup; P{|X,| > y}; for our purposes we will assume either that

(0.1) the { X, } are independent with mean zero, F(y) -0  as
' y—> oo, and [Gy|dF(y)| < oo;

or that

(0.2) the { X, } form a stationary ergodic sequence with mean zero.

It is well known that the strong law of large numbers holds when either (0.1) or
(0.2) is satisfied.
For A c R? let

(003) Sn(A, w) = E(k(n H tkeA)Xk(w) Whel'e 2@ = 0.
If @ is some collection of subsets of R¢ we define, for w € Q,
(04) M,(w) = sup,qS,(4, w).

The question we consider in this note is:
(0.5) Under what conditions on the class & and the sequence
{t.} does M, /n -0 a.s.?

This question arises in proving the (strong) consistency of a commonly used
estimator in monotonic regression problems. For the regression motivation the
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reader is referred to Hanson, Pledger and Wright (1973) or to Wright (1979). In the
former paper the question (0.4) is resolved under condition (0.1) when d = 1 and @
is the class u of upper layers, defined below (in the sequel the partial ordering < on
R? is always taken to be the coordinatewise ordering):

DEFINITION 0.1. Let U c R If whenever s € U and s < ¢ it follows that
t € U, U is called an upper layer. The complement L of an upper layer is called a
lower layer; it clearly has the property thats € L and s > ¢ imply ¢t € L.

When d = 1 the upper layers are simply intervals half-infinite to the right. There
are two natural generalizations of this class of sets to the case d > 2: the class R
of “half-infinite rectangles” {y : y > x} for some x € R? and the class u of upper
layers, which is considerably larger. For statistical purposes, it is again the class of
upper layers which is used to define an estimator with optimal (least-squares) fit
(Brunk, Ewing, and Utz (1957); see also [4], page 403).

Ford > 2, a simple example of Wright (1979) shows that some restriction on the
{#} is essential when @ = u, the upper layers, even when the {X,} are i.i.d.: Take
d = 2 and let the points {# } be distinct and lie on the line y = — x. Given any w,
there is an upper layer containing precisely the set of #, k& < n, for which X, > 0;
hence M,(w) = Z%_,X;*(w) and M,/n— E(X,*) as. by the strong law of large
numbers. We show in Section 2 that if the class @ is taken to be @R, and (0.1)
holds, M, /n — 0 a.s. for any choice of points {#,}. Although @ is not of statistical
interest, this result is an exact analogue of that of Hanson, et al. for d = 1 (and
gives a different approach to that case).

The case of perhaps the greatest interest, for any value of 4, is that in which the
points {#,} are a realization of an iid. sequence {T,} of R?-valued random
vectors. In the case considered here, the {7} are assumed to be defined on a
probability space (&, &, P) and {X:} and {T,} are taken to be independent
sequences on the product space € X . Our problem is then to determine condi-
tions under which (0.6) below holds:

(0.6) For a.e. &, sup,cql /n21.11,(T)X(w) >0  fora.e. w.

Wright (1979) has shown that (0.6) holds under condition (0.1) for the class u,
when the {7} are ii.d. with a distribution having no singular (with respect to
Lebesgue measure on R?) continuous part. In Section 1 we show that (0.6) holds
under (0.1) or (0.2) for the class u whenever the sequence {7} is iid., with a
distribution whose continuous part does not charge the boundary of any upper
layer; since all such boundaries are of Lebesgue measure zero (Brunk, et al. (1957))
this extends Wright’s result. This condition appears more natural than Wright’s and
the proof (using a result of Steele (1978) on empirical discrepancies) is completely
different. ’

In Section 3 we note briefly that when (X, } satisfies (0.2) and the {7} form an
i.i.d. sequence, (0.6) may be cast as a problem of identifying the (constant) limit of
a subadditive process.
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1. Sufficient conditions for (0.6). We suppose now that the sequence {#,} is a
realization of an i.i.d. sequence {7} of random vectors in R?. Denote by p the
probability measure of the 7.

THEOREM 1.1. Let u be the class of upper layers, and let {X,} satisfy (0.1) or
0.2). If {T,} is an ii.d. sequence independent of {X,}, with the property that the
continuous part of its measure p. does not charge the boundary of any upper layer, then
(0.6) holds.

PrOOF. We note first that the X, may be assumed to be uniformly bounded.
For, given N > 0,

M, 1 1
(1.1) < SUPAeu;27-114(7})1(|x,|>1v)xi + SUPA‘Eu‘n‘E'i'-l1A(7})1(|x,|<N}X,~-

'Il'he first term on the right-hand side of (1.1) is bounded above by
;2?_,Xi+ 1 x,>n) and it is easy to show that, given ¢ > 0,

(1.2) lim sup,,%E',-',,Xi‘”l(,xibN} <eas. ifN >N,

Let Y; = X;1x <n); the second term on the right-hand side of (1.1) is bounded
above by

1 1
(1.3) supAEu-;l_E'i'=llA(Ti){Yi - E(Y;)} + ;2?-IE(Y1')’

and the second term in (1.3) can be made arbitrarily small (since the X, have mean
zero) by choosing N sufficiently large. So it will suffice to assume that for all %,
|X,| < N as.

Next we observe that
1

1 n 1 n
(14) SuPAeu‘n‘ i1l (T)X; < SUPAeu‘n‘ 2i=1(lA(Ti) - #(A))Xi""“

. 2';_,)(,.'.

Under conditions (0.1) or (0.2), the second term on the right-hand side of (1.4)
tends a.s. to zero as n — oo; the first term is (except for the presence of the X)) the
empirical discrepancy for the class u. If £ denotes the class of lower layers, it was
shown by Blum (1955) that

1
(1.5) supgee [27-1(14(T) — p(4)| >0 as.  asn— oo,

when p is absolutely continuous with respect to Lebesgue measure and the {7}
are ii.d.. Recently Steele (1978), drawing on a fundamental result of Vapnik and
Chervonenkis (1971), showed that (1.5) holds for ii.d. {7,}, provided that the
continuous part of u does not charge the boundary of any lower layer ([8],
Corollary 7.2); clearly the result then holds for upper layers as well.

Now define a sequence {X, } of random variables such that X, takes only a finite
number {c;, ¢, * * * , ¢} Of values, and | X,(w) — X, (w)| < ¢ for all v € Q and all
k (where € > 0 is prescribed). Clearly {)T'k} can be taken to satisfy (0.1) or (0.2).
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Then
Q-
(1.6) sup, ey |27-1(14(T) — w(4))X]|

1 — 1 _
< sup, eu;lz’;-l(lA(Ti) - ""(A))(Xi - X.)| + SuPAEu;E';-l(IA(n) — w(4))X,].

The first term on the right-hand side of (1.6) is less than 2¢. Consider the second
term as a function of &, for w fixed.

0P w1251 (L(T)) = WA K ()
|eel

n

(1.7)

< 2mml supAEulz{ion:Z(w)-c,,}(lA(T;') - ”'(A))l

Foreachk=1,2,---,m, {i: X';(w) = ¢, } is a (finite or infinite) subsequence of
integers, independent of {7 }. The result of Steele quoted above then shows that
the right-hand side of (1.7) converges to 0 as n — oo, for almost all & € Q; by (1.4)
and (1.6), the proof is complete.

2. @ =% and {¢ ) arbitrary. We turn now to the case when @ = R, the
“half-infinite rectangles.” '

THEOREM 2.1. Let @ = R and suppose that {X,)} satisfies (0.1). Then for any
sequence {t.} of points,

n

—0a.s. as n — oo.

ProoF. We give the proof for the case d = 2 only; the extension to higher
dimensions is straightforward. For each n, let

X, (@) = X,(w) i | X, ()| <n

=0 if | X,,(w)| > n.
Let X be a random variable defined on (2, I, P) with
2.1) P{|X| > n} = F(n)
for every positive integer n, where F(y) is defined just above (0.1). Then
(2.2) S.P{X,#X,} =2,P{|X,| >n} < Z,P{X|>n} <o

by virtue of (0.1); so by Borel-Cantelli, {X,} and {X,} are equivalent sequences,
and it suffices to prove that

’

n .
- — 0 as., where M, = sup,c g2 (i <n; 1, c 4} X

But clearly,

M, 1 , , 1 on ’
(23) n < supAE@l,_n_z(k<n:tkeA){Xk - E(Xk)} + ;2 1| E(X)),

and the second term on the right-hand side of (2.3) tends to zero as n — oo, since
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E(X{) — 0 as k — 0. So it will be enough to prove the theorem in the case when

|X,| < nas.
Fix positive integers N and N, with N, > N;; there is a (finite) rectangular box B
in the plane which contains the points #,, £,, - - -, ty, (not assumed distinct). At

each of these points draw a horizontal and a vertical line through B so that the box
B is partitioned into a rectangular grid.

Now consider the rectangular parallelopiped ¥ with the box B as its base and
height N,. Move the point #, (lying in B) vertically up so that its z-coordinate is k.
Replicate the original grid on each plane z = k and draw a line through each point
t, parallel to the z-axis; this partitions V¥ into a cubic grid G. Place the random
variable X, at the new point #, in the grid, and place random variables which are
identically zero at every other point of G.

Consider the upper right corner of B as the origin and label each point of the
grid with three integral coordinates (counting x from right to left and y from top to
bottom of B). Given a point k in the grid, let X, denote the (possibly zero) random
variable at k, and let

b, = the z-coordinate of k if this coordinate exceeds N

=N otherwise.

Then if 4 € R (in the original plane z = 0), to form S,(4) we sum over all k with
z-coordinate not greater than n whose projections on B lie in 4. Therefore

S,(4)

M, :

— n -1

(24) maxy <N, n o maxN<n<NosuPA_n < maxkeG,No>k,>1v(bk) 2j<ka
= MaXyeg, No>k3>NSk/ by.

By the Hajek-Renyi inequality established in [7], for any A > 0:

M’l
2.5) P{max,KKNOT > x] < P{maxycr, <nSil/be > N)

c 1 o*(X,)

< e { N2 1=197(X,) + EIZO-N+ITIC' ,
k

where ¢ is a constant depending only on the dimension 4. But we have truncated

the {X,} so that by standard arguments (cf. Chung (1974), page 126) the series

s, 02(Xk)

2 converges; by choosing N large enough we can therefore get

M
(2.6) P{supDN—nf'- > }\] <e.
for any prescribed ¢ > 0, proving Theorem 2.1.

3. Subadditive processes. Assume now that {7} is a stationary sequence in
R“, with measure p; we assume also that { X} is a stationary sequence with finite
mean, independent of {7} }.
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Under these conditions it is not difficult to verify that, for any class @, the
process

Yn = SUP el imm+1la(T)X;
is a subadditive process in the sense of Kingman (1968). By Kingman’s ergodic
theorem for subadditive processes,

i=1

supAea%E’.’ 1L(T)X;, > C(@,p) as. asn-—>o0;

under certain conditions (including, but not limited to, the case when both {X,}
and {7} are mixing, and @ and p are arbitrary), the limit will be a constant. The
problem then reduces to finding the value of C(&, w).

When (X} is ergodic and {7} is i.i.d., we have seen that if @ = u and p lives
(and is continuous) on the line y = x, then C(&, p) = E(X;*), and that if @ = u
and the continuous part of u does not charge the boundary of any upper layer,
C(&@, p) = 0. If @ is the class of convex sets and the continuous part of u does not
charge the boundary of any convex set, it again turns out that C(&, ) = 0; this
follows as in Theorem 1.1 from a result of Ranga Rao (1962) for the empirical
discrepancy. It would be of interest to know what values between 0 and E(X;") (if
any) can be taken by C(&@, p) for other interesting choices of & and p.

The formulation above in terms of subadditive processes introduces an apparent
simplification of the solution; for an ergodic subadditive process z,,,, convergence
a.s. of zy,/n to zero is equivalent to convergence to zero of E(z,,/n) (see [5]). The
simplification is largely illusory, however, for the latter verification does not seem
substantially simpler.
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