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CONDITIONS FOR ATTAINING d
BY A MARKOVIAN JOINING!

By MARTIN H. ELLIS®
Northeastern University

Necessary (and sometimes sufficient) conditions are given for a multi-step
Markovian joining of two processes to attain the d-distance between them. The
conditions are applied to Markovian joinings of two-state Markov processes.

Introduction. The d-distance is a natural measure of the difference between two
discrete-time stationary random processes whose state space is finite or denumer-
able. Throughout this paper all processes considered are assumed to be of this type.
The d-distance between two processes may be thought of as the fraction of the
places which must be altered to turn a generic string for one of the processes into a
generic string for the other (see below, or [4]). A process is a joining of two
processes if both processes are embedded in it. It can be shown [4] that for any pair
of ergodic processes there is an ergodic joining which attains the d-distance
between them (in the following sense: any generic string for this process yields
generic strings for each of the processes and the proportion of places where two
such strings disagree equals the d-distance between the two processes). See [4] for
further discussion of d.

Although the d-distance is a very natural concept, its definition gives no
“formula” which given two ergodic processes tells the d-distance between them.
Nor does it tell what kind of joinings can attain the d-distance between two
particular processes.
~If the two processes being compared are Markov processes or embedded in

Markov processes it is natural to ask whether the d-distance between them can be
attained by a Markovian joining (i.e., a joining which is a Markov process with
respect to the “joint states,” described below) and if so to determine if a particular
Markovian joining attains d.

The aim of this paper will be to give conditions (Theorem 1) which a Markovian
joining of two processes must satisfy if the joining attains the d-distance between
them. The conditions found will be shown sufficient to guarantee the attainment of
d if the two processes have “relatively prime periods” (Theorem 2). In all cases, if a
Markovian joining fails to satisfy the conditions then there is another Markovian
joining which matches the two processes more closely (Theorem 3). Using the
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432 MARTIN H. ELLIS

conditions developed it will be shown (Theorem 4) that the d-distance between two
two-state Markov processes is never attained by a Markovian joining unless the
Markovian joining attains the partition distance between them. The paper con-
cludes with some observations.

First, however, the concepts will be carefully defined and some notation in-
troduced.

Notation. A process can be represented as a 1 — 1 bimeasurable measure-pre-
serving transformation T on a probability space together with a finite or countable
measurable partition P of the space. Given two processes %, = (T, P,) and
9, = (T, P), I = (T, P) is a joining (of I, and 9,) if P = P; X P, and T’s
marginals are 9, and 9,. For each joining I = (T, P) of 9, = (T}, P,) and
9, = (T, P,) let dg be the measure of the set of points in J°s measure space whose
P, name and P, name differ; dg is the distance (between ¥, and 9,) attained by 9.
The d-distance between ¥, and 9,, denoted d(%,, J,), is the infimum of
{dg: 9 is a joining of ¥, and F,}.

For every n € N* and every P-n-string G (i.e., every G € P") let h(g) denote
the proportion of the »n terms in G whose P, and P, name differ, and for {Z,;}§ an
infinite sequence of states in P let h({Z;}¢°) = lim inf{#(G) : G is a finite initial
segment of {Z;}¢°}. Then for each ergodic joining I of I, and 9,, dg = h({Z;}3},
where {Z;}¢° is any generic sequence for ¥. As mentioned in the introduction, it
can be shown that d(%,, 9,) = inf{h({Z;}&): the first and second marginals of
{Z,}¢° are generic sequences for I, and ¥, respectively}, and that the infimum is
attained by a sequence { Z;}¢° which is generic for an ergodic joining of 9, and %,.

Call a joining § = (T, P) an m-step joining if T is an m-step Markov process
with respect to P. The primary result in this paper is Theorem 1, which gives
necessary conditions which an m-step joining of ¥, and ¥, must satisfy if
dg = d(F,, 5,).

Throughout this paper 9 = (T, P) will denote an ergodic m-step joining of
9, = (T, P} and 9, = (T,, P,), and p will denote J’s measure.

Let E and F be P-m-strings. For each n € N* with wy(E N T~"""F) > 0, let
o(+, E, F, n) denote the measure on P-n-strings satisfying

WMENT ™G NT ™ "F)
w(E N T™™""F)
for every P-n-string G; if E, F and n are understood, denote p(-, E, F, n) by p. Let
d(p) = Zh(G)p(G)
the sum being taken over all P-n-strings G. Let p, and p, denote the respective
marginals of p, and let

o(G, E, F,n) =

d(py, p,) = inf{d(»): v is a measure on P-n-strings whose
marginals are p, and p, respectively}.

By compactness, the infimum is attained. Note that d(p) > d(p,, p,).
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THEOREM 1. If dg = d(F,, T,), then for _all P-m-strings E and F and for all
n € N* with W(E N T~"""F) > 0, d(p) = d(p,, py)-

ProOF. Suppose the hypotheses of the theorem hold but the conclusion doesn’t.
Choose P-m-strings E and F and n € N* for which w(E N T~™""F) > 0 and
d(p) > d(p,, py). Let {Z;}® be a generic sequence for J. Let i, be the smallest
natural number for which

E=Z,--,Z,+m—1) and
F={Z,+m+n,---,Z +2m+n—1)
and for r € N let i, , be the smallest natural number satisfying
b2 +m+nE=L{2Z ,---,Z +m—1)and
F=(Z +m+n,---,2, +2m+n—1).
Then

/] m+n

1 li = .
( ) mr——)oo r < M(E n T—-m-—nF)

Let » denote a measure on P-n-strings which attains d(p,, p,). Independently

choose a P-n-string G, for each r € N according to the measure » assigns to

P-p-strings. Modify {Z;}§° to obtain {z‘,.}:;" as follows.

Z, = the kth term of G, fi=i+m+k for0<k<n-—1

=Z otherwise.

Let {X,} and {¥,} be the marginals of {Z;}. Since T is an m-step Markov
- process, the P-n-strings of {Z;} being replaced are independent and distributed
according to the measure p assigns to P-n-strings, hence the marginals of the
P-n-strings being replaced are independent and distributed according to the
measure p, (respectively p,) assigns to P,;-n-strings (respectively P,-n-strings).
The n-strings that are replacing them, however, are also independent and distrib-
uted according to the measure p, (respectively p,) assigns to P, - n-strings (respec-
tively P,-n-strings). Hence {X} and {7,} are generic sequences for &, and ¥,
respectively.

Furthermore, by (1) the terms of {Z;} being replaced have density at least
nu(E N T~"""F)(m + n)~!, and for the terms being replaced the probability that
the P, name and P, name differ will decrease from d(p) to d(p,, p,). Hence

d(9,, 5 <h({Z}s)
<h({Z)$) = milE N T~"""F)(n + m)~"(d(p) — d(py, p,))

= dg— np(E 0 T~"""F)(n + m)~"(d(o) — d(py, py))-
Contradiction. []
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Theorem 1 is true not only for the d-distance function, but for any function on

the joint atoms. That is, if f : P — R, for each P-n-string G = (g, - - , g,» let

h (G) = n™'27. (&)
and if p is a measure on P-n-strings let

d(p) = Zh(G)p(G)

the sum being taken over all P-n-strings G. If 3} (py» p,) and &} %,, 9,) are
analogously defined and d; (J;, J,) < oo, then the analogous version of Theorem 1
is proved by the preceding proof. Note that f*, the function which assigns a value
of zero to the atoms of P with the same P, and P, names and a value of one to all
other atoms in P, yields the usual d-distance.

Since 9 is a multi-step Markov process, either 9 is aperiodic (has period one) or
T has period greater than one. Let ¢ denote the period of §. Then ¥ is isomorphic
to the direct product of a Bernoulli shift with a rotation on ¢ elements; furthermore,
since J, (respectively 9,) is a factor of ¥, it is isomorphic to the direct product of a
Bernoulli shift with a rotation on ¢, (respectively ¢,) elements, and ¢, and ¢, divide ¢
11, [3D.

The converse of Theorem 1 is true if #; and ¢, are relatively prime:

THEOREM 2. If 9, and T, have relatively prime periods and dg + d(F,, 9,) then
there are P-m-strings E and F and an n € N* for which y(E N T ~™""F) > 0 and

d(p) > d(py, po)-

ProOOF. The proof divides into three cases.

@) If t = 1, then P is weak Bernoulli for . Then for all P-m-strings E and F
with w(E) > 0 and p(F) > 0, p(-, E, F, n) is defined for all sufficiently large
“neNt, and
limn—mod(p(" E, F, n)) = d‘?l’

whereas
n—»eoJ(Pl(" E, F,n),p,(, E, F, n)) = ‘i(gv 3.
(i) If £ > 1 and at least one of J,, 7, is aperiodic, say ¢, = 1, let w = mt,

(‘;Tl = (le’ V;V-—olepl)
32 = (T3, Vi% £P2)
§ = (1", v*"'T'P)

and let f be the function on P-w-strings G = (g,,* * * , &, satisfying

F(G) = w'SiiM(8)

lim

for every P-w-string G. .

Then @'1 is ergodic, "3'2 consists of ¢, ergodic components (if 7, = 1 then 63'2 is
ergodic), and Fis a nonergodic one-step joining of "3'1 and ‘?3"2 consisting of ¢
ergodic components each of measure ¢~!; each of these ¢ components (with its
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measure normalized to one) i isa mixing one-step joining of J, with a \ component of
J2 The df-dlstance between Jl and each component of J2 equals df (?J',, , and
d; &, F) = AT, Fy). I dga&d("Jl, 9,), then I will not optimally match (at
least) one of the components of "52 with 9. Since each of the components of &
an aperiodic one-step joining, part (i) of this proof is applicable to the nonoptlm-
ally matched component(s) of °/, hence we can conclude that there are P-w-strings
E’ and F’ (corresponding to \/ ¥ T*P-1-strings in a nonoptimal-matching compo-
nent of ) and an n € N* for which d(o(-, E’, F’, n)) > d(p\(-, E’, F’, n),
py(+, E’, F’, n)). Let E be the last m terms of E’ and F be the first m terms of F’,
and n be as just described; then the conclusion of the theorem holds.

(iii) If both %, and 9, are periodic and ¢, and ¢, are relatively prime, consider

Ii = (T1, VI TiPy)

T, = (T3 VIS 'T3Py)
and

g = (T", VIS T'P).

Then 9 consists of ¢, components each of which is mixing, I, is an ergodic
periodic (period t,) process, and 9’ is a nonergodic multi-step joining of 9, and 7,
consisting of ¢, ergodic components each of measure #;"'; each of these tl compo-
nents (with its measure normalized to one) is a multi-step joining of &, with a
component of J;. If ds % d(F,, Jz), then as in (ii) 9’ does not optimally match
with one of the components of J]. Since each component of I is mixing, hence

aperiodic, part (ii) of this proof applies to the nonoptimally matched components
of §”, whence the conclusion of the theorem follows. []

If 9, and %, are periodic and their periods are not relatively prime, the converse
of Theorem 1 may not hold, as the following example shows.

ExampLE. Let 9, and ¥, both equal the Markov process with states {1, 2, 3}
and transition matrix

0 0 1]
0 0 1,
1 1 9
i 1 9

Thus d(J,, J,) = 0. Let § be the one-step joining of ¥, and J, with states
{1, 3), (2, 3), 3, 1), (3, 2)} (i.e., the other five pairs have measure zero) and transi-
tion matrix

o o
o o

Ni= =
Nl= N|=
O O WNi= =
O O NI= NI=



436 MARTIN H. ELLIS '

Then dg = 1, yet for all 1-strings E and F foralln € N* with W(E N T~!""F) >
0, d(p) = d(py, pp) = 1.

The modified process given in the proof of Theorem 1 (the process for which
{2,.}3° is a generic sequence) may fail to be a g-step joining for any ¢ € N. The
problem stems from the fact that Z, ~may not be the first term after Z, which
initiates E followed by a gap of length n followed by F. Yet the stipulation that
i,y1 #» i, + m + n cannot be omitted, for if it is omitted the P-n-strings being
replaced may not be separated by at least m terms, hence may not be independent
of one another, whence the modification may not yield a sequence whose marginals
are generic sequences for &, and J,.

However, E can be lengthened by concatenating a string to its left to obtain a
P-(t + n+ m— 1)string £ = e, €3 ", €inem—1y for which (e, - ,¢)
does not equal ¢, * -, ¢,,> for 1 Ki <m + n. Then the construction given
in the proof of Theorem 1 when applied to p(-, E F, n) will yield a (¢ + 2n + 2m
— 2)-step joining.

THEOREM 3. If there are P-m-strings E and F and an n € N* such that
d(p) > d(p,, py), then there is a multi-step joining ¥ of I, and T, with dy < dg.

PrROOF. Given P-strings G, and G, let G,°G, denote G, concatenated with G,
and let G{” denote rG,’s concatenated together.

Let G, be a P-k-string with k > m such that u(G,°G)) >0, let G, be a
P-k-string unequal to G, with u(G,°G,) >0, and let G, be a P-I-string with
I > n — 2 such that u(G, ° G; ° E) > 0. Choose r € N* so that (r — Dk > m +
n—1,and let E = G o G, ° Gy o E. Then u(£) > 0, and E has the properties
described before the statement of this theorem, so ¥, the process obtained by
applying the construction given in the proof of Theorem 1 to p(:, E, F, n), is an
(rk + k + 1+ 2m + n — 1)-step joining of J, and ¥, attaining a smaller distance
than 9 does. [

Theorems 2 and 3 imply the following:

CoROLLARY 1. If ¥, and J, can be joined by a multi-step joining and if I, and
9, have relatively prime periods, then either there is a multi-step joining attaining
J(‘f)’,, %,) or there is no best multi-step joining.

COROLLARY 2. If 9, and 9, can be joined by a mixing multi-step joining then
either there is a mixing multi-step joining attaining d(9,, 9,) or there is no best
mixing multi-step joining.

Proor. If 9, and ¥, can be joined by a mixing joining, they must be mixing,
hence aperiodic. Thus, if J is a mixing multi-step joining and dg# d(J,, T,),
Theorem 2 implies the hypothesis of Theorem 3 holds, and the proof of Theorem 3
yields a mixing multi-step joining & of ¥, and J, with dj < dg. []
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In particular, if ¥, and 9, are multi-step Markov processes then their direct
product is a multi-step joining, so Corollary 1 applies; if in addition J; and 7, are
aperiodic then the direct product is mixing and Corollary 2 applies.

The usefulness of Theorem 1 comes in demonstrating that I not attain the
d-distance, for by Theorem 1 it suffices to find P-m-strings E and F and n € N*
for which w(E N T~™""F) > 0 and d(p) > d(p,, p,). Theorem 1 will be used in
this manner to prove Theorem 4. First, however, some notation is needed.

Let p(%,, 9,) denote the partition distance between 9, and ¥,. That is, p(%9,, 7,)
= 1 — X, min{7, s;}, where 7, is the measure of the ith atom of P,, s; the measure
of the ith atom of P,. Clearly p(9,, 9,) < d(F,, F,).

Let M(9,, 9,) = inf{dys: T is a one-step joining of &I, and J,}. A compactness
argument will show that if the set of distances is nonempty, then the infimum is
attained. Clearly d(7,, 9,) < M(9,, ).

Let (x, A) denote the one-step two-state Markov process with transition matrix

(1 -k K )

A 1-A/
Then (k, A) has positive entropy if and only if 0 < min{x,A} < 1; here the
measure of the first state is A(x + A)~! and the measure of the second state is

k(x + A~

THEOREM 4. If (a, B) and (v, 8) have positive entropy, and M((a, B), (v, 8)) >
P((a, B), (v, 8)), then M((a, B), (v, 8)) > d((a, B), (v, 8)).

Proor. Given the pair ((a, B), (v, 8)), let A denote the first state of (a, 8), B
denote the second state of (a, B), C denote the first state of (y, §), D denote the
second state of (v, 8), and if J is a joining for the pair ((a, B), (y, 8)), order the
four states of 9 lexicographically (thus (4, C) =1, (4, D) =2, (B, C) =3, and
(B, D) = 4); let p denote 9’s measure.

Given (a, B) and (y, 8), the pairs ((a, B), (v, 8)), (B, @), (8, 1)), (v, 8), (a, B)),
and ((8, v), (B, @)) all have the same value for M, for d, and for p. Using this
symmetry it can and henceforth will be assumed that ((a, 8), (v, 8)) is in one of the
following forms

® (a,By(a—u,B+u) u>0
() (a,Br(a—uB+w) w>u>0
(i) (o, B)(a+u B+w) w,u>0andu(C)— u4)>0.

Note that p((a, B), (v, 8)) = w(C) — w(A).
In [2] it is shown that when M((a, B), (v, 8)) > p((a, B), (v, 8)), the one-step
joining of (a, B) and (y, 8) with transition matrix
min{l — a, 1 — y} max{0,y — a} max{0, a — v} min{a, v}
min{§, 1 — a} max{0,1 = a — 8} max{0,a + & — 1} min{a,1— 8}
min{ B, 1 — v} max{0, 8+ y — 1} max{0,1— B — vy} min{y,1— B}
B 0 §—B 1-9
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attains M((a, B), (v, 8)) with the exception of one class of pairs; each pair in this
exceptional class has a one-step joining attaining M whose transition matrix has
€4 €, €4, and ey all positive. For ((a, B), (v, 8)) with M((a, B), (v, 8)) >
((a, B), (7, 8)), let T*((a, B), (v, 8)) denote the one-step joining of (a, B) and
(v, 8) attaining M((a, B), (y, 8)) described above; when ((a, B), (7, 8)) is under-
stood, denote T*((a, B), (v, 8)) by I*. Let T* = (T, P) (hence P = {1, 2,3,4} =
{4, C), (4, D), (B, C), (B, D)}).

For every ((a, B), (v, 8)) with M((a, B), (v 8)) > p((a, B), (v, 8)) P-1-strings E
and F and an n € N* will now be found for which W(E N T~'~"F) > 0 and
d(p) > d(p;, p,). Then by Theorem 1 it may be concluded that dgn >
d((a, B), (v, 8)); since for any other one-step joining I’ of (a, 8) and (v, §),
dg. > dg., the theorem follows.

For ((a, B), (7, 8)) in the exceptional class, §* assigns (4,2, 1> and {4, 3, 1)
positive measure. Thus, for E = (4>, F = (1), n = 1, d(p) > a—V(p,, py): p assigns
positive measure to (2> = {(4, D)) and to (3) = {(B, C)), hence p can be
improved upon by pairing {4 ) with (C) and (B ) with (D ) (until the measure of
<{2> or {3) is reduced to zero).

If ((a, B), (v, 8)) is in form (i), or if B + y < 1 and ((a, B), (v, 8)) is in form (ii),
there is a one-step joining of (a, 8) and (y, §) attaining p((a, B), (v, 8)).

If ((a, B), (v, 96)) is in form (ii), 8+ y > 1, and § = 1 (whence y < 1), then
g* assigns <3,2,3,2,3,4> and {3, 1,4,3,1,4> positive measure. Thus, for
E={3), F = (4>, n=4, d(p)>d(p,, p,): p assigns positive measure to <2, 3, 2, 3>
={(4, D), (B, C), (4, D), (B, C)> and to (1,4, 3, 1> = {4, C), (B, D),
(3, C), (4, C))>, hence p can be improved upon by pairing {4, B, A, B) with
{C,D,C,C> and {4, B,B,A) with (D, C, D, C) (until the measure of
<{2,3,2,3> or {1, 4, 3, 1) is reduced to zero).

If ((a, B), (v, 8)) is in form (ii), B + v > 1, and § < 1, or if it is form (iii) and
y =1 (whence 8§ < 1), then T* assigns (4, 3,2,4)> and <4, 4, 3,4) positive
measure. Thus, for E =<4), F=<{4),n = 2,d(p) > J(p,, py) (the proof is like
those above).

If ((a, B), (v, 8)) is in form (iii) and & = 1 (whence y < 1), then J* assigns
{1,2,3,1,4> and {1, 1, 2, 3, 4) positive measure. Thus, for E = 1), F={4), n
= 3, d(p) > d(p,, p,) (the proof is like those above).

Finally, if ((a, B), (v, 8)) is in form (iii), y < 1, and &§ < 1, then J* assigns
{1,2,4,4>,<1, 1, 2,4>, and {1, 4, 3, 4) positive measure. Thus, for E = (1), F =
{45, n = 2,d(p) > d(p,, p,): p assigns positive measure to (2, 4) = {(4, D),
(B, D)), {1,2> ={(A, C), (A, D)) and <{4,3) = {(B, D), (B, C)), hence p can
be improved upon by pairing {4, B) with {C, D), {4, A) with (D, C), and
{B, B) with (D, D) (until the measure of (2, 3) or {1, 2) or <4, 3) is reduced to
zero). []

Theorem 4 together with Corollary 2 to Theorem 3 imply that if (a, 8) and (y, &)
have positive entropy and M((a, B), (v, 6)) > p((a, B), (v, 8)) then there is a
mixing multi-step joining of (a, B) and (y, §) attaining a smaller distance than
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M((a, B), (v, 8)). If either (a, B) or (y, &) has zero entropy, it is not hard to show
that M((a, B), (v, 8)) = d((a, B), (7, 9)).
_ In[3] it is shown that there are (a, B) and (y, &) with positive entropy for which
d((a, B), (v 8)) = p((a, B), (v, 8)) and M((a, B), (v, 8)) > d((a, B), (7 8)).

The following example shows that Theorem 4 doesn’t extend to one-step three-
state Markov processes.

ExaMpPLE. Let 9, and ¥, be the one-step three state-Markov processes with
P, = P, = {1, 2, 3} and respective transition matrices

l-a 0 a [ 0 l-a a
0 1-a a and [1 — & 0 a
B B 1-28 B B 1-28
where 0 < @ < 1and 0 < B < 3. Let J be the one-step joining of J; and J, which
assigns positive measure to states (1, 1), (1, 2), (2, 1), (2, 2), and (3, 3), and whose

transition matrix with respect to these states is

0 l—a 0 0 a
l—a 0 0 0 a
0 0 0 l—-a a
0 0 l—a 0 a
B 0 0 B 1-28

It is not hard to show that dg = d(F,, F,) = 2B(1 — a)/(a + 2B)2 — ), yet T
doesn’t attain the partition distance between ¥, and ¥,, since p(9,, 9,) = 0.

Question. Is there a positive integer k and one-step k-state Markov processes J;
_and J, whose transition matrices have no zeros for which M(9,, 9,) = d(9,, T,)
and 4(9,, 5,) # p(F,, 5,)?

If the answer to the question is no, it may point to the proper extension of
Theorem 4.

Note that the attainment or nonattainment of d between two processes with
relatively prime periods by a one-step joining & is completely determined by the
set of nonzero entries in J’s transition matrix. If § doesn’t attain d, by Theorem 2
there are states e and f, n € N*, and a collection of (n + 2)-strings with first term
e and last term f which has positive measure and whose strings can be separated
into their marginal (n + 2)-strings and rematched more efficiently. Any other
one-step joining whose set of nonzero entries in its transition matrix include all
those of & must assign those (n + 2)-strings positive measure, hence by Theorem 1
cannot attain d. Conversely, if J is a one-step joining which attains d, Theorems 1
and 2 imply that any other one-step joining whose set of nonzero entries is
contained in 9’s must attain d.

The preceding observations apply to m-step joining (7, P) of two processes with
relatively prime periods when the joinings are viewed as one-step Markov processes
(T, V&~'T'P).
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Finally, if 9, and 9, do not have relatively prime periods, let ¢ denote the
greatest common divisor of their periods. Then there are ¢ different kinds of
ergodic joinings of ¥, and ¥, corresponding to the ¢ possible “phase shifts”
between their periods. The converse of Theorem 1 will not necessarily hold here,
although d(p) = d(p,, p,) for all p implies J is a best possible joining among
Joinings with the same phase shift, for, as the example following Theorem 2 shows,
there may be no joining with a particular phase shift attaining 4. Nonetheless, as
shown above, it is true that the attainment or nonattainment by 9 of the smallest
distance attainable by any joining with the same phase shift as & is completely
determined by the set of nonzero entries in J’s transition matrix (when J is viewed
as a one-step Markov process (T, V25 'T'P)).
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