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MODEL PROCESSES IN NONLINEAR PREDICTION
WITH APPLICATION TO DETECTION AND ALARM

By GEORG LINDGREN
University of Lund

A level crossing predictor is a predictor process Y(¢), possibly multivariate,
which can be used to predict whether a specified process X(¢) will cross a
predetermined level or not. A natural criterion on how good a predictor is, can
be the probability that a crossing is detected a sufficient time ahead, and the
number of times the predictor makes a false alarm.

If X is Gaussian and the process Y is designed to detect only level crossings,
one is led to consider a multivariate predictor process Y(¢) such that a level
crossing is predicted for X(¢) if Y(¢) enters some nonlinear region in R”. In the
present paper we develop the probabilistic methods for evaluation of such an
alarm system. The basic tool is a model for the behavior of X(¢) near the points
where Y(¢) enters the alarm region. This model includes the joint distribution of
location and direction of Y(¢) at the crossing points. .

1. Introduction. In some prediction problems the interest focuses on the
prediction of certain rare events, such as high level crossings or other rare patterns,
occurring in a time varying random function {X(¢),7 € R}. As an example,
suppose that we want to predict if X(#) will have a local maximum or minimum
within the next interval of some fixed length m > 0, or, in other words, that we
want to predict the locations of the local maxima and minima of X(z), i.e., the
times when X'(¢) = 0. At time ¢+ — m we have at our disposal observations of
X(s),s < t — m, together with other information which can be summarized in a
multivariate process Y(¢). The question now is, how shall the information gathered
in Y(¢) be used to make a reliable statement about whether or not X’(7) will have a
zero for some 7 € (¢t — m, ¢].

The naive way of predicting level crossings would be to calculate a predictor of
X'(¢) based on Y(?), X ’(t) say, and then state that X’(¢) will be zero any time it
happens that b's ‘(t) = 0. However, if the predictor X’(#) is based on a criterion such
as minimal mean square prediction error there is no reason why it should also be
particularly good at predicting zeros.

Obviously, predictor functions which are based on mean square deviation need
not be optimal when used as level crossing predictors, in the sense that they show
high ability to detect a crossing without making too many false alarms; some
theoretical reasons for this may be found in Lindgren (1975a). Nevertheless, it is
often suggested to use a mean square predictor to detect level crossings; the reader
may study Sveshnikov (1968), Problems 36.14 and 36.25.
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In previous papers, Lindgren (1975b), (1979), de Maré (1980), different aspects
on predictors have been developed, based on the idea that the predictor has the
restricted task to detect only the occurrence of level crossings, specifically of high
levels. It is shown in de Maré (1980) that one is then led to consider a multivariate
predictor process {Y(¢),t € R} and a region I' C R?,p > 2, with nonlinear
boundary, and to predict a level crossing for X(¢) any time Y(z) enters the alarm
region I'. In the present paper we shall derive the probabilistic tools for evaluation
of such alarm systems, in particular the connection between the series of level
crossings in X(¢) and the series of alarms given by Y(¢). Of special interest is the
operating characteristic, defined as the long run proportions of level crossings
which are accompanied by an alarm, and of alarms accompanied by a level
crossing, i.e., of detected crossings and of nonfalse alarms.

Some basic concepts are presented in Section 2, while the behavior of the
predictor Y(z) in the neighbourhood of level crossings for X(¢) is derived in
Section 3; most of these results can be found also in Lindgren (1975b). In Section 4
a model process is derived for the behaviour of X(7) and Y{(¢) near the points
where Y(¢) enters the alarm region through a nonlinear boundary. Some proofs are
given in Section 5.

2. Notations and basic facts. Suppose {X(?), ¢t € R} is a stationary normal
process with mean zero and continuously differentiable sample paths, whose
covariance function r,(7) = Cov(X(¢ + 7), X(¢)) admits the expansion

re(t) = Ny — N572/2 + o(72) ast — 0,

where Xj = ry(0) = V(X(2)), N5 = —ry(0) = V(X'(¢)). To predict the future of
the X-process we have at our disposal a multivariate stationary zero mean process
Y(t) = (Y (t),- - -, Y;,(t))T in which some Y,(¢) may be functions of X(s),
s < t; e.g., we may have Y,(¢) = X(¢), Y,(¢t) = X(t — h), Y3(¢t) = X'(¢), etc. We
suppose that X(¢) and Y(¢) are jointly normal with matrix covariance function
Fey(1) = Cov(X(t + 7), Y(¢)) = E(X(t + 7)Y(¢)T) of dimension 1 X p. We de-
note by r,(7) = E(Y(t + 7)Y(¢)T) the covariance function of Y(t).

Our main object is to predict the times when X(¢) crosses a specified level u or, if
this can not be achieved, at least, with some degree of certainty, predict whether
X(¢) will cross u within a specified time or not. If u» is a high level we will
sometimes call it a catastrophe level, appealing to practical situations of alarms, in
which cases we also call Y(¢) an alarm function. In the applications we have in
mind it is rather the mere occurrence of a level crossing within the near future
which is of interest, not the exact time for it. We therefore formulate the prediction
problem as a pure two-choice problem; at each time ¢ we make one of two possible
statements, either that X(z + 7) will cross the prescribed level u at least once for
some 7 € [0, m], or that there will be no such crossing. Here m is a fixed constant,
the choice of which depends on the application at hand.

We formalize this by defining an alarm region T°C R” such that if Y(z) € T we
believe that X(z + 7) will cross # for some 7 € [0, m], while if Y(¢) € I'® (its
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complement) we do not believe there will be such a crossing. We call T' the run
region.
In the special case when the boundary oI is linear there is a linear function

Y*(t) = ZE_16,.Y(2)

and a constant # such that Y(¢) € T if and only if Y*(¢) > 4, and Y(¢) enters the
alarm region I when Y*(¢) has an upcrossing of the alarm level ii. Since X(t) and
Y(?) are supposed to be jointly normal, X(¢) and the level crossing predictor Y*(¢)
are also jointly normal, a case which was dealt with in some detail in Lindgren
(1975b).

ExaMpLE 2.1. A possible general principle for obtaining an alarm region is to
regard the predictor process Y(7) as a test statistic which tests, for some fixed
m > 0, whether or not X(¢# + m) = u, upcrossing. A formal application of the
Neyman-Pearson lemma then yields an alarm region I' defined by
dP(Y(1)|C(t + m))

Y1) €T < pinictiem)y ~ ©

where C(¢ + m) denotes the event {X(¢ + m) = u, upcrossing}, and C°(z + m) is
its complement.

This idea is further elaborated in de Maré (1980) where, as an example, it is
shown that if X(¢z) and Y(¢) are jointly normal, the alarm region is

I = {y €R?; y™y +y"B + In¥(y’C) > K},

where A is a p X p matrix of constants, and B, C constant p-vectors. Furthermore
¥(x) = ¢(x) + x®(x), ¢ and ® being the standard normal density and distribu-
tion functions. The alarm boundary is approximately a second order surface.

As Example 2.1 shows, one is naturally led to consider nonlinear boundaries
when looking for optimal regions for level crossing predictors. In the next two
sections we will derive a tool for evaluating the operating characteristic of such
alarm policies. This concept is defined as follows.

Let

[0<]t; <t <- -

be the locations of the u-upcrossings for X(t¢), ie., the catastrophes, and let
similarly

[0<]f, < <---
be the times where Y(t) enters the alarm region. Define the operating characteristic

as
(2.1) 1 -G, (u;T)

#{t‘k; 0<t, <T, X(f, + 7) = u, ypcrossing, some 7 € (0, m)}
#{6;0< 7, <T}

= lim T—o0
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and

22) 1-H,(T;u)

#{1,;0 < 1, < T,Y(t, — 7) enters T for some 7 € (0,m)}
#{1,;0< ¢, < T}

provided the limits exist, with the interpretation that G,(u;I') is the long run
proportion of alarms which are not followed by a catastrophe within time m, i.e.,
G,,(u;T') is the long run proportion of false alarms. Similarly, H,,(I"; u) is the long
run proportion of catastrophes which are not preceded by any alarm within time
m, i.e., H,(T';u) is the long run proportion of undetected catastrophes. We call
G,(u; T') and H,(T'; u) the detection errors.

= hm T—>o0

3. A model process for the predictor near catastrophes. The probability that a
catastrophe is detected by the alarm function is the conditional probability that
Y(t — 7) crosses the boundary o' given that X(¢) crosses the level u. Such
probabilities are perhaps most simply approximated by means of a particular
model process, in a different context introduced by Slepian (1962) and further
developed by Lindgren (1975b), (1979).

Since A% = V(X'(t)) < oo, the average number of u-upcrossings per time unit by
X(¢) is given by Rice’s formula

1 1
7o (Xe/No)* exp(—u2/2N5) < oo,
which means that there is only a finite number of u-upcrossings in any bounded
interval, i.e.,
Np(u) = #{,;0< 1, < T} < .
If A C R?" is a finite-dimensional Borel set and s = (s, - -, s,), let
Np(d;u) = #{1,0< t, < T,(Y(t, +50), -, Y(t, +5,)) € 4}
denote the number of uw-upcrossings ¢, at which the translated process Y(z, + ¢)
satisfies the condition defined by A. We shall use the notation Y(¢, +s) =
(Y(tp +5,)- -+, Y(t, +5,)), and write
(Y(t,+s)ed} = {(Y(t+5y),- -+, Y(1, +3,)) € A}
if A is a finite-dimensional set. More generally, we write {Y(#, +-) € A} when 4 is
a set of p-variate continuously differentiable functions, in analogy with the notation
{y(-) € A} when y is a function R ~»R?.
Furthermore, let fy ), fx(), x> fx'©)x©=u> €tC-, be the density of the random

variable X(0), the joint density of X(0), X'(0), the conditional density of X’(0)
given that X(0) = u, and so on, and write x* = max(0, x). Then

E(Ny(uw)) = fX(O)(u)E(X,(O)-'- | X(0) = “)

=/ :°=ozfX(0),x'(0)( u,z)dz

Yx (%)

<

1 1
= E(X‘z/}\’{))2 exp(—u?/2X}).
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The following theorem expresses the long run distribution of Y(¢, +-) as ¢, runs
through the set of all u-upcrossings for X(#). The theorem is of standard type in
crossing theory, and its derivation is postponed to Section 5.

THEOREM 3.1. If {X(?),Y(¢),t € R} is ergodic, A C RP" is an open set, and

s = (s, -+ ,S5,), then with probability one,
(3.1) i Np(4;u)  E(N(4;4))  E(lygea X'(0)"|X(0) = u)
* lmT—-»oo = =
Nr(u) E(Nl(u)) E(X'(O)+ IX(O) = ”)

= [T-oP(Y(s) € 4|X(0) = u, X"(0) = Z)’Yx(“)_lzfX(O),x'(O)(“’Z)dz-

Taking Y(¢) = X’(¢) and using the fact that for stationary normal processes,
X(0) and X’(0) are independent we can obtain as a corollary the well-known
Rayleigh distribution of the derivatives X'(#;).

CoroLLARY 3.2. If {X(t),t € R} is ergodic, the derivative X'(t,) at the u-
upcrossings has a long-run Rayleigh distribution with density (z/X5)exp(—z2/2X5), z
> 0, in the sense that with probability one

#{1;0 <1, <T,X'(1) <&} _ E(lyuX'(©)" |1 X(0) = u)
#{t,;0< 4, <T} E(X(0)* |X(0) = u)

S5 =o(2/N5)exp(—22/2X3) dz.

Since X(s) and Y(¢) are supposed to be jointly normal processes, their deriva-
tives are also normal when they exist. This can be used to obtain a probabilistic
representation of the density function ¢ appearing in (3.1) and defined for y € R?
by

lim T

E(lyyea, X'(0)" | X(0) = u)
E(X'(0)" | X(0) = u)

.(y)dy =

-1
= yx(u) f?—ozfX(O),X'(O), Y(s)(u’ z,y)dzady.

Denote by ryy(0) the covariance matrix of order 2p X 2p of Y(¢) and its
derivative Y’(¢). The following lemma follows from multivariate normal theory.

LeMMA 3.3. The conditional distributions of Y(¢)|X(0) = u,X’(0) = z for t ER
are p-variate normal with mean

T , T
Y _ (5T ry(=0)
my, (1) u X% z X,

and covariance matrix function

rxy(=5) ryy(=1) _ riy (=) rir(= 1) .

(32) ryx(s,t) = r(s—1t) - X X

In order to handle the conditional distribution of );(t) given X(0) = 4, X'(0) = z
in an efficient way, we define an auxiliary nonstationary p-variate normal process
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{ry;x(¢), € R} having mean zero and covariance ry , defined by (3.2). Lemma
3.3 can then be reformulated as

R(Y(1)IX(0) = u, X'(0) = z) = E(m] (1) + kyx(1)),

where £(+) and £(+|-) denote “the law of” and “the conditional law of”, respec-
tively. Combining Lemma 3.3 and the process kyy with the long-run Rayleigh
distribution of the derivatives X’(¢,) at the u-upcrossings, we get the following
theorem, where {y is a Rayleigh random variable, independent of x|y and with
density

£ (2) = (z/X3)exp(—2%/2X3), z>0.
THEOREM 34. If {X(¢),Y(t),t € R} is ergodic, the long-run finite-dimensional
distributions of Y(t, + -) after u-upcrossings t, are given by
#{t,;0< 1, < T,Y(t, +) € 4}
#{t,;0< 1, <T}

lim T—o0

S Pmofe(2)P(m) () + kyx (") € A)dz
P(ml 5, () + kyix(-) € 4).

This fundamental theorem makes it possible to use the process
(33) Y (1) = my (6) + wyx(¢)

as a model process for Y(z, + ) before (if + < 0) and after (if + > 0) the u-
upcrossings #,, and in particular to express the probability of detecting a level
crossing. In fact, the event 4 in Theorem 3.4 does not need to be finite-dimensional,
but can be an event such as

{r(-) € 4} « {y(2) enters 4 for some t € (—m, 0)}.
THEOREM 3.5. Under the conditions of Theorem 3.4
(34) 1 - H,(T; u) = P(Y,(t) enters T for somet € (—m, 0)).

The detection probability 1 — H,(I'; u) can therefore be calculated as the
probability that the nonstationary, nonnormal process Y,(¢) crosses the boundary
9T in the correct direction for at least one ¢t € (—m, 0). Such crossing probabilities
can be approximated by, indeed, quite accurate bounds, using the expected number
of crossings, expressed as suitable integrals. For numerical examples in the context
of crossing prediction the reader is referred to Lindgren (1975b), (1979).

4. Crossings and alarms with nonlinear boundaries. In this section we will take
a close look at the crossings of a curved boundary d9I' by the p-variate normal
process {Y(¢), t € R}, in previous sections called the alarm process, to see how the
presence of crossings influences the process {X(¢), t € R}.

We will use some results by Marcus (1977) to extend a theorem by Belyaev
(1968) concerning the expected number of exits across the boundary 9T and
generalize them to marked exists.
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Let the boundary oT" be defined by means of a real valued function ¥(y) of
y=(p" ", ) in such a way that

y el e ¥(y) >0,
yeol & ¥(y) = 0.

We suppose that ¥(y) is continuously differentiable for y near 9T, except possibly
for a finite number of points at 0T, and further that there is a set of new
coordinates ® = (@', - - - , #7) such that §? = ¥(y). We also suppose that the
transformation to new coordinates is continuously differentiable and one to one, at
least for y near aT'. Denote the coordinate transformation by

(4.1) ® = h(y), y = g(©).

Further let », be the unit normal perpendicplar to }he surface W( y). =C, C
constant, at the point y, ie., », = ¥(y)/|¥(y), where ¥(y) =

(O¥/dy,;, - - -, a‘If/ayp)T is supposed to be nonzero near 9I'.

Now, if {Y(z), t € R} is a continuously differentiable and p-variate normal
process, we can express the exits through 9" of Y(7) by means of the zero-crossings
of the process {¥(Y(?)), ¢ € R}, which is usually nonnormal, and for which we use
the shorthand notation

¥, = ¥(Y(¢)).
Recalling the notation fk, k=1,2,- - - for the alarm points, we then have that ¥,
has its zero upcrossings at #,, ¢,, - - - - Note that according to the assumptions on

¥ and Y(¢), the process V¥, is differentiable, almost surely, with a derivative given
by the scalar product

(4.2) %‘I'(Y(f)) =¥ = YY) Y(2) = [¥(Y(@)riy V(1)

between the directional derivative Y’(z) and the gradient vector W(Y(z)) per-
pendicular to the surface ¥(y) = ¥(Y(?)).

We can now formulate the following analogue of Theorem 3.1. If BC R" is a
finite-dimensional Borel set, s = (s,, - * - , §,), define

Np(B;dT) = #{i,;0< i, < T, X(#, +s) € B}

#:0< G < T, (X(tx +5,), -+, X(tx +5,)) € B},
Ny(dT) = #{1,;0< {, < T},
and
vy(3T) = E(Ny(3T)) = f\po(o)E((‘I’(;)+ | ¥ = 0) = f?-ozf\po, w;,(o’ z) dz.
THEOREM 4.1. If {X(2), ®,, t € R} is ergodic, then with probability one
Np(B;0T) _ E(N(B;dT)) _ E(lxpes (%) [¥% =0)

(43) limroo =0 3y = "E(N,(oT)) E(¥%)" % =0)

= JeesYy(T)~ ]f:o=ozf\po,\p.',,,\'(,)(0’z’ x)dzdx.
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Even if (4.3) is a very simple formula, since ¥, and ¥, are in general not normal,
it might be difficult to obtain the conditional distribution of X(-) given ¥, and ¥
in a sufficiently explicit form to get a closed form model process. Therefore it can
be difficult to evaluate from (4.3) the error probability G, (u;I") defined by (2.1).
Furthermore, if the aim is to design a good alarm region for a given alarm process
Y(¢), it is more convenient to retain the explicit dependence on the process Y(?).
We shall therefore exploit the normality of this process in order to express (4.3)
more explicitly by means of a model process X(¢) similar to Y, (¢), which was used
in Section 3 to evaluate the error probability H,,(T'; u).

In the model process Y,(¢) defined by (3.3) an important role is played by the
level u and the Rayleigh distributed derivative £,, which describes the long run
random variation of the X-derivative at the u-upcrossings. A similar role will here
be played by the distribution of the coordinates Y(fk) and the directional deriva-
tive Y'( [k) at the point of exit through the boundary dT'. These distributions, and
consequently also the distribution of X(7, + ), can be obtained as surface densi-
ties over the boundary if we express the moments of Ny.(B; 9T') and N,(dT) as
surface integrals over dI'. Such formulas have been given by Belyaev (1968), and
since they have some intuitive appeal we will digress along that line before turning
to the more general results.

Denote by fy,,(») the density of Y(¢) at the point y € dT', representing a mass
distribution over the surface oI'. The derivative Y'(¢) expresses the direction of a
flow through oT', and the net flow at the point Y(¢) =y is equal to the scalar
product VyT' Y’(¢) between the unit normal », and the directional derivative Y’(¢).
The flow from ' into T is the positive part (»] - Y'(2))* .

The surface integral over an area 4 C dT,

Lea(PT- Y(0)" fy(y) ds(»)

is the total flow at time ¢ from I'® into T through the region 4. Taking expectations,
and integrating ¢ over [0, 1] we obtain the mean flow per time unit as

(4.9) ol edE((2T- Y ()T 1Y(1) = ) fye(y) ds(») dt.

This is Belyaev’s formula for the mean number of exits across the subset 4 by the
process Y(t).

However, Belyaev states that (4.4) holds if Y’(¢)|Y(¢) = y has a density, which
satisfies certain regularity conditions, and this is too restrictive for our purposes. In
particular it does not cover the important example

Y(6) = (0, BT = (K0, Lv, ()

for which

Y(t) = (Yz(t), ‘—;’; Yz(t))T.
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In order to use formula (4.4) for the wider class of processes we have in mind, we
prefer to couple it to the density f 4, of the distance function ¥, and its derivative
¥/, which was used in (4.3).

THEOREM 4.2. The mean number of exits per time unit across 0I" from T'¢ into T is
given by the formulas

E(M(3T)) = fo (0E((¥5)" [¥ = 0)
(4.52) = f?=ozf~yo,\p(,(0’ z)dz
(4.5b) = fyeard(¥)fro(»)ds(y),
where the function q, R? »R, is defined by
9(y) = E((57-Y(0))" [¥(0) =y) = [¥(»)|T'E((%)* [¥(0) = y).

PrOOF. We show here that (4.5a) and (4.5b) give the same result, and defer the
proof of (4.5a) to Section 5. Use the coordinate transformation (4.1), ® = h(y) =
(6%,---,0771,07) with the inverse y = g(0), and in which §” = ¥(y), and then
define the p-variate process ¢, = h(Y(t)), for which the pth component is £/ = ¥,
It has the p-variate density

OEFMECHILIE

We then obtain
/ f=oszo, -1/;,(0’ z)dz

= fol...gp—lf‘:o=ozf;o’\p6(0l,’ A ,op—l,o,z)dzdal A dop_l

Jor...ar- E((%)* |69 = (6, - - ,6771,0)).
£ (0", --,0771,0)d0" - - - dpr~!,

Using

= [¥(Y(0))|»7) Y'(0)

and the function g, we see that this is equal to

01980 o (8(0) ¥ (2(€))| ElR g . . gpr-

which by definition is equal to the surface integral

Jyeard(¥) fyo ) ds(y),

see Apostol (1962), page 293. Thus we have established the equality between (4.5a)
and (4.5b). [)
Now, for any Borel-set B in R?, define

q(B, y) = E(IY'(O)eB(VyT‘ Y'(O))+ | ¥(0) =y),
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so that g(R?, y)=4q(y) in Theorem 4.2. By normalizing with v,(dT) =

E(N,(3D)) = [,q(¥) fyo(») ds(y) = [,1,9(dz, y)fy@(y) ds(y), we can then de-
fine a probability measure over 9" X R? by

(4.6) vy(dT) " 'q(dz, ) fyo(y) ds(y),  y €T, z € R®.

This measure is fundamental for the rest of this paper. If Y’(0) has a density,
conditional on Y(0) = y, it can be written

Yy(ar)_l("yT’Z)Jrfy'(0)|y(0)=y(z)f}'(0)(Y) dz ds(y).

We now return to the exits 7, and the behaviour of X(7, + - ) around these exits.
Recalling the notation

Np(B; T) = #{£,;0< £, < T, X(i, + s) € B}

for the number of B-restricted Y-exits, we can obtain the following theorem, in
analogy with Theorem 4.2.

THEOREM 4.3. The mean number of B-restricted exits per time unit is given by

(4.7a) E(NI(B; BF)) = f@o(O)E(IX(s)eB(‘I'é)+ I‘I'o = 0)
@) = fcarE(lxmes(rT Y'(0) " [Y(0) =) fyo(») ds(»)
(4.7¢)

= [ corlerr P(X(s) € B|Y(0) =y, Y'(0) = z)q(dz, y)fye(y) ds(y).

Proor. The proof of (4.7a) is similar to that of (4.5a) and is deferred to Section
5. To see that (4.7a) and (4.7¢c) agree, proceed as in the proof of Theorem 4.2 but
replace

J ?=oszo,w;,(0a z)dz
by
J7-0P(X(s) € B| ¥, =0,%; = z)zfy, 4,(0,2)dz.

To obtain the intermediate form (4.7b), start from (4.7c) and write p(-, y) for the
conditional distribution on R? for Y’(0) given Y(0) = y. Then g(-, y) is absolutely
continuous with respect to p(-, y) with density

L) = (672"
and it follows that
E(Lxyes(s Y'(0)" 1Y(0) =)
= JeerrE(Lynyes|Y(O) =y, Y'(0) = 2)()2) " p(dz, »)
= zER"E(IX(s)EBlY(O) =y, Y(0) = z)q(dz, »),
which shows the equality between (4.7b) and (4.7¢). []
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We have now obtained the instrument to construct a model process X,r(¢) in
analogy with Y,(¢) in which the assumed normality of X and Y is fully exploited.
From Theorem 4.3, formula (4.7c) we first obtain the following theorem.

THEOREM 4.4. If {X(¢), Y(2), t € R} is ergodic and B C R’ is open, then with
probability one

N,.(B; oT
T—»w% = fyearfzeRrP(X(S) € B|Y(0) =y, Y'(0) = z)

lim
~yy(oT)” lq(dZ, J’)fY(O)(Y) ds(y).
The following theorem is the multivariate analogue to Corollary 3.2.
THEOREM 4.5. If {Y(¢),t € R} is ergodic, the long-run joint distribution of the

location Y(fk) and the directional derivative Y’(tAk) at the exits of Y(t) across dT, is
given by

vy(AT) 7' (37-2)" p(dz,y) fyo(»)ds(»), » € 3T,z € R,

where p(dz,y) is the conditional distribution of Y'(0) given that Y(0) = y.

Proor. Take X(¢) = (Y(2), Y'(¢)) and use Theorem 4.4 with q(dz,y) = (vyT-z)+
p(dz,y). A strict proof will be given in Section 5 in the framework of marked exits,
since Theorem 4.4 is only formulated for one-dimensional X(¢). [J

Theorem 4.5 gives the p-variate version of the long-run Rayleigh distribution of
the derivative at an upcrossing, and it enables us to weight the conditional
probability in Theorem 4.4 to give a long-run interpretable total. The following
lemma parallels Lemma 3.3.

LeEMMA 4.6. If Y(¢) is differentiable, the conditional distributions of
X(t)IY(O) =) = (yly' o ’yp)T, Y’(O) =z = (21" . ’ZP)T
for t € R are univariate normal with mean

m})'{»z(t) = (’xy(t)s_’)'(Y(t))rYY’(O)_l(Jz))

and covariance function

rXIY(s»t) = ry(s — 1) = (rey(s), —-ri,y(s))r},y,(o)—l[ rey(t) ]

’ T
= rxy(?)
Now define a nonstationary normal process k y|y(¢) with mean zero and covari-
ance function ry y(s,?) defined above. Also define a 2p-variate random variable

(ny,$y) with values in 8T X R”, independent of k|, and with a distribution
defined by (4.6), which we from now on denote

fr,,,;y(y,dz) ds(y) = vy(aI')~ ‘Q(dz»J’)fY(O)(Y)dS‘()’)~
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This variable will replace {, in Theorem 3.4 and shall illustrate the random
variations of Y(fk) and Y’(fk). If inserted instead of y, z in the mean value function
m;", , in Lemma 4.6 it yields a random function

, —1f My
% 5(0) = (e, =P (e @737,
THEOREM 4.7. If {X(2), Y(¢),t € R} is ergodic, the long-run finite-dimensional

distributions of X| (tk + ) after exits across o' by Y(tk) are given by
#{;0< 1, <T, X(f, +) € B}

#{i0<i,<T)

= [,corlerrhy,, ¢, (V> dz)P(mf, L) +ryy() € B) ds(y)
P(m¥ . () +kyy(-) € B).

PrROOF. The result follows simply from Theorem 4.4 and Lemma 4.6. []
The theorem motivates that we use the process

(4.8) Xor(2) = m':,, (1) + kx ()

as a model process for X( tAk + - ) and use it to calculate the error probability for a
false alarm by means of

G,(u; T) = P(X,r(¢) has no u-upcrossing for ¢t € (0, m)).

hm T—o0

ExampLE 48. Let Y(¢) = (Y,(¢)," - -, Y;,(t))T have independent normal compo-
nents, each with mean zero and variance one, and let the alarm region be the
complement of the sphere

r = {yer Iyl =CrLw?)i<r),

and take ®(y) = ||y ||> = =P»?. In engineering sciences this is used as a reasona-
ble model for symmetric loadings on circular structures; see Sharpe (1978).

To obtain the distribution of the location and direction of Y(¢) at the crossing
points, we use Theorem 4.5 and simplify the distribution

- +
'Yy(ar) l(VyT’ Z) p(dz, }’)fY(O)()")
where p(dz, y) denotes the conditional distribution of Y’(0) given that Y(0) = y.
In this case Y(¢) and Y’(¢) are independent, and since furthermore the components
of Y'(¢) = (Y{(¢), - -, Y’f(t))T are independent and normal with mean zero and
variances V(Y/(t)) = A;, say, we have
p(dz, y) = 2,27\, "2 exp(—2z2/2X;) dz.

Further, since the unit normal », at y is equal to r~ ly, we obtain the following
density for the location Y( tk) and direction Y'(¢ k) at the exit points:

(49)  vy(D)7'ri2w) P 2 exp(—r2/2)(yT 2)" exp(—|z113/2),

where we have written || z||2 = =722/A,.



NONLINEAR PREDICTION AND ALARM 787

To obtain the model process X, we now define the variables 7, and {, with
values in 3T and R”, and with density f, ( (», z) given by (4.9). Due to the simple
structure of Y(z), the function mj" .(¢) and the covariance function ry y(s, ) are
quite simple. Writing A = diag(A;) we have

_ 1 0
@ = (19, mo =3 0)
so that
m;}’ ) = ryy()y = ryy(£)A 2
and

rer(s, 1) = ry(s —1t) — rry()ryy ()T = ",('Y(J)A_lr)'(y(t)T’

The model process is
Xor(t) = rey(t)ny = ray (AT $y + kygy(2). ‘

ExaMmPLE 4.9. Let, as in the previous example, Y(¢) = (Y{(¢),- - -, Y;,(t))T
consist of independent processes with V(Y;(¢)) = 1, V(Y/(t)) = A;, and define the
alarm region by

I' = {y € R?; max; y; > i}.

This region could be possible if p independent processes can give alarm indepen-
dently of each other.

Since 9T' = {y € R?; max; y, = 4} = US_,3I; where T, = {y € R?; y, =4, y;
< 4 for j # i} we can define the distribution of (7, §y) over each 9T, separately.
If y € 9T}, the unit normal is », = §;, the ith unit vector, so we get for y € 0T

(4.10) foe,(0,2) = c(,,yr.z)" e~ l1z13/2. g=li¥Ii?/2

czi+ e_ziz/2>‘: . e_zj;ﬁlzjz/z}‘j e - Wi/2.

The constant c is determined by integrating f, . (y,z) over 0T, and we obtain
1 = fyeal‘fzeRany,gy(y,z) dzds(y)

= 21 )yeonSzereczi e~ /N ] N2 2,000 2 gy gy
.

where dyi = 0_')’1 e dyi—l FERRE a.‘yp.
We immediately find that this is equal to

—u2/25p —Zub}/2 i =222 (=202} /2N, 0
ce “/23p_, <€ !*'J/ajzz’>oz,.e /2o~ 2% /2N dy

= ce ¥ /2. (@(a)y T @m)P IS AL (A)?

which gives

-1

c = {e—éz/z(q)(ﬁ))p—l(zw)p—l.Hf=l(}\j)§‘:zf_l(}\j)%}
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Proceeding as in Example 4.8 we obtain a model process of the same type,
Xor(2) = ryy(2) -y — rgy()A™8y + Kxr(1),

where (1y, {y) has the density (4.10) over oI, = {y € R”; y, = 4,y; < i@ forj # i},i

=1---,p.

Note that if this alarm system gives alarm at the boundary 0I}, so that Y;(¢) has
an upcrossing of #, the situation is not the same as when Y;(¢) works as a single
predictor, since we here know, in fact, that Y(¢) <a,j#i. This will probably
imply that the probability of detection, 1 — H, is not improved by a factor p, but
by something less than p, compared to prediction from Y;(¢) alone.

5. A theorem on marked crossing processes. In Section 4 we left out the
justification for the formulas for the mean number of exits across a boundary oT,
at which X(¢) or Y(¢) satisfies some special requirement. In fact, Theorem 3.1,
Corollary 3.2, Theorem 3.5, Theorem 4.1, formulas (4.5a) and (4.7a), and Theorem
4.5 will all follow from a general theorem on the average number of marked exits,
to be given here. .

Let {£,,t € R} be a stationary, real valued, differentiable stochastic process
defined on some probability space {2,%;, P}, and let {n,,¢# € R} be a family of
random elements, also defined on {Q,%, P} but with values in some topological

. space {S,S}. Suppose further that 7, is jointly stationary with £,.

In the applications we have in mind the state space S is R?, R?", or C, the set of
continuous functions with the topology of uniform convergence on compact sets.
For Theorem 4.5 we may, e.g., take §, = ¥, = ¥(Y(¢)) and 1, = (Y(¢), Y'(¢)), while
for formula (4.7a) we can take n, = X(¢ + s) € R".

We will consider 7, as a mark attached to the process £ at time ¢. Define, for
A € §, the number of A-restricted zeros of £, as

N(4) = #{t €[0,1];¢,=0,9, € 4},

which is the number of times that £, = 0 and simultaneously n, € 4. (That this is,
indeed, a random variable will follow from the construction below). The following
theorem about the average number of marked exits will be stated and proved along
similar lines as in Marcus (1977), with a method dating back to Kac (1943).

Define, for n = 1,2, - -,the polynomial approximation §, , by taking §, , = §,
fort=k/2",k=0,1,---,2" and linear in between, and let 7, , be the piecewise
constant approximation of 7, defined as 7, , = 1y /,» if k/2" <t < (k + 1)/2"
Finally, write for any fixed set 4 € 5,

8,(’5) = fe,(x)E(ln,eA|§;‘|£; = x)
and
gl,n(x) = fé,,,,(x)E(ln,,,,EAlg;,n”gt,n = x)'

Note that since conditional expectations are defined only up to equivalence, we
need some sort of continuity condition to ensure identifiability. In particular, we
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require
. 1
fé,(O)E(ln,eAlg;Hgt = 0) = gt(o) = hmA—-»OEXfé—Agt(x)dx'

The following conditions are needed in order to justify the approximation of the
pair (§,,m,) by (gl,n’ m,n)i
(5.1) for all n, there exist M,,8 > Osuch thatg, ,(x) < M,

forall [x| < 8,¢ €[0,1];
(5.2) limA_mif‘iAg,,n(x)dx = g, ,0) forallnand s €[0,1];

(5.3) there exists M such thatg, ,(0) < Mforallnand¢ €[0, 1];
(54) lim, g, .(0) = (0).

Note that in many applications

fo, (OE(E, alI£, » = x)

can be chosen to be uniformly bounded in #, ¢ and x, and then (5.1) and (5.3) are
trivially satisfied.

We further have to require that the set A C .S is open in the weak topology, i.e.,
we assume that

(5.5) the set 7 '4(w) = {7 € (0, 1); n,(w) € A} is an open set,
for almost all outcomes w in €.

In the following theorem we write N = N(S) = #{z € [0, 1]; §, = 0}.

THEOREM 5.1.  Suppose {&,, n,, t € R} satisfies (5.1)—(5.4), A is open in the sense
of (5.5) and that E(N) < oo. Then the mean number of A-restricted zeros of §, is

E(N(4)) = f(0E(1,,e4l€011€0 = 0)
providedffo(x)E(lnoeA|£6l|£0 = x) is continuous at x = 0.

ProoF. The proof is similar to that of Theorem 2.1 in Marcus (1977). Define,
foranys €S, x €R,A>0,

1 if |x|<A,s€A,

xX,s) = .
Xal ) 0 otherwise,

and let
N,(4) = #{t€[0,1]; ¢, ,=0,n, , € 4}.

Then with probability one,
. 1 ,
N,(4) = hmA—>02_Af})XA(gt,n’nt,n)lgt,nldt
and it holds

1 , .
(5.6) S I 5XaEam Il <27,
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This follows exactly as Lemma 3.2 in the paper by Marcus, if we notice that », , is
constant in each of the intervals [k/2", (k + 1)/2"), and that for almost all
realizations §, ,# 0 for ¢t = k/2", k=0,---,2" (This is the classical zero
counting device of Kac (1943).)

Since A is open, we can also conclude that

N,(A) - N(A) asn — oo,

since suppose &, = 0 for a finite number of times ¢,,- - -, ¢, and that at m of
these n, € 4, say at ¢;,- - -, ¢t,,. Due to (5.5), ¢;,- - -, t,, are interior points in
17 '4 so that ), € A4 for all ¢ in a neighbourhood of ¢,, - - - , ¢,,. As n — oo these m
time points will be counted by N,(A4) and no else if N(4) = m < oo, so that
N,(A4) - N(A).

Incidentally, we have the promised argument that N(A4) is a random variable,
since N,(A) is.

Since N,(A4) < N and E(N) < oo, we have that E(N(A)) = lim,_  E(N,(A4)),
so our task is to show that lim,_  E(N,(4)) = g,(0). To do this we evaluate
lim E(N,(A)) using (5.1)-(5.4), and first observe that (5.6) implies that

. : . 1 )
hmn—»ooE(Nn(A)) = hmn—»oohmA»OE{_jz lOXA(gt,n’ T't,n)lgt,nl dt}

Expanding the expectation we obtain the expression

. . 1 ,
lim,, o, limy o575 [0/ 5= sk, (X)E(L, calélllé,, = x) dxdt

= limn—)oolimA—)Oft)i_lx fA=- —Agt,n(x) dxdt = limn—-mo f:)gt,n(o) dt’
using (5.1) and (5.2). Finally (5.3) and (5.4) imply that
limnamE(Nn(A)) = flogt(o) da = gO(O) = .&O(O)E(lnoeAl‘Ei)”go = 0)’
which was to be proved. []

PrROOF OF THEOREM 3.1 AND COROLLARY 3.2. For Theorem 3.1 take §, = X(¢)
—u and n, = (X'(2), Y(t + 5)) = (X'(), Y(t + 59),- - -, Y(t + 5,)),5 =
(sy,°**,5,), let A be an open pr-dimensional set, and define

A = {(y,z) ERXRP;y >0,z € 4}.

Then, writing p, ,(x,y) for the joint density of §, , and §; ,, we have

gt,n(x) = fo—ooolylpt,n(x’y)P(nt,n € A,Igt,n =X, g;,n =y)@
< f°_°°°|y|p,’n(x,y)dy = ff,’n(x)E(lg;,nllgt,n = x)’

and it is standard normal theory to show that (5.1) and (5.3) are satisfied. Since 4’
is open, the probability P(n, , € A'|§, , = x, §, , = y) is a continuous function of
x for all ¢ and n, which implies that g, ,(x) is also continuous. Convergence of
8., »(0) as n — oo follows by normal theory, so that ¢5.1)-(5.5) are actually satisfied.
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Theorem 5.1 then gives that
E(N,(4; u)) = fX(O)(u)E(lnoeA’|X,(O)”X(0) = ")
= fX(O)(u)E(lY(s)eA(X,(O))+ | X(0) = “)’

which implies Theorem 3.1.
For Corollary 3.2, just take n, = X'(¢) and proceed as above. []

PROOF OF THEOREM 3.5. We have to show that
E(#t, €[0, 1]; Y(¢, + ) enters T for some 7 € (—m, 0))
E(#1, €0, 1))

= P(Y,(7) enters T for some 7 € (—m, 0)).

(5.7)

Take S to be the space C? of p-variate continuously differentiable functions
YEY=i() -5 )7 with the topology of uniform convergence on compact
sets for each y;(- ), and define the set

A = {y €S; y(r)enters T for some r € (—m, 0)}.

If we, for any outcome w, take 1, = Y(¢ +-) € S to be the Y-process shifted the
time ¢, we have that, with probability one,

n7'4(w) = {t € (0, 1); n,(w) € 4}
= {t € (0, 1); Y(¢ + 7) enters I for some 7 € (—m, 0)}
is an open subset of the interval (0, 1) so that Theorem 5.1 implies that
E(#1t, €[0, 1]; Y(¢, + 7) enters T for some 7 € (—m, 0))

= fX(O)(u)E(lnoeA(X,(O))+ | X(0) = u)
= fX(O)(u)E(lY(~)EA(X,(O))+ |X(O) = u).

The ratio (5.7) is therefore equal to

E(IY(-)EA(X’(O))+ |X(O) = u)
E((X'(0))" | X(0) = u)

which, by the definition of Y, (- ) equals P(Y,(-) € A). This concludes the proof of
the assertion. []

PROOF OF (4.5a) AND (4.7a), LEADING TO THEOREM 4.1. Take £, = ¥, and 7, =
(X(t+ ), ¥/) € R" X R, and proceed as in the proof of Theorem 3.1. Whether
(5.1)-(5.5) are satisfied or not depends on the smoothness of the function ¥(y),
and we do not embark upon a general treatment here. []

PrROOF OF THEOREM 4.5. Take n, = (Y(2), Y'(¢), ¥/) € R? X R? X R, and let
A, C aT be relatively open and 4, C R? open. Take A C R? X R? such that
AN (@ X R?) = A4, X 4,, and define

A = {(x,y,z) ERX R’ X R?; x >0, (y, z) € 4}.
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Then
E(lnoe,«:'l%ngo = 0) = E(lY(O)EA,, Y'(O)EAZ(‘I'(;)+ I‘Po = O)’

and we get the mean number of exits across dT such that Y({,) € 4, and
Y'(t,) €4, as

f<po(0)E( 1 Y(0)EA4,, Y'(O)EAZ( ¥g) * | ¥y = O)

+
= nyA, fzeAz(VyT' Z) p(dz, J’)fY(O)()’) ds(y),
where the last equality follows as in Theorem 4.2. []
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