A GAUSSIAN MEASURE ON I[®]

By D. H. Fremlin and M. Talagrand

University of Essex and Université Paris VI

We give an example of a Gaussian measure on the σ -algebra of l^{∞} generated by *all* the continuous linear functionals on l^{∞} , which is not a Radon measure.

Let E be a Banach space. The cylindrical σ -algebra of E is the smallest σ -algebra which measures all the continuous linear functionals on E. There exists very neat examples of probabilities μ on the cylindrical σ -algebra of a Banach space E which are such that $\mu(K)=0$ for all norm compact sets E of E (and hence E of for every weak compact E, since the Radon measures coincide for the weak and norm topologies of a Banach space) and this situation is clearly understood, especially since the work of E of E is Gaussian probability E (that is, a E such that the law of each E in the topological dual E of E is Gaussian with mean zero).

THEOREM. There exists a Gaussian probability μ on the cylindrical σ -algebra of l^{∞} such that the measure of every ball of radius 1 is zero (and hence μ is not Radon).

PROOF. Let us first recall the well-known elementary fact that if $\alpha \ge 1$, $\theta(\alpha) = (2\pi)^{-1/2}$ $\int_{\alpha}^{\infty} e^{-t^2/2} dt$ lies between $1/2\alpha(2\pi)^{1/2}e^{\alpha^2/2}$ and $1/\alpha(2\pi)^{1/2}e^{\alpha^2/2}$.

For $n \ge 0$ let λ_n be the Gaussian probability on \mathbb{R} of mean zero and variance γ_n^2 , where $\gamma_n = (\log(n+2))^{-1/2}$. Let μ_0 be the product probability of the λ_n on \mathbb{R}^N . We have

$$\mu_o\{x; \|x\|_\infty \le \alpha\} = \prod_n \left(1 - 2\theta\left(\frac{\alpha}{\gamma_n}\right)\right).$$

Hence

$$\mu_o\{x; \|x\|_{\infty} \le 1\} = \prod_n \left(1 - 2\theta\left(\frac{1}{\gamma_n}\right)\right) = 0$$

since

$$\sum_{n} \gamma_{n} e^{-1/2\gamma_{n}^{2}} = \sum_{n} (\log(n+2))^{-1/2} (n+2)^{-1/2} = \infty.$$

However, for $\alpha \ge 1$ we have

$$\mu_{o}\{x; \|x\|_{\infty} \leq \alpha\} \geq 1 - 2\sum_{n} \theta\left(\frac{\alpha}{\gamma_{n}}\right)$$

$$\geq 1 - \frac{2}{\alpha(2\pi)^{1/2}} \sum_{n} (\log(n+2))^{-1/2} \frac{1}{(n+2)^{\alpha^{2}/2}}.$$

Thus $\mu_o(l^{\infty}) = 1$, but every ball in l^{∞} of radius 1 has measure 0, since

$$\mu_o\{x; \|x - y\|_{\infty} \le 1\} = \prod_n \mu_n[y(n) - 1, y(n) + 1]$$

$$\le \prod_n \mu_n[-1, 1] = 0.$$

Let μ be the restriction of μ_o to subsets of l^{∞} . To show that μ is defined on the cylindrical σ -algebra of l^{∞} , it is enough to show that every $f \in l^{\infty'}$ is μ -measurable. Such an f is the sum of

Received December 5, 1978.

AMS 1970 subject classification. 69G15; 29A40.

Key words and phrases. Gaussian measure, Banach space.

an element of l^1 and an element null on c_o [1]. So it is enough to consider the case $f_{|c_o} = 0$, we shall show that for such an f we have f = 0 μ a.e. It is enough to consider the case $f \ge 0$, ||f|| = 1, and to show that for all ϵ , $\alpha > 0$:

$$\mu^*\{x \in l^{\infty}; \|x\|_{\infty} \le \alpha, f(|x|) \ge 2\epsilon\} = 0$$

since $|f(x)| \le f(|x|)$. Write $v(a) = f(\chi_a)$ for $a \subseteq N$, where χ_a is the characteristic function of a, and $a(x) = \{i \in \mathbb{N}; |x(i)| \ge \epsilon\}$ for $x \in l^{\infty}$. Then

$$f(|x|) \le \epsilon + ||x||_{\infty} \nu(a(x)) \qquad x \in l^{\infty}.$$

Now suppose that $\mu^*\{x; \|x\|_{\infty} \le \alpha, f(|x|) \ge 2\epsilon\} > 0$. Then $\mu^*A > 0$ where $A = \{x; \nu(a(x)) \ge \epsilon/\alpha\}$. Now for any $n \in \mathbb{N}$ let $\alpha_n = \mu\{x; n \in a(x)\} = 2\theta(\epsilon/\gamma_n)$. Let k be so large that $k\epsilon^2/2 > 1$. Then

$$\sum_{n} \left((\log(n+2))^{-1/2} \frac{1}{(n+2)^{\epsilon^{2}/2}} \right)^{k} < \infty;$$

that is $\sum_{n} \alpha_n^k < +\infty$. This means exactly that

$$\mu^k\{(x_1,\dots,x_k); a(x_1)\cap\dots\cap a(x_k) \text{ is infinite}\}=0$$

where μ^k is the product measure in $(l^{\infty})^k$.

Now let m be so large that $m > k\alpha/\epsilon$. Then for μ^m -almost all $(x_i)_{i \le m}$, $\cap_{i \in I} a(x_i)$ is finite for all subset I of $\{1, \dots, m\}$ of cardinality k. However $(\mu^m)^*(A^m) = (\mu^*A)^m > 0$. So there exists a family $(x_i)_{i \le m}$ in A^m such that for all subsets I of $\{1, \dots, m\}$ of cardinality k we have $\cap_{i \in I} a(x_i)$ is finite, and hence $\nu(\cap_{i \in I} a(x_i)) = 0$. Since

$$\{\sum_{i \le m} \chi_{a(x_i)} \ge k\} \subset \cup_{\text{card}, I=k} \cap_{i \in I} a(x_i)$$

we have $\nu(\{\sum_{i\leq m}\chi_{a(x_i)}\leq k-1\})=1$, and hence $\sum_{i\leq m}\nu(a(x_i))\leq k-1$. But since $\nu(a(x_i)\geq \epsilon/\alpha)$ for all i and $m(\epsilon/\alpha)\geq k$, this is a contradiction. \square

REMARKS. 1. Since all the closed balls of l^{∞} are $\sigma(l^{\infty}, l^{1})$ compact and μ is supported by large balls, μ is Radon for $\sigma(l^{\infty}, l^{1})$.

- 2. If Σ is the σ -algebra of all μ measurable sets on l^{∞} , the identity map $(l^{\infty}, \Sigma, \mu) \to l^{\infty}$ is scalarly measurable. Its indefinite Pettis integral exists, i.e., for $B \in \Sigma$ there is $b \in l^{\infty}$ such that $f(b) = \int_B f(t) \ d\mu$ (t) for $f \in l^{\infty}$. In fact if $b \in l^{\infty}$ is given by $b(n) = \int_B \delta_n$ where $\delta_n \in l^{\infty}$ is the nth coordinate functional, then $b \in c_0$ since $\delta_n \to 0$ in $L^1(\mu)$, and $f(b) = \int_B f(t) \ d\mu$ (t) since it holds for $f \in l^1$ and $f \in c_0^0$.
 - 3. Of course $(l^{\infty}, \Sigma, \mu)$ is perfect, since it is a Radon measure on a K_{σ} .
 - 4. Since μ is not Radon, it is not τ -regular for the weak topology of l^{∞} [2].

REFERENCES

[1] DAY, M. (1973). Normed Linear Spaces. Springer, Berlin.

[2] EDGAR, G. A. (1977). Measurability in a Banach space. Indiana Univ. Math. J. 26 663-677.

[3] ROZANOV, J. A. (1968). Infinite dimensional Gaussian distributions. In Proc. Steklov Inst. Math. 109.

University of Essex Colchester, Essex CO4 35Q Great Britain Équipe d'Analyse—Tour 46 Université Paris VI 75230 Paris, Cédex 05 France