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ABSTRACT ALPHABET SLIDING-BLOCK ENTROPY COMPRESSION
CODING WITH A FIDELITY CRITERION'

By JamEs G. DUNHAM

Washington University

The existing sliding-block entropy compression coding with a fidelity crite-
rion theorem is generalized to abstract source and source reproduction alphabets,
stationary and ergodic sources and nonmetric distortion measures. This establishes
the sliding-block entropy compression coding theorem in the same generality as
the corresponding block entropy compression coding theorem.

1. Introduction. The goal of the theory of entropy compression coding with a fidelity
criterion is to code a source into a minimally distorted reproduction of the source whose mean
entropy rate is constrained. Since Shannon (1959) the theory has focused almost exclusively
on block codes—coding structures which process consecutive nonoverlapping blocks of source
symbols into source reproduction symbols. The fundamental theorems show that the optimum
performance theoretically attainable (OPTA) for block codes is given by the distortion-rate
function. Thus performance arbitrarily close to the distortion-rate function can be achieved by
sufficiently long and complex block codes.

Gray, Neuhoff and Ornstein (1975) introduced a new class of nonblock coding structures
called sliding-block codes—coding structures which process consecutive overlapping blocks of
source symbols into source reproduction symbols. A theorem on sliding-block entropy
compression coding with a fidelity criterion was established which equated the OPTA function
for sliding-block codes with the distortion-rate function for finite-alphabet, stationary, ergodic
and aperiodic sources with bounded single-letter fidelity criteria. Using quantization tech-
niques, the theorem was extended to situations where the source and source reproduction
alphabet were the same complete separable metric space and the distortion measure was the
possibly unbounded metric of the underlying metric space. Successively simpler proof have
been given by Gray (1975), Gray and Ornstein (1976), Shields and Neuhoff (1977) and
Davisson and Gray (1978), but they did not establish the theorem in any greater generality.

In this paper the existing sliding-block entropy compression coding with a fidelity criterion
theorem is generalized to abstract source and source reproduction alphabets, stationary and
ergodic sources and nonmetric distortion measures. Thus the sliding-block compression coding
theorem is established in the same generality as the corresponding block entropy compression
coding theorem (Berger (1971)).

Furthermore, it is shown that nearly optimal performance can be achieved by sufficiently
long constraint length sliding-block codes which yield a finite alphabet source reproduction
process. By combining a sliding-block entropy compression code with a joint noiseless-source/
noisy-channel code of Gray and Ornstein (1976), the source can be transmitted over a noisy
channel to a user. With appropriate restrictions on the distortion measure, a joint source-
channel coding theorm (information transmission theorem) can be established which equates
the OPTA for sliding-block communication systems with the distortion-rate function evaluated
at the channel capacity. Thus under appropriate restrictions on the distortion measure, the
ultimate performance which can be achieved by blocking and sliding-block communication
systems is the same.
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2. Notation and definitions. Let (4, &) be an abstract measurable space where the abstract
space A4 is called the source alphabet. Define the product measurable space (4%, &%) =
Xi——w (Ar, o ) Where (Ar, /1) = (4, ), all k; A” is the space of all doubly infinite sequences
X = (-, X-1, X0, X1, - - +) from 4; and &/ is the usual product o-algebra. For each integer n,
let (4", /™) = Xj-1 (Ar, %) and a typical element of 4" is denoted by x" = (x1, - - -, X,). Let
X1,:4” — A' be a vector coordinate function defined by X4(x) = xk = (xn, - -+, Xn+s-1), all x
€ A. When [ = 1, this is simply the nth scalar coordinate function X,. Let T: 4 — 4> be the
usual shift transformation defined by X,(7x) = x+:. Finally for integers m = n let Xy, »:4
— A”~™*" be another vector coordinate function defined by Xmn(X) = X(nm = (Xm, * - -, Xn),
in which the actual coordinates of the vector are emphasized.

We denote by [4, p, X] the discrete-time source with underlying alphabet A, probability
measure p on (4%, /%) and name X. If 4 is a finite alphabet, then [4, pu, X] is called a finite
alphabet source. A source is stationary (ergodic) if y is stationary (ergodic) with respect to 7.
A source is aperiodic if p({x € A”|T"x = x; n =1, 2, -.-}) = 0 and periodic if u({x €
A®|T"x=x;n=1,2, ...}) = 1. If a source is ergodic, then it is either periodic or aperiodic.

Denote the cardinality of a set F by || F||. A measurable set F is called a finite dimensional
set if, for some integer N, F= .-+ X A_y_; X F' X An+1 X - - - where F' € X} _n . Let R
= {Rx}#L1 be a partition of A, that is, the atoms R, € &/ are disjoint and UL, R, = A>. If
| R]| = M < o, then R is called a finite partition. If each atom of R is a finite dimensional set,
then R is called a finite dimensional partition. If R and S are two partitions, their join is

RV S={RNS;|RER,SES).

Define the entropy of a partition R by H(R) = — Y!%I u(R;) log u(Re) where all logarithms
are to the base 2. For a source [4, p, X], define the mean entropy rate by

H(X) = lim sup,. n ' H(X")
where
H(Xn) = SUPre= (n) H(R)

and %(n) denotes the set of all finite partitions of (4", &"). Define the Kolmogorov-Sinai
invariant of ergodic theory by

H(X) = suprea H*(R)
where
H>(R) = lim supn. n *H(V 2} T*R)

and # denotes the set of all finite partitions of (4%, &#*). It is clear for a finite alphabet source
[4, p, X] that H(X) = #(X). In general #(X) < H(X) and the inequality may be strict
(Pinsker (1964)).

Let A, /), be an abstract measurable space where the abstract space A is called the source
reproduction alphabet. For any integer L, a sliding-block code of constraint length 2L is any
measurable function f”:4**' — 4. Let %5 denote the class of all sliding-block codes with a
finite or infinite constraint length and let %’ denote the set of all sliding-block codes with a
finite constraint len§th and || f*“(A4**") || < . The source reproduction process { X} %=—o
defined by X = fP(Xo-r,8+1)) = f“(Xer, -+, Xi, -+, Xpsz). Connecting a stationary
(ergodic) source [4, p, X] to a sliding-block code /' induces a stationary (ergodic) pair
process [4 X A, p, (X, X)] where the probability measure p is defined for E € &/, F € o * by
P(E X F) = u(E N fP7'(F)) where f’~'(F) denotes the inverse image of the set F.

We note that a sliding-block code f“ is equivalent to the partition R{(L) = {Ra}sea of 4~
where Ra {x € A”| f”(x) = 4} and that a partition R = {Rx}#Z, is equivalent to the sliding-
block code defined by f§”(x) = k if x € R, where 4 = {1, 2, - - -, M). In particular, note that
%5 is equivalent to the set of all finite, finite dimensional partitions of 4. For a partition R,
if the source reproduction process defined by f” is aperiodic (periodic), then R is called an
aperiodic (periodic) partition.



ENTROPY COMPRESSION CODING 1087

Let p:4 X A — [0, ] be a measurable function, called a per-letter distortion measure,
which specifies the cost in reproducing the source letter x by the source reproduction letter X.
A sliding-block code has expected distortion

o(fP) = Elp(Xo, [ (Xi-1.1)))]

where E, denotes the expectation over y and mean entropy rate H( f*)) = H(X). If the source
is ergodic and p( ") is finite, then it is easily shown that lim, . n~* $328 o(Xk, X&) = po(f©)
almost everywhere with respect to p.

The goal of entropy compression coding is to produce a source reproduction process whose
mean entropy rate is less than some fixed number and which well approximates the original
source in the p sense. Therefore, we define the OPTA function using sliding-block codes with
a mean entropy rate constraint by

8s(R) = infrw e =r p(f*)
35(R) = infroe vy =r p(f*).

Since €5 C %s, 05(R) = 8s(R).

The following theorem shows that the Shannon (1959) distortion rate function is a general
lower bound to the OPTA functions ds(R) and 85(R). It was first established by Gray, Neuhoff
and Omura (1975) for finite alphabet source and source reproduction spaces and generalized
to abstract source and source reproduction spaces by Dunham (1979).

CONVERSE THEOREM.  Let [A, u, X] be a stationary source having a distortion-rate function
D(R) with respect to a per-letter distortion measure p. Then

35(R) = 8s(R) = D(R)
for all rates R, except possibly at the rate R, = inf{R = 0| D(R) < }.

3. The sliding-block entropy compression coding theorem. The basic result of this paper
is the following theorem.

THEOREM 1. Let [A, p, X] be an abstract alphabet, stationary and ergodic source having a
distortion-rate function D(R) with respect to a per-letter distortion measure p. If there exists a
reference letter a* € A such that

J’ p(Xo(x), a*) du(x) < o,

then
§5(R) = ds(R) = D(R)

for all rates R € (0, ).

The basic idea for proving the positive half of the theorem is to construct a good sliding-
block code from a good block code. The fundamental tool required for this construction is a
variant of the strong Rohlin theorem (Shields (1973), Halmos (1956)) given by the following
theorem.

VARIANT OF THE STRONG ROHLIN THEOREM. Let [4, p, X] be a Stationary, ergodic and
aperiodic process with a finite, finite dimensional and aperiodic partition P. Given vy, q = 0 and an
integer L, there exists a set F € &/ called the base where the following holds:

(1) F, TF, ---, T""'F are disjoint;

Q) wUIS T*F) =1 - y;

() T | w(P) = pr(P) | <, where pr(G) = (G N F)/u(F); and
' (4) Fis a finite dimensional set. .
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Proor. The theorem follows easily from Theorem 3 of Shields and Neuhoff (1977) by
letting F = {x € 4”| Xo“(x) is an N-cell} and choosing & small enough for the partition \/
L-1
%0 T°P.

CoMMENT. The collection of sets {T*F|k =0, .-, L — 1} together with the partition P
will be called a (v, L, P, n)—gadget or simply a gadget. The set G which is the complement of
the set UfZ} T*F will be called the garbage set. Property (2) states that almost the entire
measure of the space is contained in the gadget. Property (3) states that the distribution of the
partition P on the base will be almost the same as the distribution of the partition P through
the entire space. Property (4) states that the base set F is determined by the finite number of
coordinates X_n,n) for a sufficiently large integer N. This version differs from the strong form
of the Rohlin theorem in that the strong Rohlin theorem requires u(P;) = ur(P;) for all i = 1,
.+, || P||; but the base set F is not required to be finite dimensional.

4. Proof of main result. Let [4, u, X] be a stationary and ergodic source having a
distortion-rate function D(R) with respect to a per-letter distortion measure p. Let a* € 4 be
a reference letter where

f p(Xo(x), a*) du(x) < co.

The converse theorem shows that §s(R) = 8s(R) = D(R) for all R € (0, ) and it remains to
show that §5(R) < D(R).

First, consider the case where #(X) = 0. Fix a rate R € (0, ») and an € > 0. The conditions
of the theorem imply that the theorem on block source coding with a fidelity criterion holds
(Berger (1971) Theorem 7.2.4). Therefore, there exists for sufficiently large block length L a
block code f§’:4" — A" where L™ 'log|| f#’(4")|| < R and

E[pu(X5, f5(X5)] < D(R) + €

where pr(x", %) = L™ Y21 p(xx, Xr). Let B denote the set consisting of all distinct source
reproduction symbols which can be produced by the block source coder f5’ and note that
[ B|| < . Let fs be a sliding-block code defined by mapping the source symbol X, into a
source reproduction symbol X, in B of minimal distortion, that is, fs is a block code of block
length 1 formed by the set of source reproduction symbols B, and it is clear that fs € %s.
Computing the mean entropy rate, it follows from Pinsker (1964) Theorem 7.2.1(7) and page
76 that

H(fy)= HX)=#X) = #X)=0=R.
Computing the expected distortion, the stationarity of the source and the fact that f$°(4%)
C B" yields

o(fs) = ELp(Xo, f(X0))] = ELL™" Thke1 p(Xe, f5(Xi))]
= E[pr(X0, f5'(X0)] = D(R) + €.

Since € is arbitrary, this then implies that 85(R) =< D(R) for all R € [0, «].
Next consider the case where #(X) > 0. To simplify the proof, we shall break it up into a
number of steps.

Step 1. Fix an € > 0 and chose a rate R € (0, «). By the continuity of the distortion-rate
function for R > 0, there exists a sufficiently small § > 0 such that
D(R — 8) < D(R) + €/4.
Fix a § to satisfy the above and we may also assume that
d<e/4
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The conditions of the theorem imply that the theorem on block source coding with a fidelity
criterion holds (Berger (1971) Theorem 7.2.4). Therefore, given § > 0 and rate R — §, there
exists for sufficiently large L a block code f§”:4" — A" where L™'log||f %’ (4")|| =R — & and

M E 1[pu(X5, f5(XE)] = DR — 8) + 8 < D(R) + €/2.

Fix a length L to satisfy the above and we may also assume that L is large enough so that
h(L™) =<8

where hy(L™") = —L 'log L™ — (1 — L™)log(l — L™).

STep 2. Consider the composition of the mappings X5:4™ — A" and f§:4* — A%,
f5°(X5), that is, we apply the block code to the source symbols X5. Since the rate R is finite,
M=|f§ (4")| = 2" < = and let %1, ---, Xy represent these M block code words, each
consisting of L source reproduction letters. For k = 1, -+ -, M, let E, = [f#(X5)]™ (k) = {x
€ A”| f§(XG(x)) = %»}, the inverse image of the source reproduction word X, and clearly the
partition E = {E,|k =1, --., M} is a finite, finite dimensional partition of 4. In fact, the
o-algebra generated by the partition E is the smallest o-algebra such that £$”(X?%) is measurable.

Suppose for some n > 0 and y > 0 we were to use the variant of the strong Rohlin to
construct a (y, L, E, n)-gadget and then imbed the block code f§” on the gadget as described
by Gray and Ornstein (1976). If we were to look at the set E, N F on the base of the gadget,
then, for all x € E, N F, we have that f§”(X5(x)) = X; that is, the sequence of names of
points in the column located on the gadget directly above the base set E; N F is mapped by
the block code f§” into the reproduction block of symbols %.. By property 3 of the variant of
the strong Rohlin theorem | ur(Ex) — u(Ex) | =< n, that is, each block reproduction word % is
produced with nearly the correct probability. But we note that there is no control over the
distortion pr(X“(x), Xx). Since a general distortion measure p may be unbounded, a poor
approximation on one atom of the partition may cause an unbounded expected distortion for
the sliding-block code.

We now further refine the atom Ej so that the distortion p.(X5(x), Xz) can be precisely
controlled for each point x € E; N F. Decompose [0, %] into a countable number of consecutive
nonoverlapping intervals [(j — 1)8, j6) of length 8 and let the set E% be the inverse image of
the jth interval under pr(X§(x), k). Then the atom E, has been refined by a countable
partition E* = {E%};2, where for any x € E, N F

2 (J = D8 = pL(X5(x), &) < jb.

In order to later use the variant of the strong Rohlin theorem, it will be necessary to obtain a
finite partitioning of E.

Since a* is a reference letter and since p is nonnegative, the function p(Xo(x), a*) is an
absolutely integrable function. By the continuity theorem for Lebesgue integrals of absolutely
integrable functions (Hewitt and Stromberg (1965), Theorem 13.34), there exists a y > 0 such
that if £ € &/* and u(E) < v, then

(€) f p(Xo(x), a*) du(x) < €/16L.
E

Fix a y to satisfy the above and we may also assume that
Yy=e¢€/2LRlog L.

Since Y21 w(E%) = w(Ex) < 1, there is a finite number 7, such that

@ S met WER) < y/M.

Let Gy = UjZn,+1 E%. Consider the finite partitioning of E consisting of {Gi, E%|j=1, -+,
ng}. From (2), we see that the distortion pr(X (), %) can be controlled within an amount &
forx € EXNFandj=1, --., n,. For x € G N F, if we were to now relabel this part of the
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gadget with the sequence of L reference symbols a* = (a*, - - -, a*) instead of X, the expected
distortion of p.(X%, a*) would be small, independent of the actual value of p(X§ (x), Xx) since
wG:NTF)<yfori=0,...,L— 1

For each k = 1, ---, M, choose an n, and G}, as described above. Letting Go = UL, G, it
follows from (4) that

®) w(Go) < .
Finally define a finite, finite dimensional partition Q by
(6) Q0={Go, Ehlk=1,---, M;j=1, -, m}.

StEP 3. Since #(x) > 0 and p is ergodic, the process [4, p, X] is aperiodic. However, the
partition Q may not be an aperiodic partition of [4, i, X]. We now further refine the partition
Q to insure that it is aperiodic.

By the definition of the Kolomogorov-Sinai invariant #, there exists a finite partition R of
A” where #*(R) > 0. Then as in step 3 of the proof of Lemma 1 in Gray, Neuhoff and
Ornstein (1975), R can be approximated by a finite, finite dimensional partition P where
H#*(R) is arbitrarily close to #“(R). Thus a partition P can be chosen where #*(P) > 0 and
clearly P is an aperiodic partition. It is then easily shown that P \/ Q is a ﬁmte, finite
dimensional aperiodic partition.

Fix an n > 0 where n < y and

n LAl L jO < €/8.

Using the variant of the strong Rohlin theorem construct a (y, L, P \/ 0, n)-gadget which has
a finite dimensional base set F. Restricting attention to the Q partition on the base F, we now
specify a sliding-block coder fs by
fs(x) = a* if x € G; A
) = g* ifforsomeO0<i<L—-1,T7'x€E€GNF
=X if forsome0=<i<L—1,somel <k=Mandsomel=<j=<mn;
T™'x € E} N F and the ith symbol of R, is X.

In words, we label each column on the gadget directly above the set E% N F with the block of
reproduction symbols 4., we label the column directly above Go N F with the block of
reference symbols a* and we label the garbage set G with the reference symbol a*. For any x
€ UL, U¥y E% N F, our sliding-block source coder acts as if we were applying the block code
f%’ directly to the corresponding source vector X§(x).

Since the finite number of sets used in the definition of the sliding-block code fs, (7), are
all finite dimensional sets, it follows that fs is a sliding-block source coder with constraint
length 2N for a sufficiently large integer N. We also observe that the largest number of possible
reproduction symbols which the sliding-block code fs can output is

®) Ifs(@™ <=1+ L|fFAY | = L2"R +2 < .
Therefore, fs € 5.

Step 4. We now compute bounds for the expected distortion p( fs). The definitions of the
partition Q and the base set F imply that

o(fs) = J' p(Xo, fs(X-nn))) du
Aﬂ)

® =3 3 T J’ p(Xo, fs(Xi-nny)) du
TYE N F)

+ Y J - p(Xo, fs(X—nn»)) dp +J’ p(Xo, fs(X-n.v))) dp.
THG,NF)

G
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Examining the first term of (9), the stationarity of u and the definition of fs, (7), imply for
any l =k =Mand | = =< n that

(10 2 p(Xo, fs(X(-nny)) dp = L J pL(XG, %) du = Ljdp(E% N F)
TYE{NF) E/NF

where the last inequality follows from the definition of the set E% and (2). Using (10), the fact
that u(F) > 0 and property 3 of the variant of the strong Rohlin theorem,

P AP ey f p(Xo, fs(X-nn)) du = L Y31 B34 jSur(ERu(F)
(11) TE/NF)
= Yl T jOW(ER) + 1 Tiki T o

where the last inequality follows from the fact that u(F) = L. For the first term of (11) the
definition of the set E% and (2) show that

12) Ry T jO(ES) = Til X1 jOu(ES)
=YL Y J' [o(XE, f5(X)) + 8] du” = D(R) + 3¢/4
E}

where the last inequality follows from the choice of the block code £’ and the choice of 8. By
the choice of 7, the second term of (11) is bounded by €/8 and combining this with (12) yields

(13) Oy BB ey J’ p(Xo, fs(X(-nn))) du = D(R) + Te/8.
TYE]NF)
Examining the second term of (9) the definition of fs, (7), shows that

s J’ p(Xo, fs(X(-n.n))) du
THG,NF)

(14) =Yy f p(Xo, a*) dy
THG,N F)

=Yl e/16L =¢/16

where the last inequality follows from the fact that u(7*(Go N F)) < u(T"Go) = (Go) < y and
relation (3).
Examining the last term of (9) the definition of fs, (7), shows

(15) J’ o(Xo, fs(X-nny)) du = J 0(Xo, a*) du<€/16L < €/16
G G

where the last inequality follows because u(G) < y by the construction of the (y, L, P v/ Q,
n)-gadget and relation (3).
Using the bounds (13), (14) and (15) in (9) yields

(16) o(fs) < D(R) + e.

STep 5. We now compute the mean entropy rate of our distorted reproduction of the
source. The conditions of Lemma 2.2 of Gray, Ornstein and Dobrushin (1980) are satisfied
and, therefore,

an HX)= L og|fU"| +h(L)<R—-8+8=R

where the last inequality follows from the choice of the block code book f§” and the block
length L.

STep 6. In Steps 1-3, a sliding-block code fs € %5 has been constructed. Then (16) and
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(17) together imply that 8s(R) = D(R) + € and since e is arbitrary, 8s(R) = D(R) for all rates
R € (0, »), completing the proof of the theorem.
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