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SIZES OF ORDER STATISTICAL EVENTS OF STATIONARY
PROCESSES!

By DANIEL RUDOLPH AND J. MICHAEL STEELE
Stanford University

Given a process {X,}, any permutation o:[1, n] — [1, n] determines an
order statistical event A(0) = {Xo1) < Xo < - -+ < Xo(n)}. How many events
A(o) are needed to form a union whose probability exceeds 1 — €? This question
is answered in the case of stationary ergodic processes with finite entropy.

1. Introduction. One of the key properties of independent, identically distributed contin-
uous random variables Y,, 1 =i =< n, is that the order statistical events defined by

{w: Y,y < Yoy < +v» < Yoy}

have the same probability 1/a! for any permutation ¢:[1, n] — [1, n]. The main objective of
this paper is to determine the extent to which this property is retained asymptotlcally for
processes which are only assumed to be stationary and ergodlc

To set the problem precisely, we suppose that { X}, is a strictly stationary, ergodic process
defined on the probability space (§2, % P). We will also use the representation of such a process
by Xiw) = f(T""w), 1 =i < o, where T:Q — Q is an ergodic measure preserving
transformation and f:§ — R is a measurable map. To avoid inessential messiness, we also
restrict attention to processes which satisfy the continuity property

(L.1) P(X,= X,) =0, i),

Our approach to the analysis of the order statistical events is motivated by the Shannon-
McMillan Breiman theorem, and particularly the phrasing of that result in terms of the
equipartition property ([1], page 135, [9], page 35 (6.3)). Loosely speaking, that phrasing tells
one in terms of the entropy of T just how many sets of a certain type are needed to cover most
of Q.

To establish a comparable result for the order statistical events, we let Q,.(F) be defined for
any F € & by

On(F) = |{02 Xo(w) < X (w) < + v+ < Xom)(w), for some w € F} I

Here | S| denotes the cardinality of the set S, so Q.(F) is equal to the least number of order
statistical events

As = {w: Xs)(w) < Xo)(w) < + -+ < Xyy(w)} which one needs to cover F.

The quantity of main interest is now defined for € > 0 by
(1.2) Q7 (€) = ming pE)<e Qn(Q\E),

so QX(e)is the least number of 4, which will cover a set of probability 1 — e.

To familiarize O} (¢€), we note that if the { X,};2; are i.i.d. and satisfy (1.1), then Q% is equal
to the least integer greater than (1 — €)n!.

In this particular example {X,};Z; is a process with infinite entropy, and Q%(e) is near its
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a priori upper bound. One intuitively expects that Q *(€) should be of smaller order than n! for
processes with finite entropy. We show more precisely that in that case Q¥(e) is, in fact,
exponentially smaller.

THEOREM 1.  For any stationary ergodic process { X,};=1 which has finite entropy and satisfies
P(X; = X)) =0, i # j, there is for any € > 0 a sequence of positive reals p, tending to zero for
which

(1.3) Qx(e) = (nYpr, forall n=1.

Before giving the complementing result, two comments are in order. In the first place we
note there are many processes satisfying the hypotheses, since if f satisfies P{w: f~(w) = y}
=0 for all y € R, the condition P(X, = X;) = 0, i 5 j, trivially holds for any measure preserving
T. Also, transformations of finite entropy not only abound but play key roles in such distinct
subjects as statistical mechanics and the metrical theory of diophantine approximation ([1]).

Second, we note (1.3) is equivalent to saying QX (e) = o(p"n!) for each p > 0. The phrasing
of Theorem 1 was chosen in view of the next result which makes precise the sense in which
Theorem 1 is best possible.

THEOREM 2. For any positive p, which tend to zero there is a stationary, ergodic process

{X.}Z1 with P(X; = X;) = 0, i # j, which has zero entropy, and which satisfies

Qx(e) = (nhpn

for infinitely many n and any € < 1.

The preceding theorem is easily seen to be a consequence of the next result which shows
that the underlying T plays a surprisingly small role in determining Q7 (e).

THEOREM 3. Given any ergodic measure preserving transformation T on a nonatomic
probability space (R, %, P), and given any p, > 0 tending to zero, there is an f:Q — [0, 1] which
satisfies

(1.4) P({w:f’l(w)=x})=0, Vxelo,1],
and
(1.5) 07 (e) = (nhpx

for infinitely many n and any € < 1.

In the next section we give the proof of Theorem 1 as a consequence of a counting argument
and the application of the Shannon-McMillan-Breiman theorem to an appropriately chosen
partition.

The proof of Theorem 3 is more subtle and makes use of a generalization of a combinatorial
structure known as de Bruijn sequences.

Since the construction provides a technique for building copies of a finite sequence of
independent random variables inside a general stationary process, the construction should be
useful in a variety of problems.

Finally, in the fourth section a brief speculation on the theory of order statistical events is
ventured.

2. The upper bound method. For any measure preserving transformation S:Q — € and
any partition 2= {P,}/-; of &, the sets given by

Q.1 N5 {w:S¥(w) € P}

for some 1 = i, = s will be called the n-p-S name associated with the n-p-S alias (i1, i,
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-+, §}. If §'is ergodic and has entropy H(S) < a, the Shannon-McMillan-Breiman theorem
says there is an no = no(e, @, S, p) such that for n = no there is a collection of 2°" of the n-p-S
names whose union has probability at least 1 — e.
Since P(X; = X;) = 0, i # j, the disjoint sets P, given by the permutations of {1, 2, - - -, k}
by
P,= {w:XUm < KXoy < o+ < Xa(k)}

have union £ (except for a set of measure zero). The partition p = { P,} can be related usefully
to the possible orderings of {X;}%2;.

LeEMMA 2.1.  For any n-p-T* name A we have

Onr(A) = (nk)/ (k)"

Proor. First consider n = 2. The 2-p-Tk name A has an associated sequence (i1, i2); and
i; determines the ordering of R; = {Xi(w), Xo(w), -+, Xr(w)}, while i> determines the order
of Ry = { Xp+1(w), Xr+2(w), « ++, Xor(w)}. To count the possible orderings of R; U Rz, we note

the set R; determines k + 1 intervals (—o, X)), (Xa), X&), * - +» (X(n), ©) where { X(;) } 2, are
the order statistics of {X;}%,. Since there are 2]:( > ways of putting the order statistics of

{X;}2k,. into the k + | intervals, we have

Qor(4) = (%f) = 2K/ (k")

In general, we see for R, = { Xje+1, Xp+2, + -+, X(+1x} and 0 < j < n thatUj—o R, determines

(t+ l)k>
k

(¢t + 1)k + 1 intervals into which the order statistics of R;+; can be placed in ways.

Making the sequential choices we have

Oui(4) = (2:) (3,:‘) (’;f) — (k)R

which completes the lemma. 0O

To prove Theorem 1 we need to bound the number of n-p-T* names which are needed to
cover a set of probability 1 — e. We first note that any nk-T-p name is contained in some
n-T*-p name because for any alias {i;}}% " one has

NS {w:T7*w e P} D! {0:T7wEP,}.

The Shannon-McMillan-Breiman theorem applied to the ergodic transformation T with
entropy H(T) < a < = says there is a collection & of 2*** of the nk-p-T names whose union
contains Q\E with P(E) < € for all n = no = no(e, p). By the preceding remark this also implies
there is a collection ¢ of 2°™* of the n-p-T* names with the same property.

We now see

O0nk(Q\E) < Tacw Onr(d) < 2°™ (nk)(k!)™

where the last inequality follows from Lemma 2.1. For any k we can write m = nk + r with 1
=r =<k one has

O1(€) = Qluenr(e) = 27" V¥((n + DI)I(KN) ™

provided n = no.
Since (n + Dk!/m! < ((n + 1)k)* and k! = k*e™*, we have

Q;ﬁ(e) = m![z(a+1)m((n + l)k)k(k/e)—k(n+1)}
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and the fixed integer k was arbitrary, so
Qn(e) = O(p™m!)

for all 7 > 0. The implied constant depends not only on H(T') but on T through the no given
by the SMB theorem. As noted earlier, this last relation is sufficient to imply Theorem 1.

3. The lower bound method. The first lemma required for Theorem 3 is the so-called
strong form of Rohlin’s lemma ([8], page 22) which provides a systematic method for applying
combinatorial constructions to stationary processes.

LeMMA 3.1. Suppose T is an ergodic, measure preserving transformation on a nonatomic
probability space (2, 7, P). For any finite partition #'= {H1, Hz, - -+, Hs} of Q and for any real
€ > 0 and integer m there is an E € F with the following properties:

(3.1 E,T7'E, --., T"™"'E are disjoint;
(3.2) PUN'TT'E)=1—-¢;
(3.3) P((TE) n H,) = P(E)P(Hj), Osi<m, l<j=s

The second lemma we need is a graph theoretic result due to I. J. Good ([5], [6], page 95)
which sharpens a well-known result of Euler.

LeMMA 3.2.  If G is a connected directed graph, and if at each point of G there are the same
number of arcs going out as coming in, then there is a directed cycle in G that goes through every
arc of G in its given direction, and uses no arc twice.

As an application of Lemma 3.2, we will obtain the existence of what can be called s-ary
de Bruijn sequences. To introduce these sequences, we recall the classic result of de Bruijn
which says the following: given a positive integer n, there is a sequence of 0’s and 1’s of length
N = 2", say aiazas - - - an, such that the n-tuples @,4,+1 - -+ @,+»-1 are a complete list of all 2"
of the n-tuples with alphabet {0, 1}.

Here a; is understood to follow aw, etc. in the cycle. For example, when n = 3, the cycle
(00010111) contains every 3-tuple of 0’s and 1I’s exactly once. We will use the following
generalization where &/ is an alphabet of s letters and 4 is the set of all ordered k-tuples of
A

LEMMA 3.3.  There is a sequence aias - - - ay with N = s* of the elements of o/ such that each
element of A occurs exactly once in the set of k-tuples (@r+1, @rs2, -+ +, Arex), where 0 < r < s*
anda,=a,ift > s* andt — s* = u.

Proor. We define a directed graph G whose edges are the ordered (k — 1)-tuples formed
by elements of «/. We have an edge from (b1b; - - - br—1) to (b1, - -+, b%—1) provided by = b1,
bs = bj—p = br—; and b}y is arbitrary. Every vertex has in-degree and out-degree equal to s,
so Lemma 3.2 implies there is a cycle which traverses the edges of G and uses each exactly
once. From such a cycle the sequence of a, € o7 given by the successive bx-, is easily checked
to satisfy the claim of the lemma.

The proof given of Lemma 3.3 is only a mild modification of the application given by
Good [5] and which Bondy and Murty [2] page 181, relate to the design of an efficient
computer drum. A completely different algorithmic proof of Lemma 3.3 was developed
independently in recent work of Fredricksen and Mariorana [4].

We now proceed to prove Theorem 3 by applying the preceding lemmas infinitely many
times.

We suppose now that { p,}:21, {#.}721, {h:}7: are increasing sequences of positive integers
and {e};-1 is a sequence of positive reals decreasing to zero. We will define a sequence of
functions go(w) = 0, g1(w), ga(w), - -, gr(w), - - - where each gr(w) will be defined via ps, t,
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he, €, and the preceding gi(w), 0 < j < k. Also, we should remark that each of the gi(w) will
assume only finitely many values.

For notational convenience we temporarily write p = pi, t = tr, h = h, and € = ;. We
define # by {a:a=3%71€627,&=00r, 1 =r =< p}, and note by Lemma 3.3 there is a
sequence of | o | = 2% elements of & which form a cycle in which each ordered r-tuples with
letters from .« appears precisely once among the (@i+1, @iz, +++, @uss) for 0 =i <2,

We now apply Lemma 3.1 to obtain an E such that for 0 < k <2"*" the sets T~*E are
disjoint and their union has probability at least 1 — e. For the finite partion # we take the
partition given by the distinct values of the sum S g(w)2 * where gj=p1+pa+ -+ +pj,
l=j<k.

We now define gi(w) = a,, if w € T-**" for 1 <i<h2” and i = i’ mod 2*. Finally, we take
gr(w) = 0 if w is in none of the T™'E, 1 =< k = h2”.

The whole point of this construction is that now by setting 2 equal to the union of T™'E
with 0 < i< (h — 1)2% and letting Pr(4) = P(A4 n )/ P(Q4), we see that the random variables
g1(w), gi(T7'w), - -+, ge(T~""'w) are independent in the probability space (0, Pk, %) where
P = {A n Q:A € F}. Moreover, these random variables are also independent when
conditioned on the o-field given by the partition s To prove these assertions one only has to
note that for any H € #we have by (3.1) and (3.3)

P({ gr(w) = 50277, gi(T'w) = 51277, « oo, (T Mw) = 514127} 0 H)
= (h — V)P(E)P(H)/(h — 1)2P(E) = 2" P(H).
Finally, we are able to define f(w) by letting g, =3 * | p, and setting

S(w) = Xi-1 gr(w)27%

The sum representing f(w) converges for all w, and one finds no difficulty in checking that
for Xi(w) = f(T"*"'w) we have P(X, = X;) = 0 for all i # j.

To prove Theorem 3 we suppose that the sequence p, | 0 and € € (0, 1) are given, and we
will proceed to show that { p,}i=1, {#.}iZ1, {h}iZ1, and {€}iZ: can be chosen so that O () =
n!py for infinitely many n.

For the intervals I, = [s27%", (s + 1)27%") with 0 = s <2%' we define random variables
v, as the number of elements of % = {i: X; € I,, 1 < i =< n}. The ordering of {X.}ic,, is
completely determined by the ordering of { gx(T™"*'w)}:e.s, except for at most those w € 7=
{wigh(Tw) = gx(T7*'w), for some 0 < i < j < n}. Using the P;-independence of the
{g(T™""'w)} 1 =i < nfor n =<t and the conditional independence given # we have

P{ Xy < Xoy < +++ < Xomy} N H)
=€+ h;l + P({Xa(l) <X < - < Xa(n)) nHN Qk)

Se+h' + P({Xoy < Xo < +++ < Xy} N H)
< e+ hi' + Pu(9) + Po(H)(Is ») 7"

Since there are only (;) places a tie can take place and the Px-probability of any such tie is

27% we have
P =(1—e—hi" ) 'P(I)= 2(;)2“”e < n?27h,

Also, Px(H) = P(H) for all H € # by (3.3); so summing over # we have
P(Xotty < Xo < +++ < Xom)) < 2% (ex + hi") + n2277 + [ (ns) "

Setting r = 27" we have Yi=) », = n. Hence, [[s(!) = [[s T'(»s + ) = I'((n + r)/r)" by the
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convexity of log I'(x), [7], page 285. We begin with the bounds
(34) Q:(G) = (l - e){maxaP(Xam < Xogy <+ < Xa(n))}_l

n+r
r

, -1
=(- e)n!{F(n + l)F( ) +T(n+ DQ7Pn® + re, + rh;l)} .
Since r = 29" is fixed (as we choose €, px, 1, and h;), we invoke Stirling’s formula to obtain
T'(n+ DI'((n + r)/r)™ = (r + 1)" for n = ny(r). Since p, | 0, we can now choose ¢ = #, = no
so that

3.5) (r+ D" =241 —e)L
Finally, we choose e, A, and p; so that
(3.6) (Tt + DR + rex + rhi")} ' = 2pi(1 — €)™

By the elementary inequality 1/(a + b) = (%)min{1/a, 1/b} applied to (3.4), (3.5), and (3.6)
foreacht =1, k=1,2, ... we have

OX()=pn(n!) for n=t,t, - --

The proof of Theorem 3 is thus complete. O

4. A brief speculation. The only two cases where one has a reasonably complete under-
standing of Q¥ (e) are the case of continuous i.i.d. random variables and now in the case of
continuous stationary ergodic processes with finite entropy. These two cases are in a way polar
opposites of generality, and many important classes of processes lie in between.

Since many basic probabilistic events are simply unions of the order statistical events, it
would seem to be of considerable interest to discover those cases in which a precise under-
standing of Q¥(€) can be obtained.
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