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ON COVERING SINGLE POINTS BY RANDOMLY ORDERED
INTERVALS!

By HENRY BERBEE

CORNELL UNIVERSITY

A strictly increasing, pure jump process with stationary, independent
increments hits a single point » > 0 with probability 0. Adapting a method of
proof, due to Carleson, we obtain a similar result for processes with exchange-
able increments. This enables us to solve a regularity problem from game
theory concerning probabilities of covering single points by randomly ordered
intervals.

1. Introduction. Chung’s problem for processes with stationary, independent incre-
ments (i.e., Lévy processes) was formulated by Meyer (1969) as a problem on hitting
probabilities. It conjectures that for an ascending, pure jump Lévy process with infinitely
many jumps in each interval, the probability that this process hits an arbitrary point » >
0 is zero. Kesten (1969) proved this result and investigated also more general Lévy
processes. Bretagnolle (1971) indicated important simplifications in the proofs. Carleson
gave an analytic solution of Chung’s problem (see Assouad (1971)).

The main theorem of this paper can be formulated also as a result on hitting probabilities
of single points for a process X. This process has dependent increments. We will consider
it locally at ¢ as a Lévy process with a Lévy measure that is random and depends on ¢. It
is then possible, despite this absence of time homogeneity, to use Carleson’s method to
obtain the required result. A solution of Chung’s problem on Lévy processes can be
obtained from our result by using a suitable conditioning on the Lévy process.

Let (Y:)i=1 be a sequence of independent random variables, uniformly distributed on
(0, 1). We may assume that Y, # Y, for { # j. Write i aj if Y; < Y;. Then a is a linear order
on the positive integers N, such that

P(kia - ak,) = l
n!

for any n-tuple (%1, - - -, k,) of distinct positive integers.

Assume a; = a; = - .. > 0 are constants with total sum 1. Define open intervals
(1) Jii= (Y joi @y @i + Y jui @), i=1
These random intervals are disjoint and contained in (0, 1). Their total length is 1. If { «
k then sup J; < inf J;.

THEOREM 1. P(r€uy; J;)=1forre (0,1).

Call i € N the pivot for r if

(2) Vi@ <r=a+)ua.

In the theory of weighted majority games, pivots play a central role in the determination
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of the value of the game. Theorem 1 implies that there is a pivot with probability 1 for any
r € (0, 1). This answers a question in Shapley (1962). Earlier Shapiro (1955) proved in an
unpublished paper that this result was valid for A—a.e. r, where A is the Lebesgue measure
on (0, 1).

Calli € ({1, ..., n} an n-pivot if

@) Y aitmmn @ < T =< @i+ Y jairmzn G,
By Theorem 1 the inequalities in (2) are strict, apart from a P-null set. It follows that with
probability 1
lim,,. n-pivot = pivot
and the pivot is determined by the order a on a sufficiently large finite random subset of

N (see also Artstein (1971)).
A slightly weaker result than Theorem 1 can be proved easily.

PROPOSITION 2. P(r € Uz J;) =1 for \—a.e.r.

ProoF. Let xy, be the indicator function of Ji. The proposition follows from

1 1
f P(rEUwmd)dr=E f Y1 Xo(r) dr = E St ANJ) = 1.
0 0

Here we used that x J,(r), with J; = Ji(w), is jointly measurable in (r, ). O
Let us now reformulate Theorem 1 as a result on hitting probabilities. Define

(4) X, = Y= @i xy,u(?), 0<t=1.
Note that J; = (Xy,-, Xv,). We prove

THEOREM 3. P(3t:X,=r)=0forre (0,1).

By symmetry considerations this implies P(3 ¢:X,- = r) = 0 and hence Theorem 1
follows from Theorem 3.

The process X is right-continuous. We may assume that in each rational interval in
(0, 1) there lies some Y;. Hence X is strictly increasing. Write 7', := inf{t > 0:X, = r}, r €
(0, 1), and note that 3 ¢: X, = r if and only if X7, > r. By proposition 2

(5) PXr.>r)=1 for A—ae.r,

and we have to show that the equality in (5) holds for all r € (0, 1). Analogous to a result
in Meyer (1969) we prove in Section 2, as a first step in the proof of Theorem 3:

ProrposiTION 4. For anyr € (0, 1)

T, .
(6) PXr,>r)=E J os(r — X,) ds.

0

" The function o, will be specified later. Formula (6) describes the probability that the
process X overshoots the level r. Intuitively the formula becomes clear by assuming that
locally at ¢ the process is a Lévy process with Lévy meassre A,. Then the intensity of a
jump exceeding x is o:(x) = A.(x, ). In Section 3 we investigate (6) by means of Carleson’s
method, to show that in (5) the equality holds for all r € (0, 1).
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2. The overshot formula. To prove Proposition 4 we use a martingale as in Meyer
(1969). Actually, in view of our approach in Section 3, we will derive a slightly stronger
result in Corollary 6.

Definefor0=t<1

o (¢
Xoro(®) o o o), x>0,

(7) 0u(x) 1= Yiz1 1= %

where 4§, is the probability measure degenerate at a. Let & be the saturation of the o-field
o(Y; Nt,i =1),0 =t =< 1. Then it is easily proved that X is adapted to the family
%, 0 = t = 1, which is increasing and right-continuous.

LEMMA 5. Let f be continuously differentiable with bounded continuous derivatives
on [0, 1]. The process

®) [F(X)) — f(Xo)] —J J [/(Xs + u) — f(X,)] dos(u) ds
o Jo

is a martingale with respect to #,0 <t < 1.

ProorF. By (7) wehavefor0<t<t+h=1

t+h 0
E( j f [ + u) — F(X.)] dow(w) dsm:)
t 0
(9) t+h
=2izlE( f [FX, + @) — fx,)) 220 X‘”’” ds| 7).

By our requirements on f these integrals are well defined. Write
Xi o= Yjwi =i @ Xy, 11(8), O0=t=1.

So X' is obtained by removing the ith term of the sum in (4). The terms of the sum in (9)
can be written as

t+h
(10) E(j [fXE + a) — f(XD)] x‘”’( )d |./,>.

Note that X’ and Y; are independent and also conditionally independent, given %. On
{Y, > t} the conditional distribution of Y;, given %, is the uniform distribution on (¢, 1].
Hence (10) equals on {Y; > ¢}

t+h (S) d
E(f [FXE + a) — f(XD)] U ’“"’]s == Y ]dsl%)

l.%)

t+h
- E( J [FXE + @) — FX)] ds -

—E(f f a'f(u) duds |./'¢)

Note that Xy, = Xy + a; a.s. Hence, using the properties of Y; mentioned earlier, (10)

equals on {Y; > ¢}
Xy,
E(f f'(u) du X(t,t+h](Yi) I«%) .
Xy -
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Therefore (9) equals

Xy,

Yiz1:y, >t E‘( () du x 1Y) I.%)

Xy_

Xesh
=E( f'(w) dul%)==E(f(Xt+h)—f(Xt)|-%).

X,

Hence (8) is a martingale. 0
Proposition 4 is an obvious consequence of the following corollary.

COROLLARY 6. If 7 is an (%) stopping time and 0 < r < 1 then

T NAr

(11) P(X;‘,AT >r)=E f os(r — X;) ds.

0

Proor. Letfi <f, < ... be a sequence of functions, satisfying the conditions of the
last lemma, such that f, is nondescending, vanishes on [0, r] and equals 1 on| r + % , 1.

Because {7, <t} = {X, =r} € %, the random variable T, is an (% )-stopping time. Hence
by Lemma 5

TNt o
EfuXra) =E j j (X + u) do,(u) ds
0 0

and so, by letting n — oo
T Ar

PXr.A € (1, ®)) = Ej os(r — X,) ds. ]

‘Jo

Formula (11) can also be written another way. Let v be the occupation measure of X,
ie.,

1
v(B) := f xs(Xy) dt, BC [0, 1] measurable.
0

Then T, = v[0, u]. Note that T, 0 < u < 1, is the right inverse of X. We will substitute
s = T, in (11). The process X is strictly increasing. Hence » is nonatomic and has no mass
on any of the countably many intervals [X,-, X;] for which ¢ is a discontinuity point of X.
On the complement of these intervals holds X7, = u and so (11) becomes

X,

(12) PXrr>r)=E j or,(r — u)v (du).

0

3. Proof of Theorem 3. This section uses Carleson’s method to solve Chung’s
problem to obtain Theorem 3. An account of this method of proof can be found in Assouad
(1971). Some of the changes in the argument we follow were taken from an earlier lecture
by Chung.

Definefor0=t<1

[4

ol(x) := % f oi(x — y) dy, > 0.
0
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Denote ¢ = g and ¢’ = ¢{. By (5) and (12) we have

1= l PXr >x) dx = l E or (x — u) v(du) dx.
0 r—6 ) o r—6 0 )

By using the convention that o, = 0 on [—, 0] we may replace [§ by [, to obtain

1= Ej o%,(r — u) v(du).
0

The discontinuity points of o.(r—-) are contained in the »-null set {r — a;:i = 1} u {r}.
Hence, if the bounded convergence theorem could be applied, the theorem could be proved
by letting 6 | 0.

It is however necessary to make several truncations. First we consider 6, 0 =s =t <1.
By (7) we have with {, :==x;,y)(s), i=1,

(13) (1 = s)os(x) =3&F &
Because lim, o 6 (x) = o, the strong law of large numbers implies

o) _

prm) 1-s a.s.

lim,w(l - S)

Using that {; is monotone in s, one easily sees that the convergence is a.s. uniform in
s € [0, t]. Hence

05(x) _ .
oy 1 uniformly for s € [0, £] as.
and so forp | 0
1 os(x)
T, :=sup{t < 1:§< ) <2,s=t,x=p}11las.

Note that o, is % — measurable and that {7, < t} € &%. Hence 7, is a stopping time.
Consider a stopping time 7 of the form 7:= 7, A £, 0 < p, £ < 1. By (5) and (12) we have

P(r>T,) =< %j P(r=T,) dx
r—6
1 "X,

=3 J PXrp>x)dx=E f o%,(r — uyv(du).
r—6 0

Writing ».(du) := v(du)xp.x,) () we obtain

r-p °

o%.(r — wv,(du) + E j o%,._ (wu(du),

[

(14) Pr=T)<E f

0

where u(du) := v.(r — du)x(o,)(#). Because 7 < ¢, we obtain by using (7) that »,—a.s. for u
=r—-op
1

0 (r_ L 1 2
ot (r u)sl_toa(p)sl_too 5

p) if HS-;-p.
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Hence we can apply the bounded convergence theorem on the first integral in (14).
Therefore by (12) and (14)

PXr.>r)=E j or,(r — u)v,(du)

0

(15)
P
= P(r=T,) — lim infyo E j of,_ (wp(du).
0
Forp | 0 and ¢ 1 1 we have OP(r = T) 1 1. Hence it is sufficient to prove that for any ¢,
the last term in (15) tends to 0 as p | 0. Because 7 < 7, and p is concentrated on [0, p] we
have p—a.s.

(16) of,_(u) = % J:o or,_ (x)dx < % j':a 20(x) dx = 2 o’(u).
Hence it suffices to prove

(17) lim infyy0 £ f o’ (uu(du) -0 for plO.

The proof will use that

Ef or(r — u)v du)
o

is a probability because of (12) and hence

P
(18) E f o(wu(du) < E J 207,_ (Wp(du) — 0 for p | 0.
0
Based on the behavior of
1
x j a(y) dy
JE)=—"2 x>0,
o(x)

we distinguish three subcases in the proof of (17), that have to be dealt with by increasingly
refined estimates.

Case 1. lim sup.j J(x) < . Take p so small that sup.=, J(x) = B < . Because o is
nonincreasing on (0, ©), we have if 0 <u < b

u b
%j o(x)dx = A —1a+ J o(x)dx, where a*:=aVv 0.
0 at

Hence p—a.s. J(u) < B and therefore

19  ou) = % f sy <4 =0"
u—=e0

7 j o(x)dx-S J(u)o (u) = Bo(u).
0

Therefore by (18)

E j o’(wp(du) =< BE J o(u)u(du) — 0forp | 0.



526 HENRY BERBEE

Case 2. lim inf.jo J(x) < %, lim sup.o J(x) = ». Suppose A > lim inf, |, J(x) and take
a sequence X, | 0 such that J(x,) < A. Define for any B > A

Yo :=1inf{x > 0:J(y) = B for y€ [x, x.]}.

Note that y, is a continuity poeint of J for otherwise J( y,—) < J(y») < B, contradicting the
definition of y,. Hence J(y,) = B. We also have y, < (A/B)x, because

"Yn £
J o(x) dx J o(x) dx
0 0

o) ey ) = = A

yB= ynd(yn) =

Let 8, := y». For u € [ y», x,.] we have by (19) thato®(x) < B o(u) and for u € [0, y.) we
have the same bound because 0”(z) < ¢**(y,) = B o(y.) = B o(u). Hence

(20) E f " o’ (u)u(du) = BE f ' o(wu(du) >0 for n— o
0 0

because E [ o(u)u(du) < o by (18).
Note that if B is chosen such that B = 24 then x, = 2 §,. To obtain (17) we still need
other estimates. Let

= {u=20:0%u) =2 o(w)}; Cs:=[26, ») —
Then
(21) EJ ’(u)p(du) =2 E J o (u)p(du)
c

(2

becomes arbitrarily small if p | 0 by (18). Lemma 8 will permit us to conclude

8
0" = e
(22) EL (w)u(du) = —— J(0 =B

0,.

Because B may be any number exceeding A, (22) can be made arbitrarily small. Hence
(20), (21) and (22) imply (17).
To prove Lemma 8 we use the estimate:

40

LEMMA 7. Evfx—0,x]=—F/———,0=<
S PTE

Proor. By (12)

1 >—f f or,(y — wv(du) dy.

Replace [ by [§*/, exchange integrals and use the definitions of 7 < 7, and». to get

20=E J j or,(y — u) dy v.(du)
) 0 x— ’

x )
=K f J or(y —u) dyv.(du) = E f Y% o(y)dy v.(dw). O
x—0 Ju 0

x—0
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LEmMA 8. E [p, o’(w)p(du) < J?())

Proor. Define A, := inf Dy, A, := inf Dy n [Az—; + 6, ), & > 1. Note that A\, € Dy and
that Dy C Up=1wz, where wi :=[Ag, \e + 0). For k=1

") =< 6 — 8) < 6(Aur) < % 0" Apr) < - -- = 5;1_—1 () = % o().

Hence

E J oa(u)u(du) = Zkzl E f oo(Xk)u(du) 2k>1 0(0) supz=1 Ep(ws)
D,

(] Wk

1% Tl dx IO

Here the last inequality used Lemma 7. 0

Case 3. lim, J(x) = . In case 2 we used (20) to prove that
20
(23) E J o’ (u)p(du) = 0
0
along some subsequence 6 | 0. This part of the argument of case 2 has to be revised to deal
with case 3. Define Z(y) := [} o(x)dx and T(y) := E [% S(u)u(du). Because E [3° ¢°(u)u(du)

=< % E [ S(y)u(dy) = T(zO) it is sufficient to show that lim infywl T(y) = 0. We have to

disprove —— T;y) = a > 0 for sufficiently small y. The function g(y) :==— —(-‘)2 is nondecreasing.

2(y)
Note that it suffices to prove [§ T(y)dg(y) < © and [§ y d g(y) = = for all z > 0. By
exchanging integrals

f T(5)dg(y) = f E f z(um(d)d—%
0
o(u) o)
Lm )(2() 2()) (du)
SEJ o(u)pu(du) < o
0

by (18). Furthermore by using partial integration

o0

Because y o(y) = Z(y) the first term on the right is finite. The second term equals log

z “a(y)
ot fo 0 dy.

3(y) |g = o0, z > 0. Hence (23) holds along some subsequence. Using (21) and Lemma 8 we
obtain (17).
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