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OPERATOR-STABLE DISTRIBUTION ON R? WITH MULTIPLE
EXPONENTS

By WiLLiaM N. HubpsoN AND J. Davip Mason!

Auburn University

Operator-stable distributions are the n-dimensional analogues of stable
distributions when nonsingular matrices are used for scaling. Every full
operator-stable distribution p has an exponent, that is, a nonsingular linear
transformation A such that for every ¢ > 0 p‘ = ut™*+8(a(t)) for some function
a:(0, ®) — R". Full operator-stable distributions on R? have multiple expo-
nents if and only if they are elliptically symmetric; in this case the character-
istic functions are of the form exp{iy’Vw — c|Vy|"} where V is positive-
definite and self-adjoint, 0 < y < 2, ¢ > 0, and w is a point in R

1. Introduction. Operator-stable distributions are the analogues of stable distribu-
tions in n dimensions. A nondegenerate distribution p on R” is said to be operator-stable
if there exist independent identically distributed n-dimensional random vectors {X,},
nonsingular n X n matrices {A,}, and vectors {a.} in R" such that the sequence
{A. X7 Xi — a.} converges in law to p. In the present work attention is restricted to full
measures, that is, measures which are not concentrated on a hyperplane in R". In [4],
Sharpe showed that a full operator-stable distribution p on R" is infinitely divisible. If ji( y)
denotes the characteristic function of i, and if ¢ > 0, then [i( y)’ is the characteristic function
of the infinitely divisible distribution y‘. Sharpe showed that there is a nonsingular n X n
matrix A and there is a function a: (0, ) — R” such that for all £ > 0

u = t4ux8(a(t)

where ¢* = exp(4 In ¢) = Y5 (A In t)*/k!, and t*u = ut . We refer to such an A as an
exponent for u. In general, this exponent is not unique. In this paper we characterize those
operator-stable distributions on R? which do not have unique exponents.

Let #(u), the symmetry group of u, be the set of all nonsingular matrices B such that
for some vector b in R%, u = Bu*8(b), (Bu = uB™"). It follows from Theorem 1 of Billingsley
[1], that if p is full then %(p) is a compact subgroup of the general linear group GL (n, R).
A classical result (see for example Theorem 5 of Billingsley) says that there exists a closed
subgroup @, of the group ¢ of n X n orthogonal matrices and there exists a positive-definite
symmetric matrix V such that #(p) = V™'¢,V. (Any compact subgroup of GL (n, R) is of
this form.) Our first theorem is

THEOREM 1. Let u be full and operator-stable on R>. Then u has more than one
exponent if and only if there exists a positive-definite symmetric matrix V such that
P(n) = VIOV, where 0 denotes the group of 2 X 2 orthogonal matrices.

The proof of Theorem 1 will also yield the following

COROLLARY. Let p be full and operator-stable on R If #(u) = V'OV, where V is
some positive-definite symmetric matrix, then the set &(u) of exponents for u is
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&(p) = {V“l(aﬁ _a'B) V:-—oo<B<oo}

where a = % is some real number. It follows that if A is an exponent for p, if A is not a
multiple of the identity, and if A has real eigenvalues, then A is the unique exponent for

©.

REMARK. An exponent A for a full operator-stable distribution u may have complex
conjugate eigenvalues and yet be unique. For example, suppose that

A=<; _aﬂ) ,a> Y%,

and suppose further that M is a Lévy measure concentrated on a single orbit of ¢ and
t*M=t-M.Ify= (y,y), and if
w'x

(e"”’r -1-= —)M(dx),
2\(0)

R

then A is the unique exponent for p. (#(p) = {I}.)
Next we consider the Gaussian case. The following theorem is included for the sake of
completeness; the easy proof is omitted.

THEOREM 2. Let u be a full Gaussian measure on R®. Then u is operator-stable with
a positive-definite covariance matrix Y. Let V denote the positive-definite symmetric
square root of ¥ '. Then #(u) = V'0V and

&(w) = {v—l<l/; j/f)v: —w<f< oo} .

Our last theorem completes the characterization.

THEOREM 3. Let p. be full and operator-stable on R* and suppose that p is not purely
Gaussian. If u has more than one exponent, then there exists a positive-definite symmetric
matrix V such that the characteristic function ji(y) is given by

fi(y) = exp(iy’ Vv — c| Vy|),

where v € R%, ¢ > 0 and 0 < y < 2. Conversely, if the characteristic function ji(y) of p is
of the above form for some positive-definite symmetric matrix V, then

-8

Ew =<V 7Y 1 Vi—-w<f<owm
g -
y

F(w) = VOV, and d(VM) = kr™7Y dr d8 in polar coordinates, where M is the Lévy
measure of p.

To prove these theorems we will need to use more of Sharpe’s results and we state
them below for the convenience of the reader. Their proofs may be found in Sharpe’s
fundamental paper [4].

(A). A ronsingular n X n matrix B is an exponent for some full operator-stable
distribution pu on R" if and only if

(i) the eigenvalues of B lie in the half-plane Re z = % and
(ii) every eigenvalue of B having real part equal to % is a simple root of the minimal
polynomial of B.
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(B). Let M be the Lévy measure of a full operator-stable distribution on R" and let B
be an exponent for . Then for any Borel subset D of R™\ {0}, Mt 2(D) = t-M (D). That
is, t’M = t-M.

(C). Let M be a Lévy measure concentrated on a single orbit {¢Zx,:¢ > 0} satisfying
tBM = t-M and let [x,] denote the cyclic subspace generated by x, relative to B. Then
every eigenvalue of the restriction of B to [x,] has real part greater than .

(D). Any full operator-stable measure @ on R” can be decomposed into a product p =
w1*pe of measures yu; concentrated on subspaces V;, R" = V; @ V,, where y, is a full Gaussian
measure on V; and p. is a full operator-stable measure on V, having no Gaussian

component.

(E). Any Lévy measure M for a full operator-stable distribution on R" can be repre-
sented as a mixture of Lévy measures M,, where M, is concentrated on a single orbit
(tBx:t > 0} and satisfies ¢t M, = ¢- M, where B € &(u). The measure M, is characterized
by the condition that sM.{t5x:t > s} is constant for all s.

This paper is organized as follows. In Section 2 a description of the operator ¢ 2 is given.
This is followed by some preliminary lemmas which are proved in Section 3. The proofs of
Theorems 1 and 3 are given in Section 4.

2. A Description of the Operators t2, The operators ¢2 on R* may be described
using matrix representations with respect to a suitable basis.

First suppose that B is diagonalizable with two real eigenvalues, a; and as, which are
not necessarily distinct. Then with respect to a suitable basis %, B is represented by the

matrix
_ (45} 0
[B)« = (0 az).

A power series calculation shows that

t 0
[tB]%,= ( 0 t"") .

Next, suppose that there is a basis % such that [B]« is, in Jordan cannonical form,

a 0
(Bl = (1 a) ’
0 0
v=(1 o)

and noting N? = 0, we see that [B]¢ = al + N and [t5]¢=t*"*" = ¢t*(I + N In ¢). That is,
B _ t” 0
(7)o = <t"‘1nt t“)'

Finaﬂy, suppose that B has a pair of complex conjugate eigenvalues « + i. Then there
exists a basis ¢ such that
_(« B
=5 ).

Another easy power series calculation shows that

[£5], = = (cos(,B In#) —sin(8In t)) .

where « is a real number. Putting

sin(BInt) cos(BInt)

We let R(6) denote the matrix (g(i)rf g _c?)lsn00> , and note that {[¢%~*']4:¢ > 0} is a compact
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group of nonsingular matrices. Then according to a classical theorem (mentioned above)
there is a positive-definite symmetric matrix V and a closed subgroup @ of the orthogonal
matrices such that with respect to the usual basis the operators {¢°~*:¢ > 0} are
represented by the matrices V' (V. Since for every ¢ > 0, the determinant |¢°™*/| = 1,
O is a subgroup of the group of rotations. From the matrix representation of ¢ ®*/ obtained
above, we have that %7/ = A7 R(8 In ¢)A with respect to the usual basis, where A is some
nonsingular 2 X 2 matrix. But also, for some function f: (0, ©) — R, t%7/ = V'R(f(¢))V,
for all £ > 0. Thus R(f(t)) = D'R(B8 In t)D, where D = AV ', It is clear from the entries
of the matrices that f(£) may be chosen to be continuously differentiable on (0, ®) and
satisfy (1) = 0. Then | f'(¢) |2 = %/t* follows by differentiating R(f(t)) = D"'R(B In ¢)D
and then taking determinants. Hence, either f(f) = 8 1n ¢ or f(¢) = —8 In ¢t and so either
tB=VIRBIt)Vort? =V IR-BInt)V.

3. Lemmas. In this section we establish some preliminary results. The first two
lemmas together say that if s has multiple exponents and if #(u) is a subgroup of the 2 X
2 orthogonal matrices, ¢, then ¥(u) = 0. Lemma 3 says that certain exponents are
incompatible with a symmetry group that contains all the rotations. Finally, Lemma 4
establishes a form for the Lévy measure of u when ol € &(u).

The assumption that #(p) is a subgroup of O is not very restrictive. Since #(p) is a
compact group by Theorem 1 of Billingsley, £(u) = V™' ¢,V for some symmetric positive-
definite matrix V, and for some subgroup @ of ¢, by Theorem 5 of Billingsley. Thus,
AVp) =

LEMMA 1. Let p be full and operator-stable on R* and suppose that ¥(p) is a
subgroup of the orthogonal group. If A and B are two distinct exponents for u, then every
rotation is in &(p).

PRrOOF. Since A and B are distinct exponents for p,
p = t4u.8 (alt)) = tBux8(b(t)), t>0.
Thus
= t"tBu.8(t4(b(t) — a(?))), t>0,

so t~4t% € L(u) for t > 0. But, {t “¢®:¢ > 0} is a connected subset of £ (p) which contains
operators arbitrarily close to the identity I. Since the operator norm of the difference
between a reflection and the identity is 2, #(u) contains rotations arbitrarily close to I and
so contains every rotation. [

LEMMA 2. If £(p) contains all the rotations, then () is the complete orthogonal
group and there is an xo € R® such that the characteristic function of p*8(—xo) aty € R?
depends only on |y|.

Proor. For each 8, u = R(6)ux8(a(8)) for some a(d) € R? By Theorem 5 of Billingsley
[1], there is a group @ of orthogonal matrices, xo € R? and a symmetnc positive-definite
matrix Z such that for some 0y in O,

R©O)x + a(@) = Z7'0sZ(x — %) + Xo, for all x € R%.

Therefore, R(0) = Z'0yZ and a(f) = x'o — R(8)xo. Thus pu*8(—x0) = R(8) (u*+8(—x0)), for all
0. Let v = p*8(—x0). Then #(y) = #(R(8)y), for all 6, y. Given y, select § so that R(f)y =
(|y|,0). Thus, #(y) = #(|y|, 0). Let T be a reflection. Then

Tiy) = W(Txy) = #(| T5'|, 0) = #(|¥], 0) = #().

Therefore, u*8(—x,) is invariant under all rotations and all reflections. This shows that its
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characteristic function depends only on | y | and that %(u) contains the group of orthogonal
matrices. Again, by Theorem 5 of Billingsley, this latter fact implies #(u) is the group of
orthogonal matrices. 00

LEMMA 3. If Ap) contains the rotations and if A is an exponent of u, then either A
= ol or the eigenvalues of A are of the form o + i, a = %, B > 0.

ProoF. Let f(y) =|ji(y)|; then f{(y) = f(t*"y) for all £ and y. Suppose A;, A; are real
eigenvalues of A and suppose A; # Az, say Az > A;. Since R()p’ = 8(tb(0)) = p’ = t*p *
8(a(t)), we have

ft*y) = f¢*'R(@)y), for all ¢, 6, y.
Let S; be the eigenspace corresponding to A;, i = 1, 2. Select 4 so that R(6)S, = S.. Then,
for y € S1, f(thy) = f(t*R(8)y), for all t. Hence, f(y) = f(t*™R(f)y), for all y in S;.
Letting ¢ — o and applying the Riemann-Lebesgue lemma (which is applicable by a
theorem of Sharpe, the proof of which may be found in Hudson [3]), we obtain f(y) =0
for all y in S;. But p is infinitely divisible. This contradiction implies that if A has real

eigenvalues A1, Az, then A; = A,.
Now suppose that ¢4 = t*(I + (In t)N), where N # 0, NZ = 0. As before, f(t*'y) =
f(t* R(8)y), for all ¢, 6, y. Select 8 so that for y € K = null space of N, R(6)y € K. Then

f(t%y) = f(t*d + (In )N)R()y), forall yE K, ¢
Hence,
f(y) = f(R(@)y + (In t)NR(f)y), forall y€E K, ¢.

As before, letting ¢t — o yields a contradiction. Thus, t*" cannot be of the form
t*I+ (In¢t)N).O

Theorem 5 of Sharpe [4] characterizes the Lévy measure M of a full operator-stable
measure g as the mixture of measures concentrated on orbits of £4, where A is an exponent
of p. In the following lemma we obtain the mixing measure when A = al.

LEmMA 4. If al is an exponent of u, then the Lévy measure M of p. satisfies
M(G) = J’f Is(t°x)t 2 dt dx,
s Jo

for any Borel subset G of R*\ {0}, where 8 is the unit circle in R*.

ProoF. Define a measure K on S by
KD)y=M{t’x:x€ D, t>1)},

for any Borel subset D of S. For x € S, define M, to be the measure

00

M.(G) = f
0

for any Borel subset G of R?\{0}. Note that M, {t*x : t > t;} = 1/to, so M, satisfies the
condition ¢*’M, = t*M, (see the proof of Lemma 6 in Sharpe). Set

Is(t*x)t™2 dt,

M@G) = j M.(G)K(dx).
s

When G is of the form {t*x: x € D, t > t,},
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M(G) = (1/to))K(D) = (1/to)M {t*x : x € D, t > 1}.

By Proposition 53 of Sharpe, tM(G) = M(¢°G) for all ¢ >_O, so M(t:*G) = K(D) = toe M(G).
Consequently, M(G) = M(G) for such G. This implies M = M.

4. Proofs of main results.

PrROOF OF THEOREM 1. Assume H(u) = V'0V. We know that p has at least one
exponent. We will show that y has infinitely many exponents.

For each 0 € 0, u = V™'0Vy * 8(a) for some a. Hence, Vi = 0V * 8(Va) which yields
AVp) = 0. There is a one-to-one correspondence between &(p) and &(Vu) given as
follows. Let A € &(V). Then Vi’ = t*Vy * 8(a(t)), which implies u* = ¢"4Vu » §(V'a(¢)).
Thus, V'AV € &(p). Let B € &(p). Set C = VBV, Then (Vu)' = Vi’ = V(t%u * 8(b(¢)))
= V(" Vu * 8(b(t))) = tVu » §(Vb(t)). Thus, VBV € &(Vpu). Hence, it suffices to show
that u has more than one exponent assuming () = 0.

Put f(y) = | i(y) |. As in the proof of Lemma 3, f(t*'y) = f(t*"R(8)y) holds for all 0, ¢
>0, and y.

Let A € &(u). By Lemma 3, t4" = t*W™'R(— 8 In t) W, for some symmetric positive-
definite matrix W, where a = %, 8 = 0. We show that W = AI for some A > 0. Suppose A,,
A are the real eigenvalues of W and suppose A1 < A.. Let S; be the eigenspace corresponding
toA;, i=1,2. Since f(t*y) = f(¢*'R(0)y), we have f(t*W'R(—B1n t) Wy) = f(¢*W'R(-B
In ¢t) WR(6)y) and hence f(W'R(—8 In t)Wy)= f(W™'R(—8 In t) WR(8)y) for all ¢t, 6, y.
Select ¢ so that R(—81In t)y € Sz for y € S;. Let y’ = R(—8 In ¢t)y. Then R(—8 In t)y’ =
—y, since S; and S; are orthogonal. Select 4 so that R(8)y = y’, ¥ € S1. Then f((A:1/A2)y’)
= f(=(A\2/A\1)y), ¥y € S1. Since |y | = |y" |, f((AM/A2)y’) = f((A1/A2)y). Hence, f((A2/A1) y) =
f((A\i/A2)y) for all y € S,. Therefore, f(y) = f((Ai/A2)%y), ¥y € S:. This leads to the result
that f(y) = f(As/A1)*y) forally € S;, n = 1, 2, - - .. By the Riemann-Lebesgue lemma,
f(y) = lim, f((A\2/A1)**y) = 0, for all y € S;. This contradiction yields A; = A.

Hence, we have that if A is an exponent for u

=G 7)

with respect to the usual basis. This implies that af is an exponent for u. To see this, note
that

ut =t « 8(a(t)) = t*'R(B In t)u * 8(a(t))
= t(u * 8(b(t))) * 8(a(t)) = t~u » 8(t°b(¢) + a(t)).
Finally, we show that af + 8’ is an exponent for g, for all 8’ = 0, where

J=(‘1’ ‘01).

Clearly, t?” varies over the rotations as ¢ varies, with 8’ fixed. Hence, ¢t € A(u), for all ¢
> 0. Therefore,

pt =t * 8(a(t)) = to1tFu  8(b(t)) = t*"F 7 » 8(b(2)).

We have shown that #A(u) = V' OV implies that p has more than one exponent.

We now assume that p has more than one exponent. We will show that Ap) = V70V,
for some symmetric positive-definite matrix V. By Theorem 1 of Billingsley [1], &(u) is a
compact group. By Theorem 5 of Billingsley, there is a symmetric positive-definite matrix
V such that #(Vp) is a subgroup of @. By Lemma 1, A V) contains all the rotations, so by
Lemma 2, A V) = 0. Therefore, A(p) = V'0V.0

PRrOOF OF THEOREM 3. We first show that u does not have a Gaussian component.
Suppose u has both a Gaussian and a non-Gaussian component. By Theorem 4 of Sharpe
[4], p = w1 * po, where y; is concentrated on V;, i =1, 2, R%=V,® V,, u, is a full Gaussian
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measure on V; and y; is a full operator-stable measure on V, with no Gaussian component.
Let F; and F; be projections of R? onto V; and V;, respectively, so that F1F, = F, F; = 0.
Clearly, (1%)F; is an exponent for y; on V. By Theorem 5 and Lemma 6 of Sharpe, we
know there is an a > % such that aF5 is an exponent for ps on V,. Since

pt=pi* ph=t2Fip « 8(bi(t)) * t°Fops + 8(b2(2))
= (t'°F1 + t°F)(p * p) * 8(b1(2) + ba(2)),

we have that (2)F; + aF; is an exponent for u. But, (%)F; + aF; has two real distinct
eigenvalues which contradicts the corollary to Theorem 1. Therefore, 1 does not have a
Gaussian component. Since p has more than one exponent, Ap) = V'OV, for some
symmetric positive-definite matrix V, and &(u) = {aI + BV 'JV: — 0 < B < o}, for some

a > %, where
_ {0 -1
J—(l 0).

Let » = Vu. Then Av) = Oand &) = {af + BJ : — ® < B < o} . Since af is an exponent
for v, by Lemma 4, the Lévy measure M; of » has the representation

M\(G) = f M.(G)K(dx),
S

for any Borel subset G of R\ {0}, where S is the unit circle, M(G) = [§ Ic(t*x)t* dt, and
K(D) = M. {t*x : x € D, t > 1}, for D a Borel subset of S. Now since S(») contains all the
rotations, we have for 0 = 0 < 27

v = R(0)v * 8(c(8))
for some function c : [0, 27) — R2 It follows easily that
M, = R(6)M,, 0=<6<2m,
and hence
K = R(6)K, 0=<6<2m
But, this implies that K is proportional to Lebesgue measure on the circle. Let

y
G={y:—€D and >st,
{y K 11 }

where D C S. Then

0

M(G) = f Is(tx)t2 dt

0

_Js*  if x€D
10 otherwise.

Thus

M\(G) = J’ M. (G)K(dx) = s_l/“f ¢ dx
s )
= J’ % rm0+0/) gr df  (in polar coordinates).
G

It follows that dVM = (c;/a)r ™" dr df in polar coordinates, where y = 1/a.
We now show that #(y) = exp{iy’v — c¢|y|"}, for some v € R? some c > 0. Since 7 is
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infinitely divisible with no Gaussian component,

N . e ix'y
w(y) = exp{ty’v + J’ (e‘” -1 ——2) dMl(x)} R

for some v € R?. Hence, it suffices to show that

e’ — 1 —i) dMi(x) = —c|yl",
Lﬁ\«» ( L+[«]7) 7 |

27 oo .
izr r —1—
J; J; (e —1—1+r2)kr‘7drd0=c|y|7,

where y = (y1, y2), B = c1/a, 2 = y1 cos 0 + y. sin 6. First, we evaluate

for some ¢ > 0, i.e.,

i e —1 ar_\ dr 0<y<?2
A 1+ r2) ri*v? y==

This integral is a familiar one which arises in the canonical representation of univariate
stable laws, for example, see pages 168-171 of Gnedenko and Kolmogorov [2]. Hence, the

integral is

iciz + ica|z|Y (sgn 2) — ¢3| 2|7, if y#1,
and

icsz + ics|z| In | z| (sgn 2) — c| 2], if y=1,

where ¢; > 0 and ¢ > 0.

Now each of these terms must be integrated over (0, 277) with respect to 8. To do this,
one may use the substitution z = | y| cos (6 + ¢), for an appropriate ¢. One finds that the
integrals are zero except for the term involving c¢; or cs. This nonzero integral is —c- | ¢]".
Therefore, #(y) = exp{iy’'v — c|y|*}. Since » = Vi, ji(y) = exp{iy’V"'v — ¢| V¥ |"}.
Replacing V by V™! we obtain the stated representation for ji.

If /i is a characteristic function of this form, then ¥(V~'u) = 0. Hence, #(p) = VOV
This implies that &(u) = {(1/y)] + BVJV ' : — o < 8 < o} and the Lévy measure M of
u satisfies dVM = kr~'"" dr df in polar coordinates. O
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