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MINIMAL CONDITIONS FOR WEAK CONVERGENCE TO A
DIFFUSION PROCESS ON THE LINE

By INGE S. HELLAND

Agricultural University of Norway

By transforming a central limit theorem for dependent variables, we find
conditions for a sequence of processes with paths in D[0, ) to converge
weakly to a diffusion process. Of the most important conditions, the first is
related to (but weaker than) tightness, and in the next two we require that
the first two conditional moments, given the past, of truncated increments in
small time intervals, should stay close to the appropriate infinitesimal coeffi-
cients of the limiting diffusion times the length of the time interval. The
limiting diffusions can have inaccessible or exit boundaries. We prove that our
conditions are necessary and sufficient in order that: (1) the sequence of
processes converges weakly in D[0, »); (2) any finite number of conditional
expectations given the past of bounded, continuous functionals of the processes
converge jointly in distribution to the “correct” value.

1. Introduction. For each n = 1, let X, (¢) be a real-valued random process, right-
continuous on [0, «), with left-hand limits on (0, ), and adapted to an increasing family
of o-fields {Z.(¢); t = 0}. Our object is to give conditions under which {X,(#)} converges as
n — o to a diffusion process X(¢) on the line. The mode of convergence will be weak
convergence in the space D[0, ») of right-continuous functions with left-hand limits,
endowed with the Stone topology ([21], [32]).

This problem, and its generalization to vector-valued processes, has been attacked
earlier by several authors, first under the assumption that each X, () is a Markov process
([10], [20], [25], [30], [34]); later it has emerged that essentially the same conditions suffice
in the general case ([3], [17], [24], [26], [27]). The conditions given by different authors are
of the same general nature: convergence of the first two moments of small increments
given the past, and some additional conditions related to tightness and boundedness.
However, there are great variations in details, and this leads one to suspect that some of
the assumptions are unnecessarily strong.

Out of the many different techniques that have been used in deriving these limit
theorems, two general classes of techniques should be mentioned. One is the semigroup-
approach which has been developed in great generality by Kurtz [17]. (We will come back
to the relationship between the results of [17] and those of the present paper later.) The
other is the broad class of techniques that can be called martingale methods. Characteri-
zation of diffusion processes by means of certain martingales, is the basis for Stroock and
Varadhan [33], [34]. A systematic development of martingale methods applied to weak
limit theorems is given by Rebolledo [27].

The technique used in the present paper is different. Basically, we transform a functional
central limit theorem for dependent variables via a random time change and a scale
change. The central limit theorem that we use is of the “near martingale” type ([6], [7],
[23]). The paper is limited in that we only consider one-dimensional, time-homogeneous
diffusions as possible limit processes. But this limitation has enabled us to prove conver-
gence under conditions that are both sufficient and necessary—in a sense to be made
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precise in Section 3 below. Also, our results are valid without any Lipschitz condition on
the diffusion coefficients. We assume in this paper that the limiting diffusion is without
regular boundaries. Generalization of our results to include regular boundaries will be
given elsewhere.

The paper is based on the well-known result that any one-dimensional, time-homoge-
neous diffusion process can be represented as a process derived from Brownian motion by
a simple random time change combined with a scale change ([4], [22]). This result does
not generalize to vector-valued processes. For processes that are inhomogeneous in time,
the corresponding representation is somewhat more complicated. A recent representation
theorem by Kurtz [19] gives some hope that the technique used here could be generalized
to these cases, but then further technical difficulties have to be resolved. Special cases,
such as convergence to one-dimensional Gaussian diffusions, are easily handled, however.

The plan of the paper is as follows: in Section 2 and Section 3 we formulate our
conditions for convergence and give the main theorems. In Section 4 we formulate the two
main results on which the proofs are based, and in Sections 5, 6 and 7, we carry out the
proofs of the main theorems. In Section 8 we consider two examples of sequences where
our conditions for convergence to diffusions hold.

One aspect of our method is that we avoid the concept of tightness. The approach is
constructive in the sense that once one has a modulus of convergence for the central limit
theorem for sums of dependent variables, one should in principle be able to find a modulus
of convergence for our limit theorems, by retracing the steps in the proofs of the present
paper and in those of Helland [12].

2. Conditions for convergence. Following Breiman [4], we define a diffusion pro-
cess X(t) to be a continuous, strong Markov process on an interval F (bounded or
unbounded, closed at none, one or both boundaries) such that the following holds: there
exist functions ¢(x), u(x) defined and continuous on G = int F, a%(x) > 0 on G, such that
foralle >0

(2.1) t'P[| X(£) — x| > €] —bp O
(2.2) tTESX(E) — x; | X(8) — x| < € —bp plx)
2.3) tEX(X(t) — 0% | X() — x| < €) = bp 0%(%)

as t — 0, where the convergence (—,) is bounded pointwise on all compact intervals
K C G. (In fact, one can show that the convergence in (2.1)-(2.3) is always uniform on
compacts in G, cf., Problem 1, page 68 in Mandl [22] and the proof of Lemma 3.2, page 149
in Norman [25].) In addition to the drift coefficient u(x) and the diffusion coefficient o%(x),
we have to specify boundary conditions at boundary points of F contained in F. This will
be discussed below.

Let G = (ro, r1) and let ¢ € (ro, r1). We can define a scale function u(x) by

(2.4) u(c) =0, u'(x) = exp{—J’ 2u(y)o2%(y) dy} .

It is well known and easy to see that u(X(¢)) is a diffusion on natural scale, i.e., with
vanishing drift coefficient. The speed measure m(dx) is defined by

(2.5) m(dx) = 0 %(x) exp{f 2u(y)o%(y) dy} dx,

and we put m(x) = [ m(dx).

The boundary point r; is called accessible if R; = inf{¢ = 0 : X(¢) = r;} is finite with
positive P*-probability for some (hence all) x € G. A necessary and sufficient condition for
r1 to be accessible is given by
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(2.6) f m(x)u’(x) dx < .

(See Breimann [4] or Mandl [22]). The condition for r, to be accessible is similar. Without
loss of generality we can—and will—assume that F is the union of G and the accessible
boundary points. Also we assume that all accessible boundary points, if any, are finite.

It is always true for an accessible boundary point r; that | u(r;) | < . The boundary is
called regular if in addition [m(r;) | < «, otherwise it is called exit boundary. If r; is an exit
boundary, then the only boundary condition that gives a conservative, continuous Markov
process X(t), is the one where the process is stopped at r;: on [R; < »] we have X(t) =
X(t A R;). This is well known, but can also be deduced from our results below. We will
only work with conservative, continuous diffusion processes in this paper.

Thus we only need to specify boundary conditions for X(¢) at regular boundary points,
if any. When giving conditions for X,(¢) to converge to X(¢), we have to take these
boundary conditions into consideration. This can be done, and the results will be discussed
in a future publication. In the present paper, however, we will make the following crucial
assumption: the diffusion process X(t) has no regular boundary points.

Now let {X,.(¢)} and { ()} be as in the introduction. We can think of %,(¢) as o{X.(s);
s < t}, but other choices are possible. For each fixed n let {t%; k. =0,1,2, ...} be a
sequence of stopping times relative to {%(¢t); ¢t = 0} satisfying

2.7 0=ti<tl=<...;limp,mtf = +oas.
Also we assume that for each ¢ > 0
(2.8) MaXosksr, @) Atn(k) — 0 in probability as n — o,
where we define
ro(t) =max{k=0:ti<t}; At.(k) =tF" — ¢k,

We will call T= {tk; £ =0,1,2, ...}, asequence of partitions. We are free to choose this
sequence in the conditions below, but it will be shown later that if these conditions are
satisfied for one choice of T, they will always be satisfied for a sequence of partitions of the
form {ké.;k=0,1,2, -.-},, where §, | O.

Define

(2.9) AX, (k) = X, (t5*") — X, (tn)

AXn(k) = AXn(k) - I(|AXn(R) | < €),
where I(-) is the indicator function. Also we define
(2.10) VXa(k) = supg=s=errt | Xa(s) — Xa(tn) |-

We will let = denote weak convergence in D[0, ») with the Stone topology and —, denote
convergence in probability. From now on all convergence will be as n — o, unless stated

otherwise.

Let X(¢) be a diffusion process on F with given coefficients u(x) and ¢*(x), and given
initial distribution. We assume that X(0) € F a.s. Let K be a closed set in F. Consider the
following set of conditions.

A0 X,(0) > X(0) in distribution.
Al Yl P[VX. (k) > €| Zi(th)] >, 0  forall e t>0.
AL(K) Y8 P[VX.(k) > €| Zu(th)I(Xa(th) € K) >, 0  forall ¢ t>0.

A2(K) T8 |E(AXa(k) | Zu(th)) — p(Xa(th))At(R) | (X, (27) € K) —, 0
forall #>0.
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A3(K) Y8 |E({A1Xa(R)}Y? | Z(th)) — o*(Xa(th))AL(R) | [(X,(tE) € K) —, 0
forall ¢>0.

A4(0) Plinfocoe: Xo(s) <ro—€]—0  forall ¢ t>0.
A4(1) P[suposs=: X.(s) >ri+€]—0 forall ¢¢>0.
The first main result of this paper is the following

THEOREM 2.1. Assume A0 and Al. Assume that A2(K) and A3(K) hold for all
compact intervals K in G, and that A4(i) holds whenever r; is accessible (hence exit) for
X(t). Then X,.(t) = X(¢t).

The single condition Al may be replaced by the condition that A1(K) should hold for
all compact intervals K in some open set containing F.

The proof of this Theorem will be completed in Section 6. Here we only insert the
following remarks concerning the conditions.

1. As discussed in Helland [13], Al is equivalent to the condition that
(2.11) maXosksr, ) VXa(k) =p 0

for all £ > 0. In particular, Al is independent of the choice of the family of o-fields { Z(#)},
as long as X,(¢) is adapted to this family. Also Al is implied by the familiar tightness
condition (see Billingsley [2], Theorem 15.5):

(212) lilnalolin'l SUpr—s«» P[SUPOSs,ust;|s—u|58 IX,,(S) - Xn(u) I > G] -0

for all ¢, ¢ > 0. However, (2.12) is strictly stronger than Al in fact, it is equivalent to the
condition that A1 should hold for all sequences of partitions {¢%} satisfying (2.7) and (2.8)
(see [13]).

2. The condition that A2(K) and A3(K) should hold for all compact intervals K in G
may often be replaced by the simpler, but slightly stronger conditions:

A2 T8 | E(A 1 Xn(k) | Za(tr)) — p(Xa(t)Ata(R) | >, 0 forall ¢>0.
A3 Y28 | E({A1X(R)}? | Zalth)) — 0*(Xn(th))AL,(k)| =, 0  forall £>0.

For instance, one can show (see Section 7) that A2 and A3—if meaningful—are always
satisfied for some sequence of partitions when the other conditions of Theorem 2.1 hold
and the diffusion process X(¢) is without accessible boundaries. For A2 and A3 to be
meaningful, we may require: either X,(t%) € G a.s. for all k and n, or X,(t%) € F as. for all
k and n and p(-) and 0%(-) are continuous throughout F. (Note that to begin with u(-) and
o?%(-) were only defined on G=int F.) .

For a simple example where the set of conditions A2(K) can not be replaced by the
condition A2, look at the following: Let X(£) be a diffusion process on F = [0, «) with
w(x) = —1, 6%(x) = x. For this process x = 0 is an exit boundary. Put X,.(t) = X(¢) (n = 1,
2, .- .). Then of course X,(t) = X(¢), and A2(K) holds for all compacts K C G = (0, ) and
for any sequence of partitions {¢t%} satisfying (2.7)-(2.8). This follows easily, since the
convergence in (2.2) is uniform on compacts in G. However, A2 does not hold for any
sequence of partitions, since Ry = inf{s = 0 : X(s) = 0} < ¢ with positive probability for any
¢t >0, and E°(X(8); | X(8) | = 1) = 0. The same example shows that the assumption that
A2(K) holds for all compact intervals K C F, will be too strong in general.

3. The conditions A4(i) (i = 0, 1) are trivially satisfied when X,.(t) € F a.s. for all ¢ = 0.
In general A4(i) is necessary for convergence also when r; is inaccessible, but then it is
automatic from the other conditions of Theorem 2.1.
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4. A2(K) (alternatively A2) specifies the sense in which the conditional expectations of
small increments given the past should be asymptotically proportional to the drift at every
instant of time. A3(K) has a similar interpretation. We have truncated the increments
arbitrarily at € = 1. It is easy to see that any other truncation value € > 0 gives an
equivalent set of conditions, since by A1(K):

(2.13) Yl P[|AXn(k) | > €| Za(th) (X, (£2) € K) —, 0.

If we insist upon using untruncated moments in A2(K) and A3(K), we have to add the
Lindeberg condition

(2.14) T8 E({AX.(R)}?; | AXn(R) | > €| Za(th)I(Xu(th) € K) —, 0
for all €, t > 0 and for all compact intervals K in G.

5. In many applications it is natural to use a sequence of partitions {¢%} for which X,(¢)
is constant on each interval [¢%, t%*!). For instance, when X,(f) = Y.([nt]), where {Y,(k);
k=0,1, ...}, is some sequence of pure jump Markov process, we will take t? = kn"". In
such cases A1(K) is implied by the simpler condition that (2.13) should hold for all ¢, ¢ >
0, and (2.13) is implied by the Lindeberg condition (2.14).

6. Assuming that X,(¢) is constant on each interval [¢t%, £¥*!), A1-A3 are implied by
(2.15) Y8 |ehk) | = 0
for j =1, 2, 3 and ¢ > 0, where
en(k) = E(AXA(R) | Za(th)) — p(Xa(£%))At, (R)
er(k) = E({AX,(k))? | Zu(th)) — o*(Xa(th))At,(R)
en(k) = E(|AX, (k) |*| Zu(th)).

In this way Theorem 2.1 may be shown to generalize and unite several results in the
literature. For instance, the “stochastic” conditions for convergence in Borovkov [3] are
essentially of the form:

PIui® [eh(k) > eAt,(B)]] = O

for all ¢, ¢ > 0 and j = 1, 2, 3, while his conditions for convergence “in the mean” are
related to

EYn8 |ehk)| = 0 t>0;, j=1,23

both of which imply (2.15). (The exact forms of Borovkov’s conditions are more compli-
cated, but they can be shown to imply those of Theorem 2.1 by this type of reasoning.)
Also, Theorem 2.1 generalizes the more recent results by Norman [26] (except that we do
not consider convergence to processes with regular boundaries in this paper). This
generalization goes in several directions: the state interval need not be bounded; we have
no restriction on the coefficients beyond continuity of u(-) and ¢*(-) and positivity of
62(+) in G; in the conditions on the conditional moments of the increments (A2(K) and
A3(K)) we have no requirement of uniformity near the boundaries of F; also, we require
only convergence in probability in these conditions, not convergence in L'-norm.

-7. Using the semigroup approach, Kurtz [17] has developed general theorems on
convergence to Markov processes (see also [18]). His results are applicable, e.g., when
C¥F) (the space of twice continuously differentiable functions with compact support in
F) is a core for the generator A of the limiting Markov process—i.e., the closure of A
restricted to C3(F) is equal to A. Assuming this, it is possible to deduce results related to
our Theorem 2.1 by combining Theorem (3.11) in [17] with a Taylor expansion and using
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criteria for tightness from Section 4 in [17]. Indeed, it must be possible to deduce
(essentially) Theorem 2.1 this way, since there exist unpublished versions of the conditions
in [17] which are necessary and sufficient for convergence in a certain sense (Kurtz, private
communication). Trying to carry out this program in practice, however, one runs into at
least two difficulties. First, Kurtz’s conditions for convergence concern each single time
point ¢, while our conditions involve the behavior of X,(s) on the whole interval [0, ¢].
Secondly, Kurtz’s conditions are of L'-type (see his definition of p-lim, (1.7) in [17]), while
we only require convergence in probability. Thus some truncation argument must be
added. For an example where X,(t) = W(t) (Brownian motion), where the Lindeberg
condition of the form (2.14) holds (with K = R'), but where the corresponding L'-condition
does not hold, see page 623 in McLeish [23].

For deciding whether or not C¢is a core for the generator of a given diffusion process,
recent results by Ethier [8] are helpful. Most processes used in applications seem to satisfy
this condition. However, one may also construct simple processes for which the condition
does not hold. One example is given by X(¢) = | W(¢) |%, another by X(¢) = W(t A Ro)?,
where W(t) is Brownian motion and R, = inf{# = 0 : W(¢) = 0}. For both processes u(x)
= 3x"? and ¢%(x) = 9x*?, and CZ[0, ) is not a core for any of the corresponding generators
on C[0, »)—the space of continuous functions vanishing at infinity. (I am grateful to T.
Olsen for pointing out this to me.) Even if these examples are not quite relevant here (they
involve a regular boundary point), they give some support to the idea of seeking alternative
routes to limit theorems.

3. Necessity of the conditions. The conditions given in Section 2 are not necessary
for weak convergence, even though they are very close to being so. An example for which
X.(t) = X(t), but where the condition A2 does not hold for any sequence of partitions
{t£}, is given in Helland [13]. Using the same calculations as in [13], we can show that the
condition A2(K) does not hold here either (for any compact interval K with nonempty
interior). This example motivated the following

DEeFINITION 3.1. Let X,.(¢) (n =1,2, -..) and X(¢) be processes with paths in D[0, )
and adapted to families of o-fields %, (f) and Z(¢) respectively. We say that {(X,.(¢), Z.(t))}
converges to (X(¢), #(t)) weakly and in conditional distributions and write (X,.(t), (t))
=. (X(t), #(t)) if the following holds: for every choice of m = 1, of m time points
t; =0 =1, --., m) and of m bounded, continuous functionals g(i = 1, ---, m) on
D[0, ) the joint distribution of E {g:(X,.(t; + -)) | Z.(t:)} (i =1, - -., m) converges to that
of E{g(X(t,+ :))| #t)} =1, .-., m).

If this holds with Z.(t) = o{X.(s); s = t} and #(¢t) = o{X(s); s = t}, we simply write
X.(t) =. X(¢).

It is clear that this type of convergence is at least as strong as weak convergence, and
the example in [13] can be used to show that it is strictly stronger. It will be proved in
Section 7 that the conditions of Theorem 2.1 are necessary and sufficient in order that
(Xo(2), Zu(t)) =, (X(t), #(t)) with F(t) = o{X(s); s = t}. A precise formulation will be
given below, but first we will discuss some aspects of Definition 3.1.

Suppose that the joint distribution of E { g:(X,.(¢; + -)) | Z(t:)} (=1, - - -, m) converges
to that of E {g:(X(¢; + -)) | #(t:)} (i=1, - - ., m) whenever the g/s are uniformly continuous
functions on D. Then (X,.(¢), %.(¢)) =. (X(¢), #(t)). On the other hand, if we know that
(X.(t), Z(t)) =, (X(t), #(t)), then this same convergence in joint distribution holds

“whenever the g/s are bounded, measurable functions that are continuous on some C C D
for which P[X(¢; + -) € C]=1fori=1, ..., m. This is the content of Proposition 4.4 in
[13]. The last result will be used in Section 7 to prove that (X, (¢), Z.(t)) =. (X(¢), F#(t))
implies the conditions of Theorem 2.1.

Another useful result is the following (Proposition 4.9 on [13]): Let X,.(¢) and X,.(2) be
processes with paths in D, both adapted to the same family of o-fields (¢). Suppose that
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(Xa(t), Z(t)) =, (X(t), #(t)) for some X(t) and F(¢), and that supe<; | X.(s) — Xx(s) | =, 0
for all ¢t > 0. Then (X,.(8), Z(t)) =. (X(t), #(t)).

Next we show that the convergence X,(¢) =. X(¢) is independent of the representation
of the processes X,.(¢) and X(¢).

LEMMA 3.2. Let X(t) and X(t) be two processes with paths in D = D[0, ») and with
the same distribution on D. Then for any m, any m time points t; = 0 and any m bounded,
measurable functionals g; on D the joint distribution of E(g:(X(t; + -))| Z(t:))
(E=1, ..., m) is equal to the joint distribution of E(g(Xt; + )| #()) i=1, ---, m),
where F(t) = o{X(s); s < t} and #(t) = o{X(s); s < t}.

| ProoF. By Theorem 1.6 in the supplement of Doob [5] we may replace #(t) in
E(gi(X(t: + )| #(t)) by H(t) = o{X(s); s € I,} for some countable set I, C [0, ¢],
.similarly #(t;) for #t;) (with the same I;). Furthermore, we may suppose that I; C I
whenever ¢; < t;. Now %(t;) and %(t;) may be generated by sequences of finite o-fields

CFA) C At C .-, respectively Fi(t;) C F(t) C - -+, chosen in such a way that the
joint distributions of E(g«(X(t; + -)) | %)) (i =1, ---, m) and E(g«(X(t; + -)) | Zu(t:))
(=1, ..., m) are equal. The lemma follows by letting 2 — o« and applying martingale
convergence as in [5], Chapter VII, Section 8.

The following theorem—the second main result of this paper—shows the precise sense
in which the conditions of Theorem 2.1 are minimal. Let X(¢) be a diffusion process
satisfying the conditions in Section 2, and put #(t) = ¢{X(s); s < t}. For each n, let X,.(t)
be a process with paths in D and adapted to a family of o-fields %.(¢). Recall A0O-A4 of
Section 2. Also recall that G = int F.

THEOREM 3.3. Assume Al (alternatively: A1(K) for all compacts K in some open set
containing F') and A0. Assume that A2(K) and A3(K) hold for all compact intervals K
in G, and that A4(i) holds whenever r; is accessible for X(t). Then (X.(t), Z.(t)) =. (X(¢),
F(t)).

On the other hand, assume that (X,.(t), Z.(t)) =. (X(¢), #(t)). Then A0, A4(0) and
A4(1) hold, and Al holds for every sequence of partitions satisfying (2.7) and (2.8).
Furthermore, there exists a sequence of partitions of the form {kd,; k = 0}, with 6. | 0
such that A2(K) and A3(K) with this sequence of partitions hold for all compact intervals
KinG.

In most cases in the literature where weak convergence to diffusion processes is proved
and used, the conditions of Theorem 3.3 hold, at least with %,(t) = 6{X.(s); s = t}. Of
course, in some cases, e.g., in connection with the results of Guess and Gillespie [11], the
conditions may be difficult to verify, but constructed counterexamples of the type men-
tioned above, seem to be the only exceptions to the rule that Al, A2(K) and A2(K)
(K C G) always hold for some sequence of partitions of the time axis. In particular, in all
the usual applications in population genetics ([16], [26]), these conditions can be shown to
hold. Two other examples are discussed in Section 8 below.

Thus X,.(¢) =. X(¢) in all these cases, and in many other cases where the limiting
process has continuous paths. When X(-) has fixed discontinuities, our definition of =
seems to be too strong, as a referee pointed out: taking g;(x(-)) = Ai(x(0)) in Definition 3.1,
we see that =, implies convergence of all finite-dimensional distributions. For appropriate
definitions in the general case, the reader is referred to a recent paper by Aldous [1], where
a related concept of convergence is discussed in great detail. Aldous argues that a process
is described not merely by {X(t)}, but also by a filtration {£(t); ¢ = 0}, and that the
concept of convergence should take this into account. His extended weak convergence
coincides with our convergence =>. when the limit is a diffusion process with its natural
filtration.
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4. Central limit theorem for dependent variables and random time change. A
variant of Theorem 3.3 for the case where the limit X(¢) is Brownian motion, is proved in
[13], using martingale central limit theorems. Here we only need the first half of this result.
In the following Z,(t) —,. Z(t) means supo=s=t | Zn(s) — Z(s) | —p 0 for all £ > 0.

ProPOSITION 4.1. Let W(t) be a standard Brownian motion process, and put F(t)
= o{W(s); s < t}. Suppose that X,(0) —, 0, that Al holds and that

(4.1) Y8 E(AL X (k) | Za(tr)) —pu O
4.2) Y8 Var(A 1 Xu(k) | Zu(th)) —pu t.
Then (X.(t), Zu(t)) = (W(¢t), #(t)).

In particular, under these conditions X, (¢) = W(t). The object of the present paper is
to transform this result by a random time change. The transformation that we need was
discussed in Helland [12]. We recall the main result of [12] in the form that we will use it
here.

Let D = D[0, «) and let K be a compact interval on the line. Put B = (int K)°. Let ¢ be
a nonnegative continuous function on K, strictly positive on int K. We will define a
mapping f from D into D as follows. For x = {x(¢); ¢t = 0} € D, define

(4.3) g.=inf{t=0:x(t) €B or x(t—) € B}
and
(4.4) re= f ds/p(x(s)).

0

For t < r, let 7.(t) be determined (uniquely) by
Tx(t)

(4.5) t= f ds/@(x(s)).
0

Define f = f, 5 by
f(x)(t) = x(7(t)) for 0<t<r
(4.6) =x(g-—) for t=r, if x(qg.~)EB
= x(qx) for t=r, if x(g.—) & B.

Note that in the present case q. = +o always implies r, = +o. Thus f is always well
defined; the problem with explosions is avoided because K is compact. The following
proposition follows easily from Theorem 2.6 in Helland [12] and well-known properties of
Brownian motion. '

PROPOSITION 4.2. Let P; be the probability measure on D induced by a Brownian
motion without drift (with any initial distribution). Let P, be the probability measure on
D induced by Brownian motion (without drift) stopped when hitting B = (int K)°. Then
fo.B is continuous on a Borel subset C C D with P,[C] = P;[C] = 1.

To deduce weak convergence of processes from this result, we also need the fact that
f is a Borel-measurable function from D into D. This was not discussed in [12], but it is
relatively easy to see that f is always measurable. First we use the decomposition ((2.6) in
[12]) f = g ° h, where g is continuous everywhere (Proposition 2.5 in [12]) and 4 is defined
asin (4.3)-(4.6) with ¢ = 1. Thus we only have to prove measurability of A. From Billingsley
[2], Theorem 14.5, the finite-dimensional sets generate the Borel sets of D, so it is enough
to prove that for any Borel set A on the line the set [A(x)(f) € A] is a Borel set in D. But
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now
4.7) [A(x) () € Al = ([g: > ¢] n [x(¢) € A]) U ([g= =< £] n [x(g:—) EA n B]) u
([g= = t] n [x(g:—) & B] n [x(gx) € A)).

The mapping x — g, is measurable since

(4-8) [qx = t] = [x(t) (S B] u <nf=1 Ur<t,rrational [d(x(r), B) <%j|) ’

where d(§, B) = (§ — a)* A (B8 — §)™ if K = [a, B]. The mappings x — x(g.) and x — x(g.—)
are measurable by an argument similar to that of Proposition 12.39 in Breiman [4], and
this completes the proof of measurability. Essentially the same proof works under the
more general assumptions of [12].

5. Convergence to processes stopped at the boundaries of compacts. Let K be
a compact subinterval of F such that u(-) and 62(+) are continuous on K and ¢%(-) > 0 on
K. In analogy with (4.3) and (4.6) define

(5.1) RE=inf(t=0:X.(t) € int K or X.(t-) & int K)
X..(t) for t<RE

(5.2) XK(t) = | X.(RF—) for t=RE if X.RX-)@intK
X.(RE) for t=RX if X.(RX¥-)eintK.

By an identity similar to (4.8) we prove that R¥ is a stopping time relative to Z(t) (i.e.,
[RX < t] € Z(t) for all ¢). It is technically convenient to stop the processes also when
X,.(t—) is at the boundary of K, even if the definitions seem complicated. (The correspond-
ing aspect of Definition (4.6) is crucial for continuity of f.) If %(t) is a right-continuous
family and XX(¢) is quasileft-continuous, then R¥ = inf{t = 0 : X,(t) € int K} as. and
XEK(@t) = X,.(¢ » RE) as., where the exceptional set may be chosen independent of z.

Similarly, let R¥ = inf {¢ = 0 : X(¢) € int K} and X*(¢) = X(t A R*). In the next section,
Theorem 2.1 will be proved from the basic

PROPOSITION 5.1. Assume that A0, A1(K), A2(K) and A3(K) hold. Then XX(t) =
XX@).

One should note that this proposition, as well as the next one, also is valid for the case
where F includes one or two regular boundary points for the diffusion X(¢).

We will first prove Proposition 5.1 for the case u(-) = 0. In fact, for this case we will
prove a formally stronger result. See Section 4 for the definition of —,.. Define RE =
max{k : tk < RX} when RX > 0, otherwise let £ = —1, which by definition means that any
sum from 0 to X then is empty. ’

PROPOSITION 5.2. Let K, XX(t) and X%(t) be as above with u(-) = 0. Assume that AQ
and A1(K) hold and that

(5.3) SO B(A1 Xn(R) | Falth)) ->pu O
tARK
(5.4) YO Var(A1 X, (k) | F(th)) — J 6%(X(5)) ds —pu 0.
0
Then XX(¢) = XX(¢).

Proor. We will first prove Proposition 5.2 for the case ¢%(-) = 1. To this end we
introduce a new sequence of processes {Y,(t)} as follows. Define S, = ¢, with j = kRE+1
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when RX < 4+, otherwise let S, = +o. Let

[ X0 for t=8,
(5.5) Y.(t) = {Xn(sn) + W(t—S,) for t>8S,,

where W(¢) is a standard Brownian motion (. = 0, 0® = 1, W(0) = 0) independent of X.(¢)
and of the o-fields Z(¢). (Without loss of generality we may assume that the probability
space is rich enough to support such a process.) Define G(t) = F(t) vV o{Ya(s); s = t},
AY (k) = Y.(t5") — Yo(t?) and A, Y. (k) = AY.(k) - I(|AY.(k) | = 1). Then it is easy to
verify that

(5.6) Yl P[VY,n(k) > €| Z(th)] —,0  forall ¢
(5.7) Y8 E(A1Ya(k) | Falth)) —=pu O
(5.8) Y8 Var(A Yn(R) | Zu(th)) —pu t.

Therefore by Proposition 4.1 we have (Y3(¢), Zu(t)) =. (W(t), %(t)), where Yi¢t) =
Y.(t) — Y.(0) and %(t) = o{ W(s); s < t}. In particular, E {g(Ya(-) — Yx(0))] %.(0)}
converges in distribution (hence in probability) to E {g(W(-))} for every bounded contin-
uous functional g on D. Since Y,(0) = X,(0) is measurable with respect to %.(0) and X,,(0)
—p X(0), we find that E {g(Yn(-) — Y(0)A(Y.(0))} — E {g(W(-))}E {h(X(0))} for every
bounded continuous function /# on R'. From this it follows that Y,(f) = X(t), where X(¢)
is a Brownian motion with p = 0, 6® = 1 and initial distribution given by the distribution
of X(0). If we now use (4.3)-(4.6) with ¢ = 1 and B° = int K, we find that XX(.) =
fe 8(Ya(+)) and X*(-) = £,,8(X(+)). Thus the proof for this case is completed by appealing
to Proposition 4.2 and the continuous mapping theorem.

Next we prove Proposition 5.2 for the general case where o%(+) is any positive continuous
function on K. (The proposition is true also when 62(-) = 0 at one or both boundaries of
K, but since we do not use this result, we omit the proof.) First we note that the sequence
of processes {XX(¢)} satisfies the assumptions of Proposition 5.2 along with {X,.(£)}. We
will transform this sequence by a random time transformation, and define

RK RK

(5.9) Q= f 0’ (XX(s)) ds <= J 0*(Xa(s)) ds) .
0 0

For ¢t < Q¥ we define T.(t) by

T,(t)
(5.10) t= f o*(XX(s)) ds,
0

and let Tw(¢) = RX + t — QX for ¢ = QX. From this we define a new sequence of processes
{Zu()} by

(5.11) Za(t) = XE(To()).

A new sequence of partitions (sk; k = 0}, is defined by
tk
th = T, (sk) <i.e., sk = f 62(X.(s)) ds on [ti=< R,’f]).
0

Since T.(-) is strictly increasing, this determines s* uniquely. Also, since o”(-) is bounded
away from 0, sk — +o a.s. as k£ — +oo for each n. By the boundedness of ¢2(-)on K it is
easy to see that maxe=i=q Asn(k) — 0in probability for all ¢ > 0, where As,(k) = skl —
s* and g.(t) = max{k = 0: st < ¢t}. Let %.(t) = Z.(Tx(¢)). Then each s* is a stopping time
relative to {%.(t); t = 0}.

Since ¢2(x) = § for all x € K for some § > 0, it is clear from (5.10) that {T.(¢); ¢ € [0, a],
n=1,2, ...} is contained in a compact interval [0, 0 'a] for each a > 0. Therefore we may

replace ¢ by T,(f) in expressions like the left-hand side of (5.4). This gives, with the
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notation A, Z,(R) = {Za(si*") — Zu(sF)} « I(| Za(sE™") — Zu(sh) | < 1):

(5.12) Y3 ¥ P[supszssst | Zn(S) — Zn(sk) | > €| Gu(sk)] >, 0  forall e ¢>0,
(5.13) THY M E(A1Zn(R) | GalsE)) —pu O,

(5.14) A Var(A,Za(R) | %a(sk)) — ¢ A QK —,. 0,

where we have used the identity ¢.(¢) = r.(T,(¢)). Note that 2% = max{% : s* < Q) when
Q% > 0, otherwise kX = —1. By the argument given in the first part of this proof, (5.12)-
(5.14) imply that Z,(¢) = Z(t) in D[0, «), where Z(t) is a Brownian motion with p=0,0°
= 1, initial distribution given by the distribution of X*(0), and with the boundaries of K
absorbing.

We may invert the transformation (5.9)-(5.11) as follows. We have

(5.15) Q¥ =inf{t=0:Z,(t) € int K [or Z.(t-) € int K]}
(5.16) RE= J‘Qfds/az(Z,,(s)).
0

For ¢t = RX we can determine , := T;! by
(5.17) t= f " ds/0%(Z.(s)).

0
Finally
519 xto={768 o Sh

Comparing (5.15)-(5.18) with (4.3)-(4.6) we see that XX (¢) = f(Z,(-))(¢), where f=f, 5
with @(-) = 6%(-), B® = int K. By Proposition 4.2 we therefore have XX () = £, 5(Z(-))(¢)
in D0, ). It is easy to see from standard diffusion theory (see Breiman [4], Chapter 16)
that f,,5(Z(-))(¢) with ¢, B and Z(¢) as above is a diffusion on natural scale with infinitesimal
variance o2(-), with the same initial distribution as Z(¢), and with boundaries of K
absorbing.

PRoOF OF PROPOSITION 5.1. For the case u(-) = 0 this is a consequence of Proposition
5.2, since A2(K) trivially implies (5.3), and A1(K), A2(K) and A3(K) together imply (5.4).
Indeed, from A1(K) (cf., (2.11)) and the uniform continuity of o%(-) on K, we see that

tARK
(5.19) f 0%(X.(s)) ds — ZZ’Qé)Ak"‘(az(Xn (t5)At, (k) —pu 0,
0

and from A2(K) it follows that
(5.20) TG (B (A1 X (k) | Fa(t2))}* —>pu O.

By combining (5.19), (5.20) and A3(K) it is easy to prove (5.4), and thereby XX(¢) = X K(p).
(In all these arguments we use the fact that 2 < k, implies X, (¢¥) € K.)

The general case (with u(-) # 0) is reduced to the above case by transforming to the
natural scale of the limiting diffusion. Thus we define U, (¢) = u(X,(¢)) and U(¢) = u(X(¢)),
where u(-) is determined by (2.4). Since u(-) is continuous on K, u(K) is compact. By the
continuity of p(-)o %(-) we even have that «’(-) and u”(-) are bounded and uniformly
continuous on K. Therefore, if we put AU, (k) = U, (tk*') — U,(t%), we have by a Taylor-
expansion

(5.21) AUL(R) = t/(X, (tR)AX, (k) + (% u”(Xa (87)) + Hr )} (AXa (R))?,

where H% is small when AX, (%) is small. By A1(K) (cf, (2.11)) we can find a sequence
{e=}, with €, | 0 so slowly that
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(5.22) Plmaxost=r.r#% |AXn(R) | > €] — 0
Plmaxosp=r.)ark |Hﬁ| >e,]— 0.

Let Ans = [| AX.(k) | > €] U [| H:| > €,]. Then P[u4*** 4,,]— 0, and by Lemma 3.1
in Helland [13] this implies

(5.23) B P[Ape | o (t5)] —pu 0.

By the boundedness of «'(-) and ©”(-) on K we see from (5.21) that A, U. (k) = AU, (k)
on A, for n large enough, where as usual A; U, (k) = AU, (R)-I(|AU. (k)| = 1). We also
need the identity (cf., (2.4)) ©”(x) = — 2p (x) 0 2(x)#/(x). This gives from (5.21)

Y G E (A Un (B) | i (th))
=3 E(A Un(R); Ask| Za(t2)) + 3 E(AUn (B); An | 7 (82))
(5.24) =Y W/(X (tR) E(A X, (k) | Za(8))
— 3 (X (£2) 02X ()W (X (62) E({A1 X (R))? ] Zi (£2))
+ Y E(H A XA (R)}; Asr| Za(t2))
+ O3 P[Ank| Z(tD)]),

where all summations are from k2 = 0 to k& = r,(t) A kX
The first sum on the right-hand side of (5.24) is (pu)-asymptotically equal to

(5.25) TG ! (X (65)) (X (7)) At ()

by A2(K). In the second sum we may replace E({A:1 X, (k)}?| Z.(t%)) by 6*(X.(¢7)) At (k)
since A3(K) holds. Therefore this sum is also (pu)-asymptotically equal to (5.25). Since
the third sum is of order O(e,), this shows that

TG B (Ay Un (k) | Z(t2)) —pu 0.

By a similar calculation, using the simpler identity AU, (k) = (W (X (t%)) + GEYAX. (R),
where G is small when AX,, (%) is small, we find that

Y A E({ AU (k)Y | 7 (88)) — W/ (Xa (87))%0%(Xa (82)) At (R)} —pu O
TG E (A Up (B) | ()} —pu 0.

From this and the uniform continuity of «’(-) and o0%(-) we see that (5.4) holds with
X, (s) (A1 X, (%)) replaced by U, (s)(A; U, (k)) and with 6*(x) replaced by 5*(y) = u’'(x)%0”(x)
where y = u(x). Furthermore it is immediate from A1(K) and uniform continuity that

Y74 Plsupszs=et | Un(s) — Un(th) | > € | Z ()1 (Un (82) € u(K)) — 0

for all ¢, £ > 0. Hence { U, (¢)} satisfies the conditions of Proposition 5.2 with 52(-) replacing
0%(+) and with u(K) replacing K. This shows that Ux(¢) = U*(¢), where U(#) = u(X(¢))
and UX(#), UX(#) are the processes stopped at the boundaries of u(K). Since u(-) has a
continuous inverse, this implies that XX(¢) = X*(¢).

6. Proof of Theorem 2.1. Assume that the conditions of Theorem 2.1 (first para-
-graph or second paragraph) hold. Look first at the case where both boundaries ro and 7,
are inaccessible for X (f). By Proposition 5.1 we have X K(¢) = XX(t) whenever K is a
compact subinterval of G = (ro, r1). Fix € > 0 and ¢ > 0. Since the boundaries of G are
inaccessible, we can find K = [a, 8] such that

(6.1) Plsuposs=cX(s) = B or infoss=cX(s) < a]<e.
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For K’ a compact interval in G such that K C int(K’), this means
P[supo=s=cX¥(s) = B or infoce=cX¥(s) < a]<e.
Therefore, since X (¢) = X*(¢), we have for large n
Plsupos=cXx (s) = B or infoce<cXX(s) < a]<e,
which is equivalent to
(6.2) Plsupo=s=cX.(s) = B or infoce=cXn(s) =a]<e.

With K = [a, 8], (6.1) implies P[ X*(s) # X(s) for some s in [0, c]] < ¢, while (6.2) implies
that for large n we have P[XX(s) # X, (s) for some s in [0, ¢]] < e. Since € was arbitrary,
it follows from XX(t) = X*(¢) that X, () = X(t) in D[0, c]. Since ¢ was arbitrary, this
implies X, () = X (¢) in D[0, o).

Suppose next that r, is inaccessible and ry is exit. Without loss of generality we can take
ro = 0. Also, we may suppose that u(-) = 0, since the result may be transformed to any
scale by the argument in the proof of Proposition 5.1. Let 8 > 0, and with K = [§, «) define
R, = RY and X5(t) = XX(t), where RX and XX(t) are defined in (5.1) and (5.2). By
combining Proposition 5.1 with an argument similar to that of the preceding paragraph to
take care of the inaccessible boundary r;, we see that XJ(¢) = X%(t), where X°(t) =
X(t A R®) with R® = inf{¢ = 0: X(¢) < §).

Let ¢ > 0, e > 0 be given. Most of the remaining part of this section will be used to prove
that § can be chosen so small that

(6.3) lim supr_.« P[supri<s=cX.(s) > €] <e.

Once this is proved (assuming § < €), we can combine it with the condition A4(0) to see
that

(6.4) lim Sup,—«P[suposs=c | Xa(s) — X5(s) | > 2€] <e.

We also have P[supo=s=c| X (s) — X*(s) | > 2€] < e when § is small enough. This can be seen
from the properties of exit boundaries, alternatively from the fact that A0~A4, which hold
trivially if X, (¢) = X (t), imply (6.4). Therefore X, (£) = X (¢) in D[0, ¢] by Theorem 4.2 in
[2], and in D[O0, ) by the arbitrariness of ¢ > 0.

We prove (6.3) through a series of lemmas. Throughout we will let §, A and € be
constants satisfying 0 < § < A < € and let X,(¢) be a diffusion process on F which is on
natural scale with diffusion coefficient o%(-) and X,(0) = A. Extend the probability space
in such a way that it supports a sequence of pairs of random variables

(6.5) ((U% V¥ k=1,2, ...}

which are independent of all the processes X, (¢), and such that the pairs (U k V*) are
independent and each pair has the same distribution as (Z, Y), where

(6.6) Z=inf{t=0:Xo(t) =€ or Xo(¢) <8}; Y = Xo(2).

Thus each U* is nonnegative, and each V* takes only two values (8 and €).
Next we define by induction

Sy =inf{t=Ry:X.() =X or X,.(t—) =A}

Th = inf(¢t= 84 X, () € (5,6 or X.(t—)& (5, €) E=12, ---
o7 —inf(¢= TEL X () =N or Xa(t=) = A}
6.7) ) on [X.(TH'=) = 8] U [Xa(TE") =8, X, (Th ') < €]

Sn

=inf(t= Tt X, () =A or X.(t—) =A)
on [X,(T:'-) =€l u[X(TE") = ¢ X (TE'=) >8] k=23, .-
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Finally we take

Zk={T’,i—Sﬁ on [St=c]
" U* on [S%>c]

(6.8) X.(Tk=) on [Si=c]n[T:<w]n[X.(T:-)& (B, €]
vt = X.(TE) on [St=c]n[Ti<wo]n[X.(T:=) € (5 €]
770 on [St=ec]n[T: =]
v* on [S%>¢),

where of course [S% > c] is taken to include [ S% = ].

LEMMA 6.1. For all k = 1, the joint distribution of (Z}, Y%, -+, Z%, Y*) converges
to that of (U, VY, ..., U* V*) asn— .

ProoF. We use induction on k. Let 2 = 2 and let B* be a Borel set in R%~2 such that
P(UYL VY, ..., U, V*)e B*]>0and P[(U, V, ..., U, V¥ ) e aB"] = 0. Put

(6.9) At=[(Z, Yy, -+, Z8, YR € B
Let {n} be an increasing sequence of integers such that

(6.10) lim inf,_... P[A%, Sk < c] > 0.

For any such sequence we will prove that

(6.11) P[(Z%, YE) .| A%, 8% < c] = P[(U*, V*) €.].

Taken together with the fact that the definition (6.8) gives P[(Z%, Y%) €- | A%, S% > ]
= P[(U* V*) €.], this implies

(6.12) P[(Zk Y!) - |Ak]l= P[(U*, V*) €.]

whenever lim inf,..P[A%] > 0. In exactly the same way it will follow that
P[(Z%, Y}) e-]1= P[(U*, V)E.], and Lemma 6.1 will follow by simple induction.

It remains to prove that (6.10) implies (6.11). Fix %2 and B*, let A% be as in (6.9) and
define a new sequence of processes X, (£) = X, (S% + ¢) with distribution given by

(6.13) P[X.(-) € C] = P[X.(Sk + .) € C| Ak, St =< c]

for Borel sets Cin D[0, »). Let %,(t) = %, (S% + t), and define a new sequence of partitions
(#:7=0,1, .-}, by {2 =0; & = £+ _ §% forj = 1.

First we remark that S% is a stopping time relative to {% ()} (cf., (4.3) and (4.8)). It is
then easy to see that each #; is a stopping time relative to { %, (#)}, and that if 7, (1) =
max{j = 0: £, < u}, then 7, (u) = r.(S% + u) — r.(S%).

Now for each compact interval K in G use A1(K), A2(K) and A3(K) with ¢ replaced by
t + c. Then it follows easily that these same conditions continue to hold if one replaces
(X, (8), Zalt), th, ra(t), P} by {X,.(t), Zn(t), t4, Fn(f), P}. Here we use (6.10) to show that
convergence to zero in P-probability of a function of X, (S% + -) implies convergence to
zero in P-probability of the corresponding function of X, (-). Also we use the fact that A%
n [S% =< c] is measurable with respect to %, (£5) for all j = 0.

Furthermore, Al (cf., (2.11)) implies maxo=j=r ) VX. (k) —, 0. Since the maximal jump
of X, (-) in [0, c] never exceeds 2 maxo=;=r, (VX (R), it follows from this and the definition
(6.7) of S% that X, (0) = X,(S%) — A in P-probability. Thus A0 holds for X, (t) with X(0)
= A. The same argument applies (by A4(0)) if A1(C) holds for all compacts C C H for
some open H D F. (But note that A1(C) for all compacts C C G will not suffice.)

Therefore, from Proposition 5.1 we have XX(t) = X&(t), where XX(¢) is defined from
X.(t) as in (5.1)-(5.2) and X&(¢) = Xo(¢ A R¥) with R = inf{¢t = 0: Xo() & int K}. This



CONVERGENCE TO DIFFUSION 443

holds for any compact K = [a, 8] C G, and by the argument of the first paragraph of this
section, it also holds when K = [a, ®), since r; is inaccessible for X, (¢). With K = [a, )
where 0 < a < 8, put X3(¢) = XX(¢) and X§(¢) = X&(¢). Thus X3(t) = X§(¢).

Consider the mapping g from D[0, «) into R* X R* defined by g(x(-)) = (2, y), where

z=inf{t=0:x(t) & (8,¢) or x(t—)& (J,¢€)}

(6.14)

x(z =) if 2z<ow and x(z-) & (5,¢)

y={x(z) if 2<o and x(z-) € (¢€)

0 if z=o0
This mapping is measurable by the argument around (4.7)-(4.8), and it is continuous on a
Borel set B in D[0, ») with P[X§(-) € B] = 1. This latter fact is seen as follows: With Z
given by (6.6) we have Z = inf (¢ = 0:X§ (¢) € (5, €)}. Since & and € are regular points for the
diffusion process X §(¢), there are (random) times T > Z, arbitrarily close to Z, such that
X3(T) € [8, €]. In the terminology of [12] this means that X§(¢) satisfies condition C3 a.s.,
and the a.s. continuity of g follows from Lemma 3.3 in [12].

From the definitions (6.6)-(6.8), and from (6.13)-(6.14), we see that (Z, Y) = g(X5 (-))
and (Z%, Y& = g(X.(S% + .)) = g(Xa(.)). Therefore the P-distribution of (Z%, Y%)
converges to the distribution of (Z, Y) by the continuous mapping theorem, and (6.11)
follows. This completes the proof of Lemma 6.1.

LEMMA 6.2. With W° =0 and W* =Y*%_, U’ for k = 1 we have

(6.15) lim supn—« P[supg; X.(s) >e] <= Pl[up-, [W* =< ¢, VP =€]]

=s=c

PROOF. It is clear from the definitions that
Plsupgs,.. Xn(s) > €] = P[Ui- [St=c Yize]]
(6.16) < Plus. [S* Zi < ¢, YE = o],
since [S} < ¢] C [¥*2} Z4 = c]. From Lemma 6.1 we have for all m = 1 that
(6.17) lim sup,.. P[UF: [S41 Zi < ¢, Yiz €]l = Plul, [W¥ = ¢, VF=€]],

since the sets involved are closed in R?™. Also, the right-hand side of (6.17) is less than or
equal to the right-hand side of (6.15), since [V* = €] = [V* = €] a.s. To see that the left-
hand side of (6.17) can be made arbitrarily close to the lim sup of the right-hand side of
(6.16), we remark that

lim supn e P{Usems1 [ Z4 = ¢, YE=€]]
(6.18) < lim sup,_« P[USp+1 [3%1 Z4 = c]]
= lim supn.o P[¥7"1 2}, <= c]<= P[W™ = c],

since eachZ}, (j=1,2, - - -, m) is nonnegative. Now W™ =Y, U*, where U’, U? ... are
iid. with P[{U* > 0] > 0. Therefore the right-hand side of (6.18) can be made arbitrarily
small by choosing m large enough, and (6.15) follows from (6.16)-(6.18).

LEMMA 6.3. For 8 < €/2 we have

3 €/2 -1
. ydy dy
(6.19)  lim sup,—« P[supg.,.. Xx(s) > €] = 2(c +2 J; az(y))<e js m) .

ProoF. From Lemma 6.2 the left-hand side of (6.19) is bounded above by
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(6.20) Y1 P[IW* ! = c]P[V* =€l = P[Y = €] Y50 P[W* = c].

With Y defined in (6.6) we get from the theory of diffusion processes ([4], Theorem 16.27)
that P[Y = €] = (A — 8)/(e — 8). Now look at the renewal process { W*} with W* =¥%_,
U’. From standard renewal theory we have S50 P[W* =< ¢] = E(N + 1), where N is the
number of renewals in the time interval (0, c]. Furthermore, since N + 1 is a stopping time
for the process, Wald’s identity gives E(N + 1)-E(U?) = E(W™*!) < ¢ + E(UY*"). It is not
true that E(UM*") = E(U"), so to get a bound on E(U™*'), we use Wald’s identity once
more:

{E(U™™))* = EQU™"Y) < BT {U%Y) = EIN + 1)-E{U").

This, together with the first inequality gives E(N + 1)-E(UY) = ¢ + (E(N + 1).
E({U'}*)"2 Now if z, @ and b are nonnegative numbers satisfying the inequality z < a
+ bz'?, it is easy to show that z < 2a + . Therefore

2¢ + E{UY?
EWUY)  (EWUY

Let G(x, y) be the Green’s function for the operator % d ?/dx? on the interval (§, €), i.e.,
G(x,y) =2(x — 8) (e —y)/(e — 8) for § = x = y = e and G(x,y) = G(y, x). Since M;(A) =
E(U") and M;(\) = E({U'}? are solutions of the equations % ¢2(\)M¥(A\) + 1 = 0 and
% o AN M3 (\) + 2M;,(\) = 0, we find

(6.21) Sio P[Wr=c]=EN+1) =

N - ¢ dy
(6.22) EU) L G(?\,y)?(—y)
(6.23) E(UY?) =2 f GO, Gy, -2 %
' o) ’ 2<y> o2z)

From (6.22) we see that E(U") = e(A\ — 8) (e — 8)™" [¥* 67%(y) dy when § < A < ¢/2, and
using the inequality G(y, 2) < 2(z — 8) < 2z we find from (6.23) that E({U'}?) <4E(U"Y.
[5 267%(2) dz. Inserting this into (6.20) — (6.21) and letting A | & gives (6.19).

Since r, = 0 is accessible, we see by the inequality corresponding to (2.6) that [§ yo~%(y)
dy < . On the other hand, since r; is exit, | m(0) | = = gives [§* ¢7%(y) dy = .
Therefore, by (6.19) we can choose § so small that (6.3) holds.

This completes the proof of Theorem 2.1 for the case where ry is exit. When r; is exit
and r, inaccessible, the proof is similar. When both boundaries are exit, we can argue as
follows: let K = [a, 8] C (ro, r1) and K’ = (—o, B8], and letXX(t), X¥(¢), XX (t) and X¥'(¢)
be the usual stopped processes. Now the argument of this section shows that we can make
the sequence {XX(¢)} close to {XX'(¢)} in the sense of (6.4) by choosing a close enough to
ro. Similarly we can make {XX (¢)} close to {X,(¢)} in the same sense by taking 8 close to
r1. Therefore {XX(¢)} is close to {X,(¢)}, and X, (¢) = X(¢) follows again from Theorem 4.2
in [2].

7. Proof of Theorem 3.3. To prove the direct part of Theorem 3.3, we once again
take Proposition 4.1 as our point of departure. Also we need the following facts about the
convergence =>. (Proposition 4.4b and 4.5 in [13]).

ProposITION 7.1. (a) Suppose that {X,(¢)} is tight in D = D[0, x). Suppose further
that E{gi(X.(t; + -)) I%.(tj)} (J =1, --., m) converge jointly in distribution to
E{g(X(t; + -)) |§(tj)}(j =1, ..., m) for all choices of m, of t(j =1, --- , m), and for all
choicesof gi(j=1, -+, m) that are of the form gj(x(-)) =exp (Y5 l/\ %, x(s%)} where i =~
(=1)'72. Then (X.(8), /n(t)) = (X(8), Z#(¢)).

(b) Suppose that (X.(t), Zn(t)) = (X(t), #(t)). Then the joint convergence in distribu-
tions described under (a) holds for any choice functions gi(j = 1, ---, m) that are
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bounded and measurable, and are continuous on some Borel set C in D with
PX(ti+-)elC]l=1(=1,..-,m).

Our object will be to generalize the proofs of the preceding two sections, in each case
replacing the convergence = in the conclusion by the stronger convergence =.. The main
work will be to extend the proof of Proposition 5.2 in this way.

Suppose first that the assumptions of Proposition 5.2 hold with ¢%(-) = 1, and let Y.(¢)
be defined as in (5.5). From (5.6)-(5.8) it follows again that (Y%(¢), %.(t)) =. (W(t), Z(t))
with the notation as defined in Section 5. Now let g;(x(-)) =exp {34 iA}x(s%)} and let ¢;
=0 (j=1, ..., m). Without loss of generality we can take t; < t;, < ... < ¢,. From the
identity Y.(s) = Y.(0) + Y%(s) we see that

(11)  E{g(Yult; + ) | Falt)} = E{g/(Ya(t; + -) — Y2(8)) | Za(t)} exp {Ther INYa(5))

Since (Y%(#), %n(t)) =. (W(t), %(t)), the first factor on the right-hand side of (7.1)
converges in distribution—hence in probability—to E{g{(W(¢ + -) — W(t)) | %)} =
E{gi{(W(t;+ -) — W(¢))}, which also equals E{gj(X(¢; +-) — X(¢£)) | #(¢)}. In Section 5 we
proved that Y, (¢) = X(¢). Hence the second factors on the right-hand side of (7.1) converge
jointly (for j = 1, 2, ..., m) to the corresponding factors exp{¥%.: iA%X(t)}. Hence
E{g(Y.(t; + ))|%@)) (j = 1, ---, m) converge jointly in distribution to
E{gi(X(ti+ -)) | #(t)}, and by Proposition 7.1 (a) we have (Y.(?), Fn()) = (X(B), Z(2)).

The next step is to show that this implies (XX(¢), Z.(8)) =. (XX(¢), #(t)) where XX(.)
= f(Yn(-)) and X%(.) = f(X(-)) with f = foB(p = 1). To this end we use the identity

(7.2) E(g(XX(t; + -)) | Zult)) = E{gi © [(Ya(t; + ) | Za(8)).

By Proposition 4.2, f is continuous a.s. with respect to the distribution of X(-), so by
Proposition 7.1 (b), any m random variables of the form (7.2) (with g; continuous and
bounded) converge jointly in distribution to the corresponding random variables of the
form E{g; o f(X(t; + -)) | Z#(t)} = E{g(X%(t; + -)) | #(t)}. Therefore (XX(t), Z(t)) =,
(XX(t), #(t)), and since %,(t) = Z(t) vV 6{Yu(s);s <t} = F(t) V 6 {W(s);0=<s=<t— S,)}
where W(¢) is independent of X,,(¢) and of the o-fields %,(¢), this implies (X K1), Z(t)) =
x*), 7).

In all that has been proved so far, the convergence =, may be replaced by a formally
stronger type of convergence: suppose that (Z,(t), %.(t)) =. (Z(t), %(t)) and in addition
that the following holds: for every choice of m, of g; (bounded and continuous), T»:(stopping
times with respect to %,(t)), T; (stopping times with respect of %(¢)) such that (Z.(T%:),
eov s Zo(Toum)) = p (Z(TY), + -+, Z(Tn)) and such that max;<;<, lim sup,—.. P[T»; > c] can
be made arbitrarily small by choosing ¢ large enough, we have that the joint distribution
of E{gi(Z.(Tni + -))| %(Tn)} ({ = 1, ---, m) converges to the joint distribution of
E{g(Z(T; + -))| 9(T)}@ =1, ---, m). This could suitably be called strong convergence
in conditional distributions: (Z.(f), %.(£)) = (Z(t), %(t)).

To show that (X,.(£), Z.(£)) =s. (W(), Z(t)) holds in the conclusion of Proposition 4.1,
one has to go through the proof of the direct half of Theorem 2.9 in [13] again, replacing
everywhere ¢; in X,,(¢; + -) and in %,(t;) by T, and replacing ¢ in W(¢; + -) and in #(¢;) by
T:. This works, since we again may use a martingale central limit theorem to deduce
convergence in distribution of X,(Ty; + s + u) — X,(Tw: + s) to W(Ti; + s + u) — W(T; +
s). Here the boundedness in probability of {7’} is used, e.g., to prove that (4.2) implies

wirmene ) Var(AXa(k) | Z(tR) —p u.

k=r,(T,,+s)

The proof rests heavily on the generalization of Proposition 7.1 (a) to the convergence
=>;. (with the similar replacements as above). This generalization is proved exactly like
Proposition 4.5 in [13]. The corresponding extension of Proposition 7.1 (b) also holds.
Going through the beginning of the present section again, we finally deduce that (XX (),
Z(t)) =5 (XX(#), #(t)) under the assumptions of Proposition 5.2 with o*(-) = 1.

To proceed, we also need the following
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LEmMMA 7.2. Let K be a compact interval on the line, B = (int K)° and let ¢ be a
positive continuous function on K. For x € D = D[0, ») let q., r., :(t) and f be defined as
in (4.3)-(4.6). Suppose that x has the properties x(u) = x(q.) for u > q. and x(q. —) =
x(gx) if x(q= —) € B. Then we have f(x)(u) = x(1.(u)) for all u = 0 if we define r.(u) = q.
+u —ryfor u=r,. Also, for all s, t = 0 we can write

(7.3) f(x)(t+ 8) = f(ye)(s), where  y..(u) = x(r.(t) + w).

Proor. The first identity is trivial from (4.6) and the properties of x. These properties
are shared by y = y... Then, using the definitions (4.3)-(4.5) combined with 7.(u) = ¢, +
u — r, for u = r,, we can verify that 7.(¢t + s) = 7.(t) + 7,(s) for ¢, s = 0 by considering
separately the cases t + s <r, t <r.=t+ s and r. < t. From this, f(x)(t + s) = x(7«(£)
+ 1,(s)) = y(7,(s)), and (7.3) follows.

We are now in the position to prove that the conclusion (XX(¢), Z.(t)) =. (XX(8), #(¢))
holds in Proposition 5.2 for the general case where o(-) is any positive continuous function
on K. We use the same notation as in (5.9)-(5.18), and we will define 7,(¢) = QX + ¢t — RX
for t > RX. Then 7.(-) = T;(-), and each ,(t) is optional with respect to %,(u) =
Z(Tr(u)). Also, from the definition (5.11) it is easy to see that each Z,(-), considered as a
path in D[0, ), has the properties mentioned in Lemma 7.2 (with ¢ (-) = 6%(-)). Therefore,
for s, t; = 0 we have XX(¢; + s) = f(Z.(-)) (t; + 8) = [(Zn(Twi + -))(s), where f = f, g and T
= 7,(¢). Letting g,(i = 1, - . . , m) be bounded continuous functions on D[0, »), we find

(7.4) E{g(XX(t; + ) | Z(t)} = E{gi o f(Za(Ti + ) | %u(Twi)}.

By the extended Proposition 5.2 for the case o%(-) = 1, we have that (Z,(£), %.(t)) =
(Z(t), %(t)), where %4(t) = 0{Z(s); s < t}. Furthermore, in Section 5 we proved that X X(¢)
= X*(¢) = f(Z(-))(¢). Therefore (Zn(Tn1), - - + , Zn(Tum)) = (XK (t1), « - - , X (tm)) = (X*(80),
-eo, X%(tn)) = (Z(TY), - -+, Z(Tw)), where the random variables T are defined by ¢ =
[3 du/e®(Z(u)) if t; <R, T: = Q + t, — R if t, = R, with @ = inf{u = 0:Z(u) € B} and R
= [§ du/o*(Z(u)). Thus by the definition of the convergence =, and by the corresponding
extension of Proposition 7.1 (b), the random variables in (7.4) converge jointly in distri-
bution to E{g;  f(Z(T: + -)) | %T)} = E{g(X¥(t; + .)) | #¥(t)}, where FX(t;) = 4(T))
= 6{X*¥(s); s = t;}. But here we may replace #%(t;) by Z(t;) = o{X(s); s < t}, and this
completes the proof of the conclusion (XX(t), Z.(t) =. (XX(¢), Z(t)) in Proposition 5.2.

Then it follows easily that the same conclusion holds under the assumptions of
Proposition 5.1. To prove this, we use Definition 3.1, the proof of Proposition 5.1 in Section
5 and the fact that the scale function u(.) has a continuous inverse.

From Section 6 we see that for all ¢, e > 0 one can find a compact interval K C G so
large that lim sup, ... P[supo<s<c | X»(s) — XX(s) | > €] < e. The proof of the direct part of
Theorem 3.3 is completed by combining this result with our extended Proposition 5.1 and
the following general result on the convergence =.. (Compare Billingsley [1], Theorem
4.2).

PrOPOSITION 7.3. For each k = 0 and n = 1 let XX(t) and X*(t) be processes with
paths in D = D[0, ) that are adapted to families of o-fields Z.(t) and F(t) respectively.
Let d be some metric for the Stone topology on D. Suppose that (X(t), Z(t)) =. (X*(t),
F(t)) for each k = 1 and that d(X*(-), X°(-)) =, 0 as k — . Suppose further that

limy ... lim supn_. P[d(X%(-), X3(-)) = €] =0

for all e > 0. Then (Xa(t), Za(t)) =. (X°(t), #(¢)).
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Proor. Let gi(i =1, ---, m) be bounded uniformly continuous functions on D. We
use first the estimate

(75) E|E{gXkt:+ )| Zt)) — E{g(X2(t: + -)) | Falt:)} |
= pile) + P[d(X5(-), Xn(+)) = €]-2] &,

then the corresponding estimate of the difference between E{g:(X*(t; + :))|#(t)} and
E{g(X°(t; + -)) | #(t))}. Here p,(-) is a modulus of continuity of the function g,. The lim
sup (as n — o) of the right-hand side of (7.5) can be made arbitrarily small by choosing €
small and then % large. Therefore the convergence in joint distribution of E {g:(X%
G+ D] A&EIE=1, .-. ,m) to E{g(X°( + ) |F({t)}GE =1, - -, m) follows from the
corresponding convergence of E{g:(Xx(t; + -)) | Z(t)} to E{gi(X*(t; + -))| #(t)}. This
implies the conclusion by Proposition 4.4a in [13].

Thus we can conclude that (X,.(¢), #(¢)) =. (X(¢), #(t)) follows from the assumptions
of the direct part of Theorem 3.3. By essentially the same proof we can in fact show that
(X(t), Zlt)) =5 (X(t), F(t)) with = as defined above.

Conversely, suppose that (X,.(t), Z.(t)) =. (X(¢), #(t)). Then in particular X,(¢) = X(¢),
and A0, A4(0) and A4(1) follow trivially. Furthermore, the function g:D — R' defined by
&(x(+)) = SupPossust|s—ui=s | x(s) — x(u) | for fixed 8, ¢ > 0 is continuous a.s. with respect to the
distribution of X(-), and P[g(X(-)) = €] = 0 for € small enough, so that

limy .o P[SUPos<sust;js—ui=s | Xn(8) — Xn(u) | > €] = Psupossus=s)s—u=s | X(s) — X(u) | > €].

Letting 8 | 0, we see that (2.12) holds for all ¢, £ > 0, and therefore the condition Al holds
for any sequence of partitions (see Section 3 in [13]).

Let K be a compact interval in G. To prove A2(K) and A3(K) for some sequence of
partitions we first define

(7.6) Zu(t, 8, K) = I | E(A1Xa(k) | 7 (kD)) — S(X, (D)) | - I(X,(RS) € K)
(1.7 Za(t 8 K) = TEA | E{AIX.(R)}? | Zu(R8)) — 80 (X, (kD)) | - I(X,(kS) € K),

where AX,, (k) = {X,.((k + 1)8) — X,.(k8)}-I(| X»((k + 1)8) — X,(kd) | = 1) and [-] denotes
integral part. The proof will be completed if we can find a sequence {8,} with 8, | 0 such
that Z4(¢, 8,, K) —, 0(j = 1, 2) for all ¢ > 0 and for all compact intervals K C G.

We let Z/(t, 8, K)(j = 1, 2) denote the random variables obtained by replacing X,.(-) by
X(-) and Z,(-) by #(-) in (7.6) and (7.7). Then from Proposition 7.1 (b) it is immediate
that Z4(¢, 8, K)(j = 1, 2) converge jointly in law to Z/(t, 6, K)(j = 1, 2) for all ¢, 8 > 0 and
all K. In particular, for all e > 0

(7.8) lim sup,—. P[Z.(t, 8, K) = €] < P[Z(t, 5, K) = €],

where Z,(t, 8, K) = max(ZX(t, 8, K), Z%(t, 8, K)) and Z(¢, 8, K) = max(Z\(¢, 8, K), Z%(¢, b,
K)).

As already remarked in Section 2, the convergence in (2.2) and (2.3) is uniform on
compacts in G. From this it is straightforward to verify that Z/(¢, §, K) =, 0(j =1, 2; t >
0; KC G) as 8 0, so from (7.8)

(1.9) limsyo lim supn.. P[Zn(t, 8, K) = €] = 0

for all e, t > 0 and all K C G. Let {K3}: be an increasing sequence of compact intervals
such that U3_; K, = G. Then from (7.9) it follows that for each 2 = 1 we can find a 8% > 0
such that im sup, .. P[Z.(k, 8%, Ki) = k'] < 7'. Hence we can find n; = 1 such that
P[Z,(k, 8%, Ki) = k'] < k™" for n = n,. Furthermore, the sequences {83} and {n} can be
chosen such that 8% | 0 and n, 1 ® as & — o. If we now define 8, = 8% for nx < n < nes
(k=1,2, ...), it follows that
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(7.10) P{Z.(t, 6., K) = €] >0

for all €, ¢ > 0 and all compacts K C G. (Recall from (7.6) and (7.7) that Z,(¢, 6, K) cannot
decrease if ¢ increases or K expands. Therefore the left-hand side of (7.10) is less than &2™!
if & is so large that k = ¢, e < k™' and K}, D K, and if we then take n = n;.) But (7.10) implies
Z%(t, 8, K) =, 0(j =1, 2; t > 0, K(compact) C G), and therefore A2(K) and A3(K) hold
for the sequence of partitions {¢% = k§,; £k =0, 1, - - .} ,.. This completes the proof.

If the limiting process X (¢) has no accessible boundaries, and if (say) X.(¢) € G a.s. for
all n and ¢, then by a simple modification of the above proof, we can show that A2 and A3
also hold for a sequence of partitions of the same form. We let Z4(¢, 8)(j = 1, 2) be defined
similarly to (7.6)-(7.7) without the factor I(X,.(k6) € K), and let Z(t, 8) be defined
correspondingly. Let 0, ¢ > 0 be given. Then, since both boundaries of G are inaccessible
for the process X(¢), we can find a compact interval K C G such that P[X(s) € K for all s
in [0, £]] > 1 — %. From this, combined with the uniform convergence on compacts in (2.2)-
(2.3), it is easy to see that max(Z'(t, 8), Z%(t, 8)) —, 0 as & | 0. The rest goes as above.

8. Two examples.

(a) Branching processes in random environments. Let {{:} » be a sequence of indepen-
dent, identically distributed (i.i.d.) random variables taking values in some measurable
space (E, &). Let .4 be the o-fields generated by {{:}, and for each n =1 and { € E let
{pn(i, £);i=0,1, -..} be a probability distribution on the nonnegative integers. Let z, be
a positive integer. For each n = 1 we can define a process Z,(k) by Z,(0) = z, and for £ =
ILLn=1

(8.1) Zn(k + 1) = 3720 £.(k, ),

where {£.(k, j); k=0,1...,7=1,2, ...} is a collection of random variables that are
conditionally independent given the o-field .#, and where P[{.(k, j) = i|.#] = p.(i, {) for
n,j=1and &, i = 0. Then each Z,(k) is a branching process in random environments
(BPRE) as defined by Smith and Wilkinson [31].

Suppose that z,/n — xo > 0 as n — o, and define a sequence of processes {X,(t)} by
X.(t) = Z,([nt])/n. We want to show that under certain conditions, {X.(¢)} converges
weakly in D[0, «) to a diffusion process X(¢). This will generalize results on diffusion
approximation of Galton-Watson processes that were proposed by Feller [9], and proved
by Jifina [14] and others. The present diffusion approximation was suggested without
proof by Keiding [15]. The reader is referred to Keiding’s paper for further discussion.

After the first version of the present paper was completed, the author was informed
about an independent work by Kurtz [18] (based on [17]), where essentially the same
results were proved and generalized to the case of weakly dependent environments.
Nevertheless, our proof will be indicated here, both because it illustrates how to use our
general results, and because some of our moment conditions are slightly weaker than those
of Kurtz. :

Denote the expectation and the variance of the off-spring distribution, conditioned
upon the environment { by

(8.2) pn(§) = Yo i pn(i, §)

(8.3) 02(§) = Tio (€ — a($)’Pali, §).

We make the following assumptions on the sequence of offspring distributions
©(8.4) E{in($)) =1+ a/n + o(n™)

(8.5) E{p($) = 1*} = &*/n + o(n”")

(8.6) E{on(§)} = " + o(1)

(8.7) E (T2 %pa(i, §)) = 0(1) forall €e>0
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(8.8) E{(a($) = 1)% |pa($) = 1| > €} =o(n”")  forall €>0
(8.9) E{02(¢); 02(¢) > n €} = o(1) forall €>0.
Here a is a real parameter, w and 7 are nonnegative and ® + 7% > 0.

THEOREM 8.1. Under the conditions (8.4)-(8.9), {X.(¢)} converges weakly in D[0, )
as n —  to a diffusion process X(t), started at X(0) = xo, with drift coefficient u(x) = ax
and with diffusion coefficient o®(x) = 7°x + w?x% Also X,(t) =. X(t).

REMARKs. The state space of the diffusion process may be taken as (0, «) if 7% = 0,
[0, ®) if 7 > 0; in the latter case O is an exit boundary. The conditions for convergence
(8.4)-(8.6) are the same as those proposed by Keiding. (8.7)-(8.9) are weak additional
conditions. Both (8.7) and (8.9) follow if the expected third moment of the offspring
distribution is o(n'/?).

Proor. We will need a general inequality concerning sums of random variables. Let
{Y;} be a sequence of i.i.d. random variables with u = E(Y;) and ¢® = Var Y,. Put S, =
Y 7=1 Y; and let €, A, @ > 0 be arbitrary. Then there is a universal constant K > 0 such that

n! maXicr<na E(S% | S| = ne) = K{Ao® + aE (Y3 | Y1| = ne/8)}

(8.10)
+ 4na’uPI(| | = €/2a) + 4ac’I(0® = Ane’/4a?).

This inequality can be derived as follows: first consider the case p = 0. '[‘hen from (12.20)
in Billingsley [2] (there is a minor error in that inequality: /4 should be a'/?/2) we deduce
that the left-hand side of (8.10) is bounded above by K’{a’c*/ne® + aE(Y3; | Y1| = ne/2)
for some universal constant K’. This bound is used for a’c* < Ao’ne?, otherwise we use the
trivial bound ac?. Finally, we generalize to u 5 0 by using the inequality preceding (12.20)
in [2], the inequality S? < 2(S, — ru)? + 2(ru)? and the inequality in Dvoretzky [7], Lemma
3.3.

The sequence of processes {X,(t)} satisfies A0 and A4(0) trivially. By Theorem 2.1 it is
enough to verify that A1(K), A2(K) and A3(K) hold for all intervals K = [0, a](a > 0). We
take t% = k/n. Using the Markov property of the processes Z,(k), we see that it is enough
to prove (cf. Remark 5 in Section 2) that for all a, ¢, € > 0 we have

(8.11) MaX,snapsnt | E{Zn(k + 1) — Z,(k) | Z.(R) =1} — ar/n|— 0
(8.12) maX,cnapene | N E{(Zu(k + 1) — Z,(k))?| Zn(k) = 1} — 7r/n — &*r?/n®| — 0
(8.13)  maXy<papznt N E{((Zu(k + 1) — Zn(R)% | Zn(k + 1) — Zu(R) | > ne| Zu(k) =1} — 0.
By (8.1)-(8.3) it is easy to see that
E{Z.(k + 1) — Z(k) | Zn(R) =1} = TE {pa(§) — 1]
E{((Zu(k + 1) = Zu(R)* | Zu(k) = 1} = P*E{((§) — 1)*} + rE {0z ($)}.

Thus (8.11) and (8.12) follow from (8.4)-(8.6).
To prove (8.13), we condition upon .# and use the estimate (8.10) with Y, = £.(%, j) —

1. The right-hand side of (8.10) will then depend upon ¢ If we take expectation and use
(8.6)-(8.9) in letting n — oo, we find that the upper limit of the left-hand side of (8.13) is at
most K A% X being arbitrarily small, this proves (8.13).

- This same proof can also be used to prove diffusion approximaton theorems for more
general models, where the off-spring distribution, in addition to depending upon the
environment ¢, also depends upon the size of the present generation.

(b). A convergent sequence of diffusion processes whose drift coefficient diverge.
(Rosenkrantz [28], [29].) Let b(x) be a continuous function on R' such that [*.. | b(x) | dx
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< o and [2, b(x) dx = 0. Let X(¢) be a diffusion process on F = R! with X (0) = 0, diffusion
coefficient o%(x) = 1 and drift coefficient &(x). Put X,(¢) = n"'X(n%). In [29] Rosenkrantz
proved that X,(¢) = WI(¢), standard Brownian motion. Since the sequence of drift
coefficients p.(x) = nb(nx) need not converge here, one might question whether or not this
can be strengthened to X,.(¢) =. W(t); in particular one might ask whether the conditions
A2(K) hold here. In fact these and the other conditions of Theorem 2.1 (Theorem 3.3) are
satisfied for some sequence of partitions {t¥ = £8,}(8, | 0).

THEOREM 8.2. Under the assumptions above we have X,(t) =. W(t).

PROOF. One can verify the conditions of Theorem 3.3 directly, but the following
approach is simpler. Define a function « by u(0) = 0 and «'(x) = exp{— [Z.b(y) dy} (cf,
(2.4)), and let U(t) = u(X(t)), Un(t) = n'U(n’) = n 'u(nX,(¢)). We start by proving that
U.(¢) = W(t). To this end it is obviously enough to prove that for some sequence {5}
with 8, | 0 we have uniformly on compacts

(8.14) 82" E*(Un(8,) — y) = (n8,)'E™(U(n*8,) — ny) —> 0
(8.15) 82 E((Un(8,) — ¥)°} = n 8" E”{(U(n*8,) — ny)®} - 1
(8.16) S EY (| Un(8) — y|%) = n~28, E™{| U(n?) — ny|*) — 0
(8.17) 87 P}[suposs<s, | Un(s) —y|>€]—>0  forall e>0.

Now U (t) is a diffusion process on natural scale, so we have the representation (Breiman
[4], Chapter 16)
()
(8.18) U(t) = W(T(t)); where t = j ds/a%(W(s)),

0

and &%(+) is given by 5%(y) = u'(x)* with y = u(x). From the condition [Z. b(x) dx = 0, we
see that u’'(x) — 1 when | x| — «. Hence *(y) — 1 when |y| — o, and in particular A™"
=< 5%(y) < A for some constant A > 1. Therefore A~'t < T(t) < At. Since W(¢) and W(¢)?
— t are martingales, we get E“(U(t) — u) = 0 and E*{(U(t) — w)?} = EVO=*{T(¢)} by
(8.18) and the optional sampling theorem. Therefore (8.14) holds, and (8.15) follows by the
following estimate: let € > 0, and let ¢ > 0 be so large that | 67?(y) — 1| < €¢/A when | y| >
c. Then (8.18) gives
At
(8.19) | T'(¢) —tlSGt-FAJ' I(|W(s)| = o) ds.

0

Since P“[ | W(s) | = ¢] < P[| W(s) | = c], we can choose K > 0 so large that P“[ | W(s) | <
c] = efor s = K and for all . Hence (8.19) gives |EW(°)="{T(t)} —t|=el+ ANt + A’K,
and the left-hand side of (8.15) is bounded above by (1 + A?) + n~25,'A%K. Thus (8.15)
holds if 8, = o(n?).

Finally, the left-hand side of (8.16) is of the order O(\/8—,,) by the estimate E“{ | U(t) —
u|?} < sups<ac E*{ | W(s) — u|*}, and (8.17) follows from (8.16) by Kolmogorov’s inequality
for martingales.

This shows that U,(¢) =. W(¢), and by Proposition (4.9) in [13] (referred in Section 3
above) X,(t) =, W(t) will follow if we can prove that sups= | Xn(s) — Un(s) | =, 0 for all ¢
>0.Let v(-) =u"'(-). Then v'(y) = 1 as |y | — o, and for all € > 0 one can find K > 0 such
that |v(y) — y| = K + €| y| holds for all y. Thus | X.(s) — U.(s) | = Kn~' + €| Un(s) |, and
this completes the proof, since U,(t) = W(t).

NoTE. The results of this paper have now been generalized to cases where the limiting
diffusion may have regular boundaries and to cases where the coefficients of the diffusion
can have simple discontinuities. Also, a modified set of conditions should be mentioned:
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Under weak assumptions it is possible to replace At,(k) in A2(K) and A3(K) by
E{At,(k) | #.(t%)}. This is convenient for instance when the sequence under investigation
consists of pure jump Markov processes in continuous time.
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