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L.-BOUND FOR ASYMPTOTIC NORMALITY OF WEAKLY
DEPENDENT SUMMANDS USING STEIN’S RESULT

By HirosHI TAKAHATA

Tokyo Gakugei University

Let {X.} be a strictly stationary process satisfying some mixing condi-
tions, including ¢-mixing condition. It is the aim of the present paper to give,
using a slight modification of Stein’s result, a rate O (n~'/? log n) of the normal
approximation forasum S, = X; + ... + X,

1. Introduction. Let {X,, — < n < »} be a strictly stationary process with EX, =
0and EX} <o andlet p(k) £ =1,2, - . be a sequence of nonnegative numbers such that,
if A and B are any two finite sets of natural numbers for which

(L.1) inficajesli—j| Z k

and Y and Z are random variables with finite variance depending only on the {X;}.c4 and
{X;},eB respectively, then

(1.2) |Corr(Y, Z) | = p(k).

In [6], C. Stein studied a method to prove the rate of the normal approximation to the
distribution of a sum S, = X; + X; + ..+ + X,,. He applied his results to the m-dependent
case which implied p(%) = 0 for all £ = m + 1, and obtained the rate O(n~"/%). In another
case, he obtained the rate O(n'/*log® n) assuming that p (k) decreases to zero exponentially
and that EX? is finite. Up to now, however, the relation (1.2) does not seem to have been
proved under some usual mixing conditions, for example, *-mixing, ¢-mixing [4] [1],
absolute regularity [7] [8] and strong mixing [5]. The purpose of this paper is to prove
exactly the rate O(n~"/? log n) using a slight modification of Stein’s result in [6]. Our
central job is to give inequalities (Corollary 3.1 and 3.2) corresponding to (1.2) under the
mixing conditions above. Regrettably we could not obtain any result for strong mixing
sequences.

2. Preliminaries. Let {X,) be a strictly stationary process. Denote by .#% the sigma
field of events generated by X,, Xo+1, -+ -, X». We shall consider the following four mixing

conditions
x—3 (A) *-mixing condition [4]
(A) *-mixing condition [4]

¥(n) = supse 4., 8e.sz| P(AB) — P(A)P(B)|/P(A)P(B) | 0 (n— )

(B) ¢-mixing condition [4] [1]
¢(n) = supsc . pes:| P(AB) — P(A)P(B)|/P(A) | 0 (n— )

(C) absolutely regular condition [7] [8]
B(n) = E supgc ,»| P(B| M%) — P(B)| | 0 (n — x)

(D) strong mixing condition —[2] [5]
a(n) = supsc 4. pes:| PGAB) — P(A) P(B)| | 0 (n— ).
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Then we have y(n) = ¢(n) = B(n) = a(n). The following lemmas are well known.

LeEmMA 2.1[1]. Suppose that X and Y are #°..- and M, "-measurable, respectively,
WithE|X|?P< o, E|Y|"<w(p+q'=1,p,q>0). Then

(2.1) |E(XY) - EX)E(Y)|= 2" (n)(E| X |P)P(E| Y |?)Y4.

Lemma 2.2[2][5). Supposethat X and Y are #° .- and M >-measurable, respectively,
withE|X[P<ow, E|Y|?"<® (p'+q < 1,p,q>0). Then

(2.2) |E(XY) - EX)E(Y)|=10 al/s(n)(E|X|p)1/p(E|qu)l/q
where s™ =1— (p~' + q7"). In above, a(n) can be replaced by f(n).

3. Some properties of mixing sequences. Let {X,} be as defined in Section 2. For
brevity, for m = n > 0, introduce the notations

=My, Fo= M7, Fs = Mrin

and
#={uk,(B:n Ci); B;€ %, C; € % 1 =i = k, k any positive integer}.
Let %1 = 6(# U %) be the sigma field generated by % and ;. Then it is easy to show

0(#) = #,. In this section, we shall prove the following theorems, from which we have two
inequalities corresponding to (1.2) (see Corollary 3.1 and 3.2).

THEOREM 3.1. Forany A€ % and D € %,
(3.1) |P(AD) — P(A)P(D)| = 3B(n).

THEOREM 3.2. Forany A € % and D € #,,
(3.2) |P(AD) — P(A)P(D)| = 3P(A) (n).

LeEMMA 3.1. £ is a field.

ProOF. An arbitrary finite union of elements in % belongs to #. Hence it is sufficient
to prove that, for any D € %, D° belongs to #. Now write D = u%,(B; n C;), B, € #, C;
€ % 1=i=k Then D° = n(Bf U Cf) = n’_,(Bf U (B; n Cf)). This equality is
equivalent to the indicator form equa.hty 1p = H,_l (1g: + 1(B,ncy)). Expanding this, we
have 2* terms. And rewrite this as 2 i=1 1p,. Then, since it is impossible that 15 = 1 and 1 D,
= 1 for i # j simultaneously, we have D; n D; = ¢ for i 5 j. And it is easy to see that we can
wrlteD FinG,F.,€ #,G:€ #1=i=2"and that F; n F; = ¢ for i % j. Thus D° =

YL (FinG),Fi€ #,G € FH1=i=2"ie, D€ B. Hence A is a field.

Proor oF THEOREM 3.1.  We consider the following set of events
={D€ #;|P(AD) — P(A)P(D)| = 3B(n) for any A € % ).

As the first step of proof, we shall show # C .. For this, firstly we remark that if D € <,
then D¢ € &/, because, for any A € %, |P(AD®) — P(A)P(D°)| = |P(A) — P(AD) —
PA)(1 - P(D))|=|P(AD) — P(A)P(D)| = 3B(n).

Now we prove # C /. For D € %, set D = u%_, (B; n C;). In order to show D € <,
from the above remark, it is sufficient to show D° € /. From the proof of Lemma 3.1, it
is possible to write

D*=UL, (F,nG),F.€ #,GE F, 1=i=2" F,n F=¢ (i #)).
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Below, summations are always taken from 1 to 2% Let A be in %;.
|P(A n D) — P(A)P(D°)|=|Y P(An F:n G) — P(A) S P(Fin Gy)|
=|YPANF;nG)—-YPF)PAnNG)|
+ Y P(F))|P(An G) — P(A)P(G)|
+PA)Y|P(F.nG)—PF)PG)|=L+L+1I, (say).
I;=|Y E{1r(P(A n Gi|F1)— P(An G))} |
=Y E{lr, supyc | PH|#) —PH) |} = E sup ye -| P(H| #1) — P(H) |
=B(n)
since F, are disjoint.
L =Y P(F)|E{(1.(P(G:| 4™.) — P(G.))} | = B(n) ¥ P(F:) = B(n)
and, by the argument used to bound I, we have
L =B(m+n)=B(n)

Therefore we have D¢ € &/, hence 4 C .

As the second step of the proof, we must show o/ = Z;. It is trivial that &/ forms a
monotone class (for the definition, see [3]) and 7 contains %. Hence the monotone class
generated by £ is contained in /. On the other hand, # generates %;. Therefore, by
Proposition 1.4.2[3], % C . By the definition, &/ O ;. Thus we have & = %4, i.e., for
any A€ %and D € %, |P(AD) — P(A)P(D)| = 3B(n).

PROOF OF THEOREM 3.2. In the notation of the proof of Theorem 3.1, clearly
I =Y P(AF)P(G:)Y(n) = P(AW(n).

Similarly for I, and I;, we have I = P(A){y/(n) and I; = P(A)Y(n).

From this, by the analogous way to the proof above, we can prove Theorem 3.2.

From Theorem 3.1 and 3.2, we have

COROLLARY 3.1. Suppose that X and Y are F»- and Fs-measurable, respectively, with
E|X|P <o, E|Y|?<® (p' +q ' <1,p,q>0). Then
(3.3) |E(XY) — E(x)E(Y)| = 30 B*(n)(E| X|P)P(E| Y|*)"
where s~ =1— (p~' + g7"). In above, B(n) can be replaced by ¢(n).

COROLLARY 3.2. Suppose that X and Y are %»- and F;-measurable, respectively, with
E|X|P<w,E|Y|?"<o(p'+q ' =1,p,q>0). Then
(3.4) |E(XY) — E(X) E(Y)| = 60"?(n)(E| X |?)P(E| Y|*)"/".

REMARK. In the inequality (3.4),- if we put p = ¢ = 2, then we have a special form of
(1.2).

4. The summands of some mixing stationary sequence. Throughout this section,
we borrow the notations from [6], and so the details should be referred to [6]. Let {X.} be
a strictly stationary process which satisfies the following conditions (as in [6]).

(4.1) EX)=0,EX}) <o

and
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(4.2) 0 < 0® = limuo ,—ll E(S?)

where S, = ¥ T X,.
In this section, we shall prove the following theorems using a slight modification of

Stein’s result [6].

THEOREM 4.1. Suppose that ¢(n) = O(e™") for some A > 0. Then
(4.3) A = supx| P(S, = xvn ) — ®(x) | = O(n""2log n)

X

where ®(x) = 1 e 2 gt
27 J o

THEOREM 4.2. Suppose that B(n) = O(e™*) for some A > 0 and that E| X, |**® <  for
some § > 0. Then the conclusion of the theorem above remains valid [cf. Yoshihara [8]].

In what follows, we shall prove only Theorem 4.2 and omit the proof of the other since
it can be proved by the analogous argument to the one of Theorem 4.2.

As in [6] we consider only X;, X3, - -+, X, and define I as a random variable uniformly
distributed on J = {1, 2, - .-, n} which is independent of X;, X, - - -, X,. Remark that if
i =5 and m = 8, then },_i|>»X, denotes the sum Y% X;, hence that ¥|,—,=nX, i = 1, 2,
- -, n are not identically distributed in general. Let # be the sigma field generated by X;,
Xz, -+, X, and ¥ the sigma field generated by all events of the form {I = i and for all j
such that |j — i| > m, X, = a;} where the a; are real numbers. Let G = nAvno) X;, W =
E’G =1/(Vna) ¥ X; and W* = 1/(Vno) 2-1>mXj. Then W* is ¢-measurable and W
— W* =1/(~¥no) Y)j-11smX;. Here we remark that in [6] Stein asserts that EG(W — W*)
equals to one using \/é: [6] in place of Vno, but it is, in general, false. The fundamental
equality (2.13) in [6] can be rewritten as follows

w
Eh(W) = Nh + E{(h(W) - E;'[Gj , 2 dz]) + <Wf(W) ‘

w

(4.4)
w
- Ey[GJ . 2f(2) dz])— (E“'G)f(W*)} — Nh(1 — E{G(W — W*)})
w
where 4 is a bounded measurable function,
Nh=—— | h@edx
7

27 J o

0

and

fw) = e? f [A(x) — Nhle ™" dx.

From (4.4) we have as well as [6]

w
EEyliGJ‘ , @ dz] = Nh + E{Wf(W) - Ef[Gf

w w

w

. 2f(2) dz]

(4.5)
- (E“G)f(W*)} = Nh(1 - E{G(W - W*)})

(cf. Lemma 2.1 in [6]).

Remark that, by the Hélder inequality, we may use as A of (2.86) in [6] max{12[E| G(W
— W [VSPR B[E|G(W — W*)?|2*4]/4+2)} instead of max(12E|G(W — W*)?|,
5[E| G(W — W*)?|]1"/}. By this remark, if, keeping (4.5) in mind, readers review the paper
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[6] carefully, they shall find that if E {G(W — W*)} is sufficiently close to one, then the
following estimate is valid.

REMARK. If n and m are sufficiently large, then E {G(W — W*)} is very close to one.
See (E10) below.
(4.6) |P(W=a)—P(a)|=R
for all a, where
R = 6{Var E’[G(W — W*)]}'? + 3E| G(W — W*)?|
1 2 1/2

+ 3{E<| W+ —2-> E[E?|G(W - W*)zl]z}
Var E%| G(W — W*)?|
(EI G(W— W*)2|8/3)3/4
Var E?| G(W - w*)}| "

(EI G(W—' W* )3|2+a)2/(2+a)

+ max{54[E| G(W — W*)? |¥3]%/5, 23[E| G(W — W*)3 [Pra]/+2ay

+3|1-E{G(W—- W*)}|+3E|E“G|=L+---+ 1, (say).
Here « is a positive number such that 0 < (2 + a)/(2 — 3a) =1 + §/8 and a = §/4.

Now to prove the theorem, we must estimate each term in (4.7). As a main tool, we
shall use the following lemma repeatedly.

+ 15(E[G(W — W*)]“)‘/‘{
(4.7)

LEMMA 4.1. For 1 = p = 8, there exists a constant C such that
(4.8) E|Y~, X;|P = CnP?

for all n.

This is an immediate corollary to Theorem 3 in [9].

Now we list the inequalities which we make use of in estimating I;’s. In what follows, we
shall agree that the large letter K denotes some absolute positive constant, not necessarily
identical at different occurrences.

(E,) Var E’[G(W — W*)] = Kn~'(2m + 1)%
(E2) E|G(W = W*)*| = Kn~'(2m + 1)*2,
(Es) E[E”|G(W — W*)? | = Kn"'(2m + 1)%
(Ey) E(|W|+1/2*=K.
(Es) (E[G(W — WH])* = K@2m + 1)/~
(Es) Var EZ|G(W — W*)?| = Kn"'[(2m + 1) + 37 BV4() [ E| G(W — W*)?|¥3)4,
(E7) Var E7|G(W — W*)?®| = Kn~'[Cm + 1)
+ Zolo ,31/4(1:)][E| G(W _ W*)a I2+a]2/(2+a).
(Es) E|G(W — W*)?|¥3 = Kn™*3(2m + 1)¥°,
(E9) E|G(W — W*)3|?*e < Kn~®*® (2m + 1)©¢+30/2,
(Ew) |1 = E{G(W—WH*}|=Kn'[(n—2m) Tom B/*(j) + m]).
(En) E|E“G| = KB"*(m)n'?. .

Proor of (E).
Var EIG(W — W*)] = Kn"? Var[31 X; Q) j-ii=mX,)]
= Kn™? Tir | Cov(X; T-it=m X,y Xir D) j-ii=m X ) |
= Kn™? (Bji-ippom BT — 7| = 2m) + Tjicvizom) AiAr
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where A, = {E|X; ¥),-=m X;|***}®* Here we used Lemma 2.2 and the Holder
inequality. On the other hand, by the Schwarz inequality and Lemma 4.1, we have

A, = K(2m + 1)2 for all i. Hence we have
Var E7[G(W — wW*)]= Kn'z{n(2m + 1)? > BY® () + n(2m + 1)?%)
=Kn7'(2m + 1)%.

Proor oF (E;) — (E5), (Es) AND (E,). By Lemma 4.1, we have
1
n'e®

From this, instead of (3.20) [6], we have, for 0=k, [, k + [ = 8,

E(W = W*)® = —— E(3);-n1sm X;)* = Kn~*(2m + 1)*.

4.9) E{|G|*| W - W*|} = K@2m + 1)"?n*572,
As special ones of (4.9), we have the following inequalities.
E|G(W - W*?| = Kn~'2m + 1)*?,
(4.10) E[E7|G(W - W*?|P=Kn™'(2m + 1)?
E|G(W - W*?| = Kn*@2m + 1),
E|G(W — W*)? 3 = Kn™"*(2m + 1)*?
and E[G(W—- WH]'= K@2m + 1)

Thus we proved (E:), (E3), (Es) and (Es). (E,) is, by Lemma 4.1, trivial. We show (Es).
The choice of a and the Holder inequality permit us to have

EI G(W — W*)a |2+a = (E(I Gla+6))(2+a)/(8+8)(E| W — W*IS)(6+3a)/8
§ K(n(8+6)/2)(2+a)/(8+5)(n—4(2m + 1)4)(6+3a)/8

= Kn—(2+a) (2m + 1)(6+3a)/2

proving (Ej).

PROOF OF (Es) AND (E;). For brevity, we shall denote X; (3,—i=n X,)? by Z:.
1
n3o®

= Kn™® (Sisjimen BY4(i — | — 2m) + S)issi<am)
(E|Z|"*)*(E| Z;|*)¥*

= Kn™® (iivjzm B4 i = j| = 2m) + ¥jiji<am)
[(E|Z:|7?)** + (E| Z;|*)*4]

S En7[@m+ 1) + 3T B4D]  (B| X1 (T-n=mX,)? )

SEn7'[(2m + 1) + 3T B DIE| G(W — W*)s2 [*°]/4.

Var E7| G(W — W*)?| =

2 Cov(|Zi], | Z;)) |

Similarly we have
Var E7| G(W — W*)?|
SKn7'[@Em + 1) + IT BVAD)IE| G(W — W)P Pray/ @),
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PRrOOF OF (Ey).

1
| 1-EG(W—- W*) I =W InEXﬁ + 2n Z? E(XoXj) - Zli-ilsm E(Xin)I

2
= [(n—2m) 37 E(XoX;) + 2m 37 E (XX))

-3 _ E(X.X;) — ZK,,, E(X:X))|
m=i=n—m :
—il<m >n—m
0<l-il= 0<|j~il=m

§ Kn—l[(n —- 2m) Zj>m Ba/(2+a)(j)(E|X0 |2+a)2/(2+a) + 2Km]
by Lemma 2.2

PrOOF OF (E;;). Under the condition {I =i}, the random variable E “G is measurable
with respect to the sigma field generated by {X; |/ — i| > m}. Thus, by Corollary 3.1, we
have

E|E*G|* = E{GE*G) = E{E'[G(E*Q)]}
= 308" (m)E[{E'G*)*(E"(E“G)"}""]
§ 3031/4(m){E(E1G4)}1/4{E[EI(E%’G)Z]}I/Z
- 30,31/4(m){EG4} 1/4{E(E%’G)2} 1/2.
Therefore, as well as [6], we have

E|E“G| = KB"*(m)n'".

REMARK. The results in Section 3 are used only to prove (E;).

Now we shall examine each term I; of (4.7) making use of (E,), (Ez), ..., (Eu). At first,
setting m = [c log n]c > 0, we can choose ¢ > 0 satisfying the conditions

(4.11) Siom B (j) = O(n™) and B (m)n'? = O(n"2).

By (E1), I = O(n?log n). By (Ez), I, = O(n"! log**n). By (E;) and (E,), I; = O(n™*/*
log n). By (Es), (Es) and (E7), I = O(n"**log®*n). By (Es) and (Es), Is = O (n"** log n).
By (E1) and (4.11), I = O(n "' log n). By (E1) and (4.11), I; = O (n"?). Thus we proved
A, =0(n""?log n).

Added in proof. The author has been informed by a referee that A.N. Tihomirov
obtained a better result than Theorem 4.1, in his paper entitled “On the speed of
convergence in the central limit theorem for weakly dependent random variables” (to
appear in Teorya. Veroyat. i ee Primen.).

Acknowledgment. The author would like to thank the referee and an Associate
Editor for comments on the manuscript which led to a more readable paper.
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