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DISTRIBUTIONAL RESULTS FOR RANDOM FUNCTIONALS OF A
DIRICHLET PROCESS
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University of Denver and Florida State University

We obtain an expression for the distribution function of the random
variable [ZdP where P is a random distribution function chosen by Ferguson’s
(1973) Dirichlet process on (R, B) (R is the real line and B is the o-field of
Borel sets) with parameter a, and Z is a real-valued measurable function
defined on (R, B) satisfying [|Z|da < «. As a consequence, we show that
when « is symmetric about 0 and Z is an odd function, then the distribution
of [ZdP is symmetric about 0. Our main result is also used to obtain a new
result for convergence in distribution of Dirichlet-based random functionals.

1. Introduction and summary. Let P be a random probability measure chosen by
Ferguson’s (1973) Dirichlet process on (R, B) (R is the real line and B is the o-field of
Borel sets) with parameter a. Let Z be a real-valued measurable function defined on (R,
B) satisfying [ | Z | da < «. Ferguson’s fundamental paper contains many results including,
for the purpose of developing Bayesian nonparametric estimators of various parameters,
results giving the mean of such random variables (rv’s) as fZdP and (variance P) and the
median of the rv (median P). Yamato (1977) extends Ferguson’s results by obtaining the
moments of various random estimable parameters. Results pertaining to the distribution
functions (df’s) of random functionals are less available, an exception being Ferguson’s
(1973) expression for the df of the random gth percentile of P.

In this note we study the df of [ZdP. Our contributions are:

(i) In Theorem 2.5 we establish the equality

(1.1) Pr{deP = x} =Pr{T* =0},

which relates the df of [ZdP to the distributions of rv’s T*, x € R, defined by (2.3) and
Theorem 2.3. In Theorem 2.3 we obtain the characteristic function (cf) of T*.

(ii) The cf of T can be used to obtain results concerning the distribution of fZdP. For
example, in Corollary 2.6 we use the cf of T* to prove that when Z is odd and « is
symmetric about 0, then the distribution of [ZdP is symmetric about 0. (We also present
an alternative proof of Corollary 2.6 using the gamma process representation (see Ferguson,
1973; Ferguson and Klass, 1972) of the Dirichlet process.) Thus, for example, when « is
symmetric about 0, the odd moments of the random P, namely [("dP(§), n = 1, 3, 5,
.« ., have distributions that are symmetric about 0.

(iii) In Corollary 2.7 we use the cf of T to prove that if P, P,,n=1,2, ..., are random
probability measures chosen by Ferguson’s Dirichlet process on (R, B) with parameters
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a, an, respectively, and if a, converges weakly to a as n — o, then (under mild regularity)
JZdP, converges in distribution to [ZdP.

2. The distribution of [ZdP. We assume the reader is familiar with definitions and
basic results concerning Ferguson’s Dirichlet process. If this is not the case, the reader is
referred to Ferguson (1973). Throughout this section we take P to be a Dirichlet process
on (R, B) with parameter «, and Z to be a real-valued measurable function defined on (R,
B) satistying [ | Z| da < ». We first prove two lemmas which will be used to show that the
v’s T*, x € R, defined by (2.3) and Theorem 2.3, have continuous df’s.

LEMMA 2.1. Let r be a positive integer and let Xy, ---, X, be independent and
identically distributed (ii.d.) rv’s such thatyi-; X; has a continuous df. Then X, has a
continuous df.

ProoF. Note that for ally € R,
(2.1) (Pr{X, =y})" = Pr{¥i Xi =ry} . o

LEMMA 2.2. Let x € R and let a be a finite measure on (R, B) such that a{&  Z(§)
# x} > 0, where Z is a measurable function integrable with respect to a. Then there is a
positive integer r such that

f exp{—rj°° In[1 + ¢3(Z(¢) — x}z]da(g)}dt < oo,

Proor. First note that since a{¢:  Z(£) # x} > 0 then there exist two positive integers
J and r such that r - af¢ |Z(§) — x| 27} > L Letting B; = (& |2(€) — x| ="} we
then note that

f In[1 + £*{Z(¢) — x}"1da(é) Zf In[1 + £*(Z(¢) — x}"1da(é)
—c0 B,

= a(B)) - In[1 + (¢//)%],

and so we have

J exp{—rj In[1 + £2{Z(¢) — x}z]da(g)}dtsf exp{—r - a(B)) - In[1 + (¢/7)*]}dt
0 —o0 0

= f [1+ /)T Pde =< f [1+ (¢/7)*T'dt < oo,
0 . 0

Now we introduce some notation. Let
(& (J—-1/k<ZE) <jlk), forj=-K+1,--- kK
L=< {& Z@§) =-k)}, forj = —k?
(& Z(¢) >k}, | forj =k + 1.

Further let Wy, j = —k%, -.., k% + 1, be independent gamma rv’s with shape parameters
a(I;) respectively, and common scale parameter 1. Let x € R and define, fork=1,2, .- -
(2.2) Tk = 2w {((G/R) — x} Wi + T58" {([(J — 1) /] — x} Wie.

THEOREM 2.3. Let x € R. Then the sequence Ti, k=1,2, ..., converges in law as k
— o to a rv T* whose cf is given by
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(2.3) or=(t) = eXp{— f In[1 — it{Z(§) — x}]da(é)} .

ProOF. Let 8:(I;z) = 1 when ¢ € I and 0 otherwise, and for each ¢ € R define
Zu(§) = T 2w [J/RDe(T) + TS [(F — 1) /ke(T)

fork=1,2, ....Let x € R and note from (2.2) that since T is a linear combination of
independent gamma rv’s, it has a cf which is infinitely divisible. Hence we may write

In E(exp{itT}}) = Y72 s In E(exp{it[ (j/k) — x]W;})
+ 245" In E(exp(it[(( — 1/K) — x1W;e))
= Y7l s In[1 — it{(j/k) — x}]
+ 8 1 — at([(j — D/k] = )T
= — (Y7 a(lw) In[1 — it{(j/k) — x}]

+ T8 ) In[1 = it{[(j — 1)/k] = 2}])

=- f In[1 — it{Zx(§) — x}1da(f)
=- f In[(1 + £*{Zx(¢) — x}»)"*]da($)

+ if tan'[¢{Zx(¢) — x}]da(£).

Now observe that | Zx(£) | = | Z(£) | for all real £ and so we have

(25) In[(1 + ¢*{Zx(¢) — 2} 1= | 2] - {|Ze(€) | + x) = |¢] - {|Z®) | + x}
and

(2.6) [tan™'[¢{Zx(&) — 2} = |t] - {|Ze®) | + 2} =|t]| - {|1Z(&)| + x}.

Since the right-hand-sides of (2.5) and (2.6) are integrable with respect to « and since
limg .« Zr(¢) = Z(£), then by the dominated convergence theorem we have from (2.4) that

(2.7) limg . E(exp{itT%}) = exp{— f In[1 — i¢{Z(¢) — x}]da(g)} .
Writing the right-hand-side of (2.7) as exp{—[G(¢, x) + tH(t, x)]} where

Gt =1 f In[1 + £2(Z(¢) — x)*]daté),

H(t, x) = — f tan™'[¢{Z(§) — x}1da(é),

it is straightforward to show that for any real number x, both | G(¢, x) — G(0, x) | and
| H(t, x) — H(0, x) | are bounded above by | ¢]| - [Z» {|Z(§)| + x}da(£), which goes to zero
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as t — 0. This shows that the right-hand-side of (2.7) is continuous at ¢ = 0 and hence the
result of the theorem follows from the continuity theorem for cf’s. 0

LEMMA 24. Let x € R and assume that a{¢: Z(£) # x} > 0. Then T* has a
continuous df.

Proor. By Lemma 2.2 there is a positive integer r such that [, | [E(exp{itT*})]"| dt
< . Now [E(exp(itT*})] is the cf of the convolution of ri.i.d. rv’s distributed as T™. Since
the cf of this convolution is absolutely integrable we conclude (cf. Breiman (1968), page
178) that the convolution of r i.i.d. rv’s distributed as T is continuous. Consequently the
result follows from Lemma 2.1 0

We are now ready to obtain an expression for the df of [ZdP.

THEOREM 2.5. Let P be a Dirichlet process on (R, B) with parameter a and let Z
denote a real-valued measurable function defined on (R, B) integrable with respect to

a.
(i) If there exists a real number x such that a{¢: Z(§) # x} = 0, then [ZdP is

degenerate at x.
(i) If a{&: Z(&) # x} > O for all x € R, then (1.1) holds, where T* is the rv whose cf

is given by the right-hand-side of (2.3).

ProoF. (i) Note that a{é: Z(£) # x} = 0 implies that P{¢: Z(£) # x} = 0. Thus
2w Z(£)dP(£) = x.
(ii) Let Ax = [2« Zp(£)dP(£), for k=1, 2, ..., and note that

Pr{A, lu x} = Pr{f Zr(§)dP(§) = x}

(2.8)
= Pr(¥i2 e /RIP) + TES' [ — D/RIP(Lw) < x} .
Now for each & the random vector (P(Ix)),j = —F%, - - - , k* + 1, has a Dirichlet distribution
with parameter (a(Ijz)), j = —k%, - -+, k* + 1. Letting W, j = —&%, -+, k* + 1, represent
independent gamma rv’s with shape parameters a(Iz), j = —F%, -+, k* + 1, respectively
and common scale parameter 1, and using the gamma distribution definition of the
Dirichlet distribution, (2.8) becomes
Pr{As = x} = Pr{S7w [j/R]Wp + TE [ — D/RIWi < x T2 W)
(29) = Pr(Til-e {(/k) — ) Wi+ T ([ — D/R] — 2} Wy = 0}
= Pr{T% < 0}.
Now note that lim,_... Ax = [ZdP almost everywhere with respect to « and thus by (2.9)
we have

Pr{deP = x} = limgw Pr{A; < x} = limy,. Pr{T% < 0} = Pr{T* =<0},
the last equality following from Theorem 2.3 and Lemma 2.4. 0

We illustrate the result of Theorem 2.5 in a simple case. Let A € B, a(4) € (0, »), and
Z(x) =1,x €A, =0, x &€ A. Then the rv [ZdP has a Beta distribution with parameters
a(A), a(R) — a(A). The cf of T%, given by (2.3), is [1 — it(1 — x)]*“[1 + itx] @@=,
Thus 7" has the same distribution as (1 — x) Y, — xY1, where Y3, Y; are independent and
Y; ~ T'(a(R) — a(A), 1), Y; ~ I'(a(A), 1). Consequently Pr{(1 — x)Y, — xY; < 0} =
Pr{Y:(Y: + Yo) ' = x} = Pr{JZdP = x}.
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Using Theorem 2.5 in conjunction with the cf of T%, given in (2.3), it is now possible to
gain additional information concerning the distribution of the random mean [ZdP.

COROLLARY 2.6. Let P be a Dirichlet process on (R, B) with parameter o, where a is
a positive finite and symmetric measure about the origin. Let Z denote a real-valued
measurable and odd function such that [|Z|da < . Then [ZdP has a symmetric
distribution about the origin.

ProOOF. First assume that there is a real number x such that a{¢: Z(£) # x} = 0.
Then since Z(£) = —Z(—¢) it follows that a{£: Z(£) 5 0} = 0. Thus by Theorem 2.5
J ZdP is degenerate at x = 0 and hence symmetric.

Next assume that a{£: Z(§) # x} > 0 for all x € R. By repeating our arguments it is
clear that Pr{ [ ZdP = —x} = Pr{T~* = 0} and thus to show that [ZdP is symmetric about
the origin it suffices to show that, for all x € R,

(2.10) Pr{T* =0} =Pr{-T*=<0}.
Since Z(£§) = —Z(—¢£) and since da(£) = da(—£) we have

In E (exp{itT~*}) = — f In[1 — it{Z(£) + x}] da()

(2.11)

= f In[1 + it{Z(—¢) — x}] da(—£) = In E (exp{—itT*}).

From (2.11) we obtain that T has the same df as —7~* and hence (2.10) follows directly.
0

The proof of Corollary 2.6 given above is based on Ferguson’s (1973) original definition
of the Dirichlet process. Below we exhibit an alternative proof of Corollary 2.6 which is
based on Ferguson’s (1973) (also see Ferguson and Klass, 1972) alternative definition of
the Dirichlet process as the sum of a countable number of jumps of random height at a
countable number of random points. (This alternative representation is often useful in
obtaining results for the Dirichlet process, cf. Ferguson (1973), Korwar and Hollander
(1973), Yamato (1977).)

ALTERNATIVE PROOF OF COROLLARY 2.6. We have, by Theorem 2 of Ferguson (1973),
deP =Y Z(V)P;

where V1, V3, .- . areii.d. according to @(-) = a(-)/a(R), where the P;’s are independent
of the V,’s, and where the P;’s depend on a(-) only through a(R). Thus we have (since Z
is odd)
(2.12) f ZdP = Y51 Z(V))P;= =Y 51 Z(-V;)P;.
Now since a is symmetric about the.origin, —V; =, V;, for all j = 1, 2, - .., where “=,”
means “has the same distribution as.” Hence, since the V}’s are independent of the P/’s we
have

(2.13) =S50 Z(=V) P =4 =51 Z(V)) Py = — f Zdp.

From (2.12) and (2.13) we conclude that fZdP =, —[ZdP and so the df of [ZdP is
syminetric about the origin. 0
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Finally, we use Theorem 2.5 to obtain

COROLLARY 2.7. Let a, a,, be finite measures on (R, B), and P, P,, be random
probability measures chosen by Ferguson’s Dirichlet process with parameters a, an,
respectively, n =1, 2, - --. Assume (i) lim,_,» a, {(—%, x]} = a{(—x, x]} for all continuity
points x of a{(—, x]}, (1i) lim._ .| Z(2) | = o, (iii) Z is a-continuous, (iv) z is nondegenerate,
(v) Z is bounded in each interval and (vi) lim sup,—« [ | Z|"*® da, < « for some § € (0,
). Then the sequence of xv’s [ZdP,,n =1, 2, .- ., converges in distribution as n —  to
the rv [ZdP.

Proor. Let the cf of T';, be given by Equation (2.3) when « is replaced by a., n =1, 2,
.+, Clearly

0 0

lim,_,e In[1 — it{Z(2) — x}] dan(2) = f In[1 — it{(Z(2) — x}] da(2)

— —o

[Breiman (1968), page 164]. Thus, lim, .. ¢r= () = ¢r=(¢) for all ¢ € (—», ). By the
continuity theorem for cf’s [Breiman (1968), page 171] T converges in distribution as n
— o to T* for all x € (—», ®). Consequently by Lemma 2.4 and Theorem 2.5, lim,_,.
P.{[ZdP, = x} = lim, P, {Th =0} = Pr{T* =<0} = P,{fZdP < x}.0

The result of Corollary 2.7 holds also in the following two cases: (I) Z is bounded, and
(IT) Z is a-degenerate at x. In case (I) assume that Conditions (i), (iii) hold, and that (vii)
lim,— e an(R) = a(R). In case (II) assume that Conditions (i), (v) and (vii) hold.
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