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ON CONVERGENCE OF THE COVERAGE BY RANDOM ARCS ON A
CIRCLE AND THE LARGEST SPACING!

By LArs HoLsT

Stanford University and Uppsala University

Consider n points taken at random on the circumference of a unit circle.
Let the successive arc-lengths between these points be S, S, .-, S,.
Convergence of the momentgenerating function of maxi<s=» Sz — In n is
proved. Let each point be associated with an arc, each of length a., and let
the length of the circumference which is not covered by any arc, the vacancy,
be V.. Convergence of the vacancy after suitable scaling is obtained. The
methods used are general and can, e.g., be used to obtain asymptotic results
for other spacings and coverage problems.

1. Introduction. Consider a circle of unit circumference and »n points taken from a
uniform distribution on it. Let the successive arc-lengths or spacings between these points
be denoted by S;, Sz, + -+, S, with S; + Sz + - .- + S, = 1. Such spacings have been widely
studied, see the review papers by Pyke (1965), (1972). Some recent papers are Siegel
(1978), (1979a); (1979b), Holst (1979), (1980a), (1980b), (1980c), Koziol (1980), where also
further references can be found. In Chapter 4 of Solomon (1978) related problems are
discussed.

Let S(») be the largest spacing, i.e., max;<x<, Si. In various ways it can be proved that

P(nSy — In n = x) - exp(—e™),

when n — o; see Section 2 below. There we will give a rigorous proof of the convergence
of the momentgenerating functions, which does not seem to have been done before.

Let each of the n points be the counterclockwise endpoints, say, of arcs on the circle, all
of length a,. It is easy to see that the whole circumference is covered if and only if S <
a,, and that the uncovered part of the circumference, i.e., the vacancy, has length

Vo= 22—1 (S — Qn)+.

Exact formulas for the distribution and moments of V, are given in Siegel (1978) and Holst
(1980c). Results on the asymptotic behavior of V, are obtained in Siegel (1979a). By the
general results by Le Cam (1958) convergence in distribution follows. Depending on how
n — « and a, — 0, different cases occur. For the case n — ®, a, — 0 such that P(V,, = 0)
— p, 0 < p <1, it is proved in Section 3 that the momentgenerating function of 2nV, is
converging to that of the noncentral chi-square with zero degrees of freedom, i.e., a Poisson-
mixture of chi-square distributions with even degrees of freedom and a one point distri-
bution in zero, cf. Siegel (1979b) for further aspects of this distribution. This is a slight
generalization of Siegel (1979a), Theorem 3.2, using quite different methods. In Section 4
the case when n — ®, a, — 0 such that P(V,, = 0) = 0 and lim inf na, > 0 is studied. The
limiting distribution of (nV, — E(nV,))/(Var(nV,))/? is a standard normal. Also, the
moment generating functions converge in a neighborhood of zero implying convergence of
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all moments. This extends results by Siegel (1979a), who considered the special case na,
= A In(n/B), where 0 < A < 1 and 8 > 0 and proved convergence of moments and
distributions. The methods used below are quite different from Siegel’s.

The problems discussed above can obviously also be formulated as taking n — 1 points
from a uniform distribution on the unit interval, [0, 1]. The endpoints correspond to one
of the random points on the circumference.

2. The largest spacing. The exact distribution of S(, was first obtained by Stevens
(1939), cf. Solomon (1978) page 75. In Holst (1980b), Section 2, the distribution and
expressions for the moments are also derived, e.g.,

1
E(nSw) = Yia 7= Inn+y+o0(),

where
. 1
hm,.,_m(z;:-l Z —1In n) =Y,
is Euler’s constant. Hence, nS,, is of the order of magnitude In n when n — . It is also
known that
P(nSp — Inn < x) — exp(—e™),

when n — o cf. Lévy (1939), Darling (1953), Le Cam (1958). For an (almost) elementary
proof of this see Holst (1980b), Theorem 3.1. Before stating a theorem of convergence of
the momentgenerating function of nS, — In n we will recall some facts about spacings.
Let Xi, Xy, - -+, X, be i.i.d. exponential random variables with mean 1, and let X1), X5,
-+ +, X(n) denote the corresponding order statistic. Then the following representations hold

Z@nS, -+, nS,) = LXi1, +++, X | Yi1 X = 1)
and
LX), (n - VX — X)), +++, 1 X = Xn-1)) = L(Xp, Xne1, - -+, X1).
This is easily proved using simple properties of the Poisson process, or see, e.g., Feller

(1971), pages 19, 75-76.

THEOREM 2.1. Let S,, ---, S, be the spacings of n points taken from the uniform
distribution on the circumference of a unit circle and set S() = maX;<<n Sy. Then for t
<1

E(exp(t(nSm — In n))) - T'(1 — 1),

when n — o, where the gamma function can be written

ri-¢4= f e d(exp(—e™)).

From this Theorem we immediately have by the continuity theorem for momentgener-
ating functions that:

COROLLARY 2.1. Let Y have the extreme value distribution exp(—e ™). Then
ZL(nSwn —Inn) - L(Y),
and, for r > 0,
E((nSw —Inn)’) - E(Y"),

when n — .
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Before proving the Theorem we will obtain the following lemma which also is of some
independent interest, at least the method of deriving it.

LEMMA 2.1. Fort<landn=2,

E(exp(tnS))) = (27n"*'e™/n!)~! f E(exp(tXn) + iu(X — 1))) du

where Xn) = maxi<k=n X, X = Y21 Xp/n, and X, - -+, X, are iid. exponential random
variables with mean 1.

Proor. From the representation of order statistics given above, it follows that
L Xy, X) = L(The1 Xu/k, Ti=1 Xe/n).
Thus
E(exp(tXim + iuX)) = [[#-1 E(exp(Xe(t/k + iu/n)))
=1k~ (1 — t/k — iu/n)7,

which clearly is an integrable function of u for n = 2. Using conditional expectation we can
write

E(exp(tXm) + iu X)) =f E(exp(tXpm + iuX)| X =x) - fz(x) dx

=f e““E(exp(tX(n) | X = x) - fx(x) dx

where fz () is the density function of X, which is I'(r, 1/n)-distributed. By the integrability
of E(exp(tX(») + iuX)) it follows by Fourier’s inversion formula that

E(exp(tXi) | X = x) - fe(x) = (2m)~! f E(exp(tXe + X)) - €™ du.

Thus by the representation of spacings we finally have
E(exp(tnSp))) = E(exp(tX()| X = 1)

= (21rf)?(1))_1f E(exp(tX(n) + X)) - e™ du

= (2an"e"/n!)! f E(exp(tXim + wX - 1)) du,
proving the assertion.

ProOF oF THEOREM 2.1. From the lemma, the representation of order statistics of the
exponential distribution, and Stirling’s formula, we have

E(exp(¢(nSem — Y k-1 1/E)))

~ (2m7V? f %1 E(exp((¢/k + iu/n*?) (X, — 1)) du
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= (27)“/2f exp(iu(Yii t/(k — t))/n''?)

- [T2=1 [exp(—iu/(n*(1 — t/k)))/(1 — iu/(n*(1 — t/k)))] du
- [Tk=1 (e7*/(1 = t/k)),
for ¢ > 1. Now for fixed ¢ < 1, when n — oo,
[Ti=1 (e77%/(1 — t/k)) = E(exp(t(X(y — Th-1 1/k))) — €”T'(1 — t),

where vy is Euler’s constant, cf. Holst (1980b), Theorem 3.3. The integrand in the integral
above is dominated by

&.(u) = (1 + cu’/n)™""?

for some ¢ > 0. Furthermore,
lim, . f &n(u) du = j lim,,«g.(u) du.

For fixed ¢ < 1, when n — o,
exp(n™? Yi1 t/(k — ) > 1,
and
[T#-1 [exp(=iu/(n'2(1 — t/k))) /(1 — iu/(n'2(1 — t/k)))] > exp(—u?/2).

Thus it follows from the extended form of Lebesgue’s convergence theorem, see, e.g., Rao
(1973), page 136, that

lim,_... E(exp(¢(nS) — In n))) = e‘*’(21r)‘1’2f e duer’T(1—t)=T(Q1-1¢),

proving the assertion of the theorem.

REMARK. With small modifications in the proof above the convergence of the mo-
mentgenerating function of any upper extreme value nS(,-; — In n follows. Central order
statistics are studied in Holst (1980b), Section 5. Barton and David (1956), page 84-86, also
considered asymptotics of upper extreme values. But they could not obtain any useful
form of the momentgenerating function. Instead they studied convergence of another
generating function. Their results do not prove convergence of momentgenerating func-
tions.

3. Positive coverage probability. In this section the coverage distribution, or
equivalently the vacancy, of random arcs is studied, when the complete coverage proba-
bility stays strictly positive. With the notation of the introduction we can write

Pn=P(V,=0) = P(Yi=1 (Sk — an)+ =0)
= P(Sw = a,) = P(nSy) — In n < na, — In n).
From the results of the previous section we see that
pPn—p, 0<p<le na,—Inn-Inin(/p),

i.e., a complete coverage probability strictly between 0 and 1 is equivalent to na, —In n
= 0O(1). It also follows that

prn—1ena,—Inn— +ow,

and,
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Pn—>0ena,—Inn— —w,
Another way of stating the first two cases is
P(V,=0)—>e* 0=<B<o,
The limit behavior of V, is given by the following theorem. In the next section the case p,

— 0 is considered.

THEOREM 3.1. Let n arcs, each of length a,, be placed at random on a unit
circumference and V,, be the length of the uncovered part of the circumference. Assume
that n — o, a, — 0, such that P(V, =0) — ¢#,0 < 8 < ». Then, for t <1, when n — o,

E(exp(tnV,)) — e #+#/0-9,
In Siegel (1979b) the noncentral chi-square distribution with zero degrees of freedom is
discussed. A consequence of Theorem 3.1 is the following corollary which is also proved in

Siegel (1979a) by the method of moments. The convergence in distribution is a special
case of general results by Le Cam (1958).

COROLLARY 3.1. Let Z be a random variable with a noncentral chi-square distribu-
tion with zero degrees of freedom and noncentrality parameter . Then, when n — o,

L@2nV,) - £L(Z),
and,
E((2nV,)") - E(Z"),

for all r > 0.
Before proving Theorem 3.1 the following lemma will be proved.

LemMma 3.1. Let X, ..., X, beiid. exponential random variables with mean 1. Then
fort<1landn=2,

E(exp(tnV,.)) = 27n"*'e™/n!)™! f E(exp(t Y31 Xk — nan)+ + iuX — 1))) du.

Proor. By the independence between the X’s and after some elementary calculation
one obtains

E(exp(t Yi-1 (Xi — nan)+ + iuX))
= [E(exp(t(X: — na,)+ + iuXi/n))]"
= (1 —iu/n)™"[1 + t exp(—na,(1 — iu/n))/(1 — t — iu/n)]*,

which is integrable in u for n = 2. Using the representation of spacings with exponential
random variables we have

L(nV,) = L(Tia1 (Xp — nan)+ | X =1).
. The rest of the proof proceeds like that of Lemma 2.1.

ProOF OF THEOREM 3.1. By the lemma above and Stirling’s formula we get
E(exp(tnV,)) ~ (2'rr)‘1/zj [exp(—iu/n'?) /(1 — iu/n'?)]"

- [1 + t exp(—na.(1 — iu/n"?))/A — t — iu/n"?*)T" du.
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As na, = In n we get for fixed ¢ < 1 uniformly in u that
[(1 + t exp(—na.(1 — iu/n'?))/(1 — t — iu/n'?)) |
=1+ Ki|t|/n|1—t—iu/n?|)"< K, < 0.

As

lim,,_,mj [1—iu/n"?|" du =J lm, .. |1 — iu/n"?|" du = j e % du

= (2m)'?,
and pointwise
[1+ te ™™ . exp(iu na./n?)/(1 — t — iu/n'?)]" — exp(Bt/(1 — t))

it follows by the extended form of Lebesgue’s convergence theorem that
E(exp(tnVy)) — (2m)7'% . f exp(—u?/2) - exp(Bt/(1 — t)) du = e Pef/'™0,

for ¢ > 1, which proves the theorem.

REMARK. The function
e el = Y% o (e B*/RY) - (L— )7

is the momentgenerating function of Y, X;, where N, X;, X;, ---, are independent
random variables, N Poisson with mean § and the X’s exponential with mean 1. One can
interpret N as the number of gaps, i.e., the number of regions on the circumference which
are not covered by any of the arcs. This can be proved in a similar way as Theorem 3.1
using the indicator function I(- > na,) instead of (- — na,)+. Clearly P(N = 0) = e ?isthe
probability of complete coverage. It is intuitively clear that the lengths of the gaps (after
scaling with n) should be independent exponential random variables. Because an arbitrary
spacing nS; converges in distribution to an exponential with mean 1 and depending on the
lack of memory of the exponential distribution the excess (if any) over na, has also in the
limit an exponential distribution with mean 1. Theorem 3.1 is thus very reasonable. One
can also say that the dependence structure between the spacings disappears in the case
na, = In n. Actually the dependence is asymptotically negligible as soon as na, — +®
which will be apparent from the results of the next section.

4. Zero coverage probability. It is pointed out in the previous section that
pn=P(V,=0)—>0<na, —Inn— —oo.

Two cases are of interest, namely, na, — +, but na, —In n — —», and na, - o, 0 < a
< o, The case na, — 0 means that the maximum covered length, na., is tending to zero
and, therefore, V,, — 1. Let us introduce

62 = 2n(e™™ — e (1 + na, + (na,)?/2)).
In the case na, — + we have o2 ~ 2ne™*, and ¢, — + if and only if na, — Inn —
—oo,
THEOREM 4.1. Suppose that n — © and a,—> 0 in such a way that o, — +, and lim
inf na, > 0. Then, when n — o,
E(exp(t(nV, — ne™*)/0,)) — ",

for all sufficiently small | t|.
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PRrROOF. As in the proof of Theorem 3.1, we find that

00

E(exp(t(nV, — ne™"*)/0,)) ~ (2m) ™" "’f &.(W)hn(u, t) du,

—o

where
&n(u) = (exp(—iu/n'?)/(1 — iu/n'?))" — exp(-u®/2), n— o,
and,
hal(y, t) = exp(—tne™*/a,) - (1 + (t exp(—nan(1 — iu/n'?))/0.)/(1 = t/on. — iu/n''?))".
For fixed ¢ and u one finds after some calculation that
oW hn(u, t) = exp(—(u — ite " (na, + 1)n'?/0,)%/2 + £*/2 + o(1)).

Thus one would expect

E(exp(t(nV, — ne™"*)/0,) ~ (21r)“mf exp(—(u + 0(1))%/2 + o(1)) du - "% ~ "2,

The problem to justify these approximations is not trivial because o(1) is not uniform in .
We will consider the integral above over three different regions, namely, I = {u; | u|
=n}Y L={u;n" <|u|<énV?,and I = {u; 8n'® < |u|} where § > 0 is a
“sufficiently” small number. The idea is the same as that of proving local limit theorems
using characteristic functions, see, e.g., Feller (1971), page 516.
In the interval I, one finds by expansion that uniformly in u

|Aa(u, t) | = K1 < oo,

for some constant K;. Thus

nl/4
limg_,. lim sup, .« f E(u)h.(u, t) du
A
nl/4
< lima_,. lim sup,. f (1 + u?/n)™"2K, du = 0.
A

Using this it follows by the expansion above that

0

(W) hn(u, t) du = (2m) /2 f exp(—u?/2) du - e = /%

—o0

lim, .« (27) "2 f

I
In the region I, with § > 0 fixed sufficiently small one finds in a similar way that
| hn(u, t) | = Kz exp(Kz | t|n'/?)

for some constant K; < «. Thus

sf (1 + u?/n)"*K; exp(Kz | t| n*’?) du
I

2

J gn(Whn(u, t) du
I

< Ksn'? exp(—Kin'/?) = 0, n— o,
P

for some constants 0 < K3, K < o, and | ¢| sufficiently small.
Finally for I; we find for some constants 0 < K;, Ks, K7 < o that
<K (1 + u?/n)"! du(l + 82)™/2 exp(Ksn'?)

8n1/2

J gn(u)hn(u, t) du
I

= K:n'%(1 + 8% ™2 exp(Ken''?) — 0, n— .
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Combining the results above gives

(2m) /2 f & (Wha(u, t) du— e,

proving the assertion of the theorem.

In Siegel (1978) and Holst (1980c) formulas for the exact distribution and moments of
the vacancy are obtained. Either by using these or by direct calculation it is not hard to
show that

E@nV,) — ne™ = 0(1),
and,
Var(nV,)/o, — 1,

when n — , a, — 0, such that ¢, — + and lim inf na, > 0. Thus the following corollary
follows.

COROLLARY 4.1. If 6, — +% and lim inf na, > 0, then
Z((nV, — E(nV,))/(Var(nV,))*) > N(, 1),

and all moments and the momentgenerating function converge to those of the standard
normal distribution.

REMARK. The convergence of distribution above is a special case of Le Cam (1958).
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