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Let X1, - -+, Xu, be independent random vectors in R®. Necessary and
sufficient conditions are found Ij_)r the existence of linear operators A, on R
such that Z(A,.(X%, X,,)) — N(0, I), where I is the d X d identity covariance
matrix. These results extend the authors’ previous work on sums of ii.d.
random vectors. The proof of the main theorem is constructive, yielding
explicit centering vectors and norming linear operators.

0. Introduction. For each n = 1, let X1, ---, X, be independent d-dimensional
random vectors with partial sums S, = Y%, X,;. This paper considers how and when S,
can be normalized so as to converge weakly to a d-variate normal limit. Normalizing S, by
constants or even componentwise will often result in either a subprobability limit distri-
bution or else one which is not full, i.e., degenerate in that it concentrates on a proper
subspace of R?. Hence the random vectors S, which can be successfully normed in this
manner to converge to a full d-variate normal limit is rather restrictive. To enlarge the
class of normalizable distributions we norm by affine transformations.

We present necessary and sufficient conditions (NASC) for the existence of linear
transformations T, and vectors v, such that (T.(S, — v,)) = NI @, D (any limit N © , 2)
may be obtained upon replacing 7T, by ='?T,, where Z'/* denotes the positive definite
symmetric square root of =). This result generalizes Hahn and Klass (1980a), where NASC
were obtained in the ii.d. mean zero case.

To achieve affine norming, a uniform symmetrized version of the 1-dimensional limit
condition is required (see Remark 2 below for a discussion of the symmetrization). The
uniformity is essential even for ii.d. random vectors (see Example 4 of Hahn and Klass
(1980)). Presumably, the uniformity constraint was unnoticed earlier because it is super-
fluous for prenormalized arrays.

Classical NASC when d = 1 can be found in, e.g., Gnedenko and Kolmogorov ((1968),
page 121). Varadhan obtains an extension of these conditions to Hilbert space for u.a.n.
random elements when T, = I (see, e.g., Parthasarathy (1967) page 200). Several authors
have considered the case in which E || X,;||? < « for all n and j and where the T, are
derived from covariance operators. In Euclidian space this amounts to determining when
it is possible to norm by T, = (Cov(S,))""? and v, = ES,. Bhattacharya and Rao (1976),
Corollary 18.2 page 183, give a multidimensional analogue of the Lindeberg-Feller condi-
tions. A Hilbert space extension is provided by Kandelaki and Sazonov (1964).

However, even in the finite variance case on the real line expectations and standard
deviations need not yield appropriate centering and norming constants. This occurs when
ES,, does not adequately reflect the center of the S,-distribution and o6(S,) does not reflect
the magnitude of its range. An approach to handling this difficulty in R appears in
Gnedenko and Kolmogorov ((1968) page 121). The problems are slightly compounded in
higher dimensional spaces. Theorem 1 (below) provides a solution to these problems in
Euclidian space.
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612 MARJORIE G. HAHN AND MICHAEL J. KLASS

To motivate our solution to the centering and norming problem, think of u. = #(S,) as
a basis-free probability measure on R?. Corresponding to each coordinate system in R
there is a random vector V, with #(V,) = p,. To produce a canonical random vector, at
stage n we identify a preferred basis which is, in fact, an orthonormal basis (ONB). The
canonical random vector representing u, is therefore obtained by application of a unitary
operator to S,. With this new random vector it is sufficient to use componentwise centering
and norming. (Details for our 1-dimensional centering and norming appear in Section 1.)
This is tantamount to applying a single affine transformation A, of rather special type to
the original random vector S,. An earlier paper (Hahn and Klass (1980)) implicitly utilizes
this norming concept to treat the i.i.d. mean zero case, where no centering difficulties arise.
Related results on operator norming in Hilbert space appear in Hahn (1978).

In the ii.d. mean zero case, norming by the sequence of constants {\/_ } will suffice
whenever E || X||? < . Applied statisticians may therefore regard operator norming as
little more than idle curiosity. In the present context, however, the finite second moment
case is the general case (whence use of affine transformations is often essential). To see
this, simply note that appropriate truncations will produce sums of independent bounded
random vectors having the same affine normed limit laws as the original variates. (e.g., for
triangular arrays, replace X,,; by X,; = X,,;Iyx, ) = 5,), where Y521 P(|| Xy || > bz;) — 0. For
sums S, = X; + -+ + X, with the property that (S, — v, §) does not converge weakly for
any unit vector § and centering sequence v,, one may replace X; by X; =X;I(| x| < 5y where
Y P(| X] > b)) < oo

The following simple example illustrates the need for linear operators in the nonident-
ically distributed case. Operator norming is necessitated by the fact that there exist two
separate directions whose norming constants have different growth rates.

ExampLE 1. Let X;, Yy, X;, Ys, - -+ be independent mean zero random variables with
finite second moments. Let s2(X) = Y31 EX}, si(Y) = Y3-1 EY}. Assume limu o $0(X)/
$,(Y) = 0 and standard deviations give appropriate norming constants for the nth partial
sums of the X/’s and Y/s. Finally let S, = }%-1 (Ui, Vi) where (U, Vi) = (Xi cos ¢ +
Y, sin ¢, — X, sin ¢ + Y cos ¢) for a fixed ¢ # 0 (mod #/2). In order to obtain weak
convergence to a nondegenerate 2-dimensional limit it is clear that S, must be normalized
componentwise along the preferred ONB {(cos &, — sin ¢), (— sin ¢, — cos ¢)} where ¢ =
¢ (mod 7/2).

An easy example of this phenomena is obtained by letting #(X,) = N(0, 1) and £(Y%)
= N(0, k).

More elaborate examples can be constructed in which the preferred ONB varies with
n, (see Example 2 of Hahn and Klass 1980)).

As a notational convention, throughout the paper for any random vector X, X will
denote an independent copy of X which is also independent of all other vectors in sight.
Alsolet X*=X - X.

THEOREM 1. Let X1, -+, Xu, be a triangular array of rowwise independent d-
dimensional random vectors. For any 6 € R® and n = 1, define
(1) an(0) = inf{a > 0:2 =Yk, E(((X5;, 0)/a)® A 1)}.

Let S, = Y1 X,,;. Then there exist linear transformations T, and d-dimensional vectors
v, uch that

(2) LTo(Sn = va) = N(G, I)
and
(3) for everye>0,
limy, . maxisjse, supj=1 P(| (TnX7), 0) | > €) =



THE MULTIDIMENSIONAL C.L.T. 613

iff for every e > 0,

4) im0 SUPpg=1 iz P (X5s, 0) | > €an(6)) =0
and there exists an no such that for all n = no

(5) infy {@.(6):]|8| = 1} > 0.

Moreover, whenever (5) holds, the a,(6) are continuous for all n = no. Consequently,
by compactness of the unit sphere there exists an orthonormal basis {6n,j =1, -+, d}
such that

@,(0n1) = inf{a.(0):] 0| = 1}
a,(0,;) = inf{a.(0):]|0)| = 1,0 L span{fn, 1 = k=j—1}} forl<j=d.

The linear operators T, may be taken to be of the form

(6) Tox = Y51 ((x, O}/ an(0)))e;.
Finally, the centering constants v, are determined by setting
(7) (Uny Onj) = Y ka1 E(Xni, Onj) ATy

where Ay = [med((Xni, 0n;)) — @n(0n)), med((Xni, 0)) + @n(0,)] and Y4 = Ylyga) +
(midpoint of A)lyqa).

REMARK 1. Notice that a.(6) is the largest real number satisfying the implicit relation
2a%(0) = Yk E((X5, 0)° A ar(9)).
Moreover, a,(0) > 0iff Y%, P(| (X5, 6)|>0) > 2.

REMARK 2. We give a word of caution to those who wish to restate the theorem in
terms of unsymmetrized random vectors. Specialize to the 1-dimensional case. The purpose
of symmetrization is to produce continuous easily computable norming constants which
play the role of standard deviations. The following example illustrates that failure to
symmetrize or recenter the variables can easily result in quantities totally inappropriate
for norming. Forj = 1,2, .-+ let Xp; = Yy + b, and X5; = Y5;-1 — b;. Then let a,. and ¢,
be the largest reals satisfyinga2 = Y= E(X}? A a?) and ¢i =31 E(Y} A c}). Norm S,
=YY", X; by a, and T, = ¥}-1 Y; by c,. Suppose the Y;’s are i.i.d. and the b/s grow so
rapidly that cz./@s. — 0. Thus as, and cz. are not asymptotic. However, since Sz, and T,
are equal, both distributions require asymptotically equivalent norming sequences to
obtain identical nondegenerate limits.

REMARK 3. The linear operators T, are constructed in such a way that the marginals
of T'(S, — vn) converge weakly at a uniform rate to those of the standard d-variate normal.
This means, in particular, that the marginals must be asymptotically independent along
the preferred orthonormal basis directions {0, j = 1, -+ -, d}. This is, in fact, the main
step of the proof.

REMARK 4. The norming constants a,(f) are essentia]ly‘determined by @.(0n1), +--
an(0,q). To see this, let ’
' bi(6) = T-1 an(Bn) (6w 6)".
Since 6,1, - - - , 6na form an ONB, Z((S;,, 0)/b.(0)) =
L1 (S5, 0rj) /5n(05))) (bn(Br)) (6nj, 6) /Bn(6))) — N(O, 2)

because
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LUUSS 0n1) /Ba(Bn1), + -+ , S5y Ona) /ba(Ba))) — N(O, 21)
and
(6n(6n1) (On1, 0) /Dn(0), -+, bn(0na)(Ona, 0) /n(6))

is a unit vector. Also £ ((S7, 8)/a.(6)) — N(0, 2). So, by the convergence-of-types theorem,
lim,, . @.(6)/b.(6) = 1. Since this argument works equally well for any sequence of §’s, the
convergence is, in fact, uniform in 6.

REMARK 5. Theorem 1 suggests one method of constructing suitable affine norming
transformations. It is possible to norm slightly more classically. To do so, at stage n simply
t-trim (see Section 1 for an explanation of this procedure) and center the individual
variables along the preferred ONB and then norm by the positive definite symmetric
square root of the inverse covariance operator of the sum of the new variates. If one wishes
to norm based on inverse covariance operators of modified variates, the truncation
procedure adopted is crucial. For sums of precentered random vectors, ¢-trimming amounts
to discarding mass from the individual summands (at stage n) lying outside a d-dimensional
rectangle whose sides are parallel to the preferred ONB. An example to appear in Hahn
and Klass (1981) shows that truncation outside spheres (instead of rectangles) can produce
operators whose inverse square root is inappropriate for norming.

Since reference will often be made to the normal convergence criterion (NCC) for 1-
dimensional (prenormalized) triangular arrays, we state it here for easy reference.

NCC. If W,; are independent summands forj =1, .- -, k,, then for every € > 0,
L(Z)z1 Wa) > N(O, 1)
and
lim, . maxi<j<z, P(| W,j| >€) =0 (u.an. condition)
iff for every e >0 andar>0
(i) limn o 321 P(| Wij| > €) =0
(ii) limp e ¥ 321 EW, I gw, 1< = 0
(iii) limpe 3321 Var(Wo,Igw, 1<n) = 1. -

1. Centering and norming constants for arrays of independent
random variables. The convergence-of-types theorem says that if there exists constants
b, and a, and a random variable Z such that

z(s" _ b") — L(Z)
a

n

then the same result holds when b, and a. are replaced by b;, and a-, if and only if
lim,. a,/a’, =1 and lim, e (br — bh)/a, = 0.

Thus, once one sequence of norming and centering constants is known, the behavior of all
others is determined. We now provide a general approach to norming and centering.

To construct an appropriate norming sequence {a,}, note that a, must be reflective of
the “range” of the distribution of S,. With this interpretation in mind, a, must also be
reflective of the “range” of S;  Consideration of the symmetrized variables S; avoids all
centering difficulties. Indeed, Theorem 2 verifies that a canonical norming sequence {a,}
may be constructed from sums of the symmetrized variables which comprise S;.

The centering problem is more delicate. Ideally, we would like to center at expectations.
To do so we need to find S, such that

(Sn — S /an—p: 0 and £((S. — ES,)/a,) — £(2).
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S, is constructed by transforming the individual summands in S, into bounded random
variables via a method called ¢-trimming. T-trimming involves truncating a given random
variable Y on a (bounded) set A and placing the excess mass at one or several points. For
example, {-trimming Y on A and placing the excess mass associated with A° at b yields

Yas = YIyea) + bl iyeac.

From the point of view of normal convergence, no more generality is achieved by utilizing
several points rather than one. Throughout we will assume A is a bounded interval and

Yi=Yso and Y4 = Yamidpoint of 4.

Y is the usual truncated variable while Y4 is the modification of Y we will need.
Subscripts will be deleted whenever A is clear from the context.

Weak convergence of the partial sums of a triangular array {X,;,j =1, --., k,} of
random variables remains invariant under ¢-trimming if the sets A, satisfy

(8) lim,, . 2}:1 P(an & Anj) =0.

The natural choice for A,; might be an interval [@n; — I, @, + I.] of prescribed length 21,,
where a,; satisfies

P(an € [anj - ln, anj + ln]) = SUpPyer P(an € [y - ln’y + l"])'

Of course, [, must be chosen to satisfy (8). Since such an a,; is not easily identified, we
notice that (8) requires the eventual coverage of every fixed quantile strictly between 0
and 1 of each X,;, simultaneously for all ;. Consequently, for convenience, we may let a,,
= med X, the median of X,; having smallest absolute value.

Since the purpose of ¢-trimming random variables is to produce variates for which
expectations (and also standard deviations) yield appropriate centering (and norming)
constants, the excess trimmed mass must be judiciously located and cannot be blindly
placed at zero, as that might make expectations and standard deviations unreflective of
the true “center” and “range” of the distribution of S,. Theorem 2 shows that the excess
mass may be placed at the median of X, the midpoint of the interval used for ¢-trimming.

In the following example we have central limiting behavior. However, regardless of
which intervals are used for ¢-trimming, if the resultant, mass is placed at zero (yielding
" standard truncation), the expectations and standard deviations are always of the wrong
order of magnitude.

ExAMPLE 2. The idea is to construct Xj, Xp, - - - such that there exist constants a, and
b, for which £((S, — ba) /@) — N (0, 1). However, for any bounded intervals I,,; of common
length [, with },7; P(X; & I;) — 0, the terms Y, EX 1,,are the wrong order for centering
(we achieve this only for n even) and the terms (37, Var(X}; ))"/* are the wrong order for
norming.

In order to construct Xj, let p; and ¢, be constants such that

() pr=pe=.--20,Y% p<;

(i) |¢|>1 for j=1,2, ... and czjo1 = —cy;>0;
(i) X721 eojr(Pojr = Py)/VR ~ Con-1(Prn-1 — Pan) [N
(v) X7 efpi~ chu-1pan-;

V) can-1(pan—1 _p2n)/\/; —® as n—®,

A specific example is p; = (j + 1)72, ¢g;-1 = (2j).
Let Y;,j=1,2, -.. be independent with P(Y; = 1) = P(Y; = —1) = %. Define N,J=1,
2, + -« to be independent of each other and of the Y; with p; = P(\;=0) =1 — P(\; = 1).
Now we take
0 with probability p;
Xi=ANYj+¢) = {Cj +1 with probability (1 — p;)/2.
¢—1 with probability (1 — p;)/2
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Since Y% P(X; # Y; + ¢;) = ¥5-1 P(\; = 0) = Y71 p; < o, the partial sums T}, = Y (Y
+ ¢j) and S, = ¥/ X; are equivalent sequences. Moreover, & (T — enlinoda) /Vn) —
N(0, 1) which therefore implies L ((Sn — calinoda)/ Jn ) = N(O, 1). Thus, by the conver-
gence of types theorem we know the order of magnitude of the centering and norming
constants for the sequence S,.

Condition (i) implies P(X; = ¢+ 1) = P(X;=¢—1) = (1 —p))/2 > % asj— .
Consequently, if I,; are intervals of common length Z, for which ¥}-1 P(X; & I;) = 0, for
n and j large we must have ¢; + 1 and ¢; — 1 in I,;. This, in particular, means that X; =
X;Ixer,)) for n and j large. Thus, the example will be complete if we can show that ES, is
not an appropriate centering sequence and (Var(S,))"/? is not an appropriate norming
sequence.

Now

ESz/v2n = 21 (1 — pj)ci/2n
= Y71 eoi(pj — p)/V2n by (i),
~ —Can-1(P2n—1 — Pan)/N2n Dy (i),
— — as n— o rather than 0, by (v).

Thus, ES:. is not an appropriate 2nth centering constant.
Also,

217! Var(X;)/(2n — 1) = $727* (1 - p)(1 + pief)/2n — 1)
~+ 374 pief/(2n — 1)
~1+ ch1pon-1/@n—1) by (iv),
— oo as n— o by (v)and (@i).
This phenomenon persists for n even. So (¥}-1 Var(X;))'/ is not an appropriate nth

norming constant.

Even if we did not require ¥7-; P(X; & I,;) — 0, the above method of centering and
norming by placing the excess mass at zero would still fail.

For notational convenience, S; will denote ¥%2; X7; where the set on which each X, is
¢-trimmed may vary for each X,; but is either clear from the context or will be explicitly
specified.

THEOREM 2. Let Xuy, - - +, Xus, be independent random variables with S, = Y521 Xu.
As usual, let a, be the largest real number satisfying the implicit relation
202 = Y21 E((X3)* A ag).
There exist constants b, and c, such that
9) LS, — br)/cn) > N0, 1) and {X3j/c.} isu.an.
iff there exists N > 0 such that .
(10) a,.>0foralln= N,

. and
(11) LS, — ES})/a,) = N(0,1) and {Xij/a.} isu.an.
where

7 =Yk X7, with Ay = [med(Xy) — an, med(Xy) + an].

Proor. Sufficiency is obvious. For necessity, first assume med(X,) = 0. Now (9)
implies
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(12) £(8: V2¢,) - N(O, 1).
Consequently, by the NCC, for every € > 0
(13) Lm0 321 P(| X3 | > €ca) =0
which, since med(X,,) = 0, immediately implies
(14) limp e ¥ /21 P(| Xo| > €c,) =0 for every €> 0.
The NCC also implies that for any € > 0,
limn .. ¥ /21 E | Xy | *Ix, =ec)/ 207 = 1
which together with (13) yields
(15) limpe Y f2 E(| X5 |2 A (eca)?) /262 = 1.

Varying € is a neighborhood of 1 and applying a simple monotonicity argument to (15)
imply both the existence of a, and the fact that

(16) lim, . a,/c, = 1.
Hence, by (12), (14), and (16)
an LT hea X7y — L he1 X2) /2 an) > N(0, 1)

where the variables are ¢-trimmed on A, = [—a,, a.]. Thus, in order to conclude (11), it
suffices to show that

LSy — ES;)/a.) = N(0, 1).
This will follow from verification of the conditions in the NCC.
Sin P(| X — EX% | > 4ea,)
=Yk P(| X} | > 2a,) + 3k P(| EXLy | > 2€an).
_ The first sum converges to 0 by (14) and (16). The second sum converges to 0 because for
all n large
| EX 7| = | EX (I, <cap + Tix,>ea) |
=e€an + a.P(| Xoj | > €an)
= 2ean,.
Since | X7;/a,| = 1 and X7, is independent of X/, (17) implies that
lim, . Zfél Var(X7;/a.) = 1.
Finally, since E((S: — ES7)/a.) = 0, the conditions of the NCC are satisfied, completing
the proof for median zero random variables.
The general case can, of course, be reduced to the median zero case by letting U,; = X,

— med(X,) and U,, = X,, — med(X,). If S, = Y%, X,,; then this reduction yields centering
constants b, of the form .

b, = 2}&1 by = Z}eﬁl med(X,.j) + 2}11 EUZj,[—a,,,a,,] = Zf’.;l EX::j,A,U
where A,, = [med(X,;) — @, med(Xy) + an].

The above technique amounts to centering at medians and then recentering the
resultant by subtracting off truncated expectations, ultimately adding back all the sub-
tracted quantities. The idea was exploited in this form in Klass (1980). It motivated the
centering notion presented and refined here. However, an essentially equivalent centering
method in fact already appears in Gnedenko and Kolmogorov ((1968), Theorem 2, page
121).
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Theorem 2 together with the convergence of types theorem indicates that the excess
mass may be placed at zero only when

Hm, e ¥ %2 med(X,)) P(| X,y — med(X,,)| > a.)/a. = 0.
Furthermore, since
lim, .. Y721 P(| Xoj — med(Xy)| = an) =0,

no more generality results from placing the excess mass at the two endpoints of the
intervals A,;.

2. Proof of Theorem 1. The basic preliminary to our proof of sufficiency is the
following real variables lemma.

LEMMA. Let A,, B., C, be real numbers with A,, B, > 0. Then

(18) lim,_,. infy(AZcos?d + B2sin’f + C,sin 20)/Az2 =
iff

(19) lim inf, . Bn/An=1

and

(20) lim, . Cr/AnB, = 0.

PROOF. Necessity. Assume (18). Let
F(n, 0) = A;%(AZc0s’0 + BZsin®0 + C,sin 20) — 1
= (B2A;% — 1)sin%d + C. A, %sin 26.
Since,
0 = lim,_,» infy F'(n, §) < lim inf, .. F(n, 7/2)
= lim inf,. (B?A,% — 1),

(19) holds.
Next suppose (20) is false. Then there exists 0 < € < 1 and n; < n2 < --- such that

| Cn,|/AnBn,> 2. We may assume C,, <0.Let @ = {k=1: B, /A, =1+ €}. If Q° contains
infinitely many positive integers

0 < lim inf, ., infy F (1, 0) < lim inf, ... F (ng, =/4)
kEQ® kEQC

=5((1+e€?*—1)—-2<0,

a contradiction. Hence every sufficiently large integer belongs to @. By redefining {n.} if
necessary, we may suppose every k2 = 1 belongs to @.
Thus there exists 0 < #,,< /4 such that

tan 0, = €/(B,, Az — 1).

Since cos20,,kis bounded away from zero,
0 < lim infy o F (s, 05,)cOS 6y,

= lim infxo (2F (ns, 6n,)/sin 26,,)tan 6,,
= lim infy o (€(Bn, A7 + 1) + 2C,A72)tan b,
< lim infy o (€(Bn, Azl + 1) — 2eB,,,A7})tan 6,

=—€2<0, a contradiction.
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Hence (20) holds.

Sufficiency. Assume (19) and (20) hold. F(n, 0) = 0 so if (18) is false, there exist 0 < €
<L1<n <nz<--.,and 6, such that F(n, 6,) < —2¢. In view of (19), | Cs, | A~,? > € for
all & large. Applying (20) we see that lims ... B, /A, = ». Hence for all % large,

~2€> F(ni, 6,) > (5BLA2 | sin O, | — 2| Ca, | A7) sin G, |
Clearly, |sin ,,| < 4| C», |B,?. Therefore,
—2€> —2| Cn, | A324 | Cp, | Bi? = —8(Cr,/An,Bn)%

which tends to 0 by (20), yielding a contradiction which proves (18).
We are now ready to prove Theorem 1.

PROOF OF SUFFICIENCY IN THEOREM 1. For notational convenience we restrict to X,
= X, and k, = n. The following proof extends to arrays by merely changing the subscripts.

Suppose (4) and (5) hold and that n = n,. Now (5) insures that a,(6) > 0 for all n = n,.
a,(0) also satisfies the implicit relation in Remark 1. So the continuity of § — a,(8) can be
seen as follows: For fixed n, M. (y, 0) = Y-, E((X}, )*>y™% A 1) is jointly continuous in 8
and y and strictly monotone in y for

¥ Z supjg-1sup{z = 0: ¥ /-, P(0 < | (X;, ) | < z) = 0}.

Consequently, for fixed #* and each 2¢ > 0 sufficiently small, continuity and strict
monotonicity in y implies the existence of yi(e) < a.(8*) < ya(e) such that for i = 1, 2,
M, (yie), 0%) = 2(1 — (1)’ ¢)
and
limcjo y:(€) = @, (6*).

Continuity in 6 of M, (y, ), implies the existence of 8. > 0 such that whenever | § — §* |
< 8. we have | M, (yi(€), 0) — M.(yi(e), 0*)| < e for i = 1, 2. Hence, if y < yi(e) and | § — 6* |
<8, M.(y, 0) = Mu(y:1(e), 0) = Mo(yi(e), 0*) — € = 2 + €. Also if y = ys(€), Mn(y, §) =
M, (y:(¢), 0) = M,(y:(€), %) + € = 2 — €. Since M,(a.(8), §) = 2, it follows that § — 4*
implies a,(6) — a.(6*). As a result, the a.(6,;),j =1, ---, d and hence the T, and d, are

well-defined.
We prove sufficiency using the particular T, and d,, defined in (6) and (7). Conditions

(4) and (5) easily imply (3). Indeed, for every € > 0,
Lim,,—,oMaxX;<j<.supjg=1P(| (T=X3, 8) | > €)
= lim, ,.maxi<=nsupjg=1 P(| k1 (X5, Oni) (i, 0)/an(02:))| > €)
=< lim,..maxisjcn Y &1 P(|(XS, Or:) | > €an(0n)/Vd) by Cauchy-Schwarz
< lim,_..supjg=id Y21 P(| (X3, 0) | > €an(8)/Vd)
= 0 by (4).

The proof that (4) and (5) imply (2) is more complicated. Our first step involves ¢-
trimming and centering to reduce to uniformly bounded, mean zero components. By (4)
there exist €, — 0 such that

4) lim, ,esupyg=1 Y. j=1 P (]| (X3, 0) | > €a.(6)) = 0.
Let B,js = [med({X}, ) — €ra.(f), med((Xj, 0)) + €,a.(6)] and let A,js be defined as B,y
with €, replaced by 1. Define Yy = (X}, 0)8,, — E(X, 0)5,,.

Step 1. (2) is implied by (4), (5) and
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(21) LT Y1 (Yoo, /an(Bn))e) = N(O, I).
Proof of Step 1. Let V.o = (X5, 0) — E(X,, 0)%,,,- Observe that (4') implies

(22) lim, o P(F1 Bt (Yo, / @nl0nd)e; # ik Tt (Fo,,/an(Brid)ed) = 0.
Consequently, (21) together with (22) imply
LT Tt (T, / an(8nd)e) — N(O, .
Finally, applying Theorem 2 componentwise yields
L et (X5, i) — EAX;, 0nidh,,, )/ @n(Brnd)ed) = N(O, I)
which is (2) with T, and v, as given in (6) and (7).

Since using symmetrized variates doubles the correlation we claim it suffices to prove,
forallsi<k=d,

(23) limy o Y31 E(Yrjo, Yrjo,) / @n(0ni) @n(0rz) = O.
Step 2. Assume (4), (5) and (23). Then condition (21) holds.

Proof of Step 2. Fix 6 with || 0] = 1 and let
Zng = (X1 25-1 (Yojg,./ an(0ni))eis )
= Z'}=1 (2?-1 (0) ei) Ynjﬂ,u/an(oni)) = ’;'=1 an&

The Cramér-Wold device implies that verification of (21) is equivalent to proving that
P(Zns) = N(0, 1) for all 8 with || || = 1. Notice that Z,, is the sum of n independent mean
zero random variables W4, 1 < j < n, for which

| Wi | < 26, Y9-1| (0, &) | = 2e,Vd.

Hence, #(Zns) — N(0, 1) provided lim,.EZ% = 1.
By independence,

EZ2 = Y0 EWZig = (%) Y1 (W)
(24) = (%) T (8, €)/an(6n))* $3-1 E(Yip,)’
+ Yimick=a((8, €:) (0, €r)/n(6ni) @n(Onr)) L=t EY s, Yoo,
Notice that (4), (5) and the NCC imply that for any unit vectors 6,
L1 (X5, 0,)/an(8,)) = N(O, 2).

Utilizing (4) once again and the fact that med((X}, ) — med({X}, §))) = 0 we see that (Xj,
) can be replaced by Y;;s because

= 2 lim,oSupyo-1P (X1 (X5, 8) # Xj-1 Yio)

(25) = 2 lim,_Supyg-1 23-1 P(| (X}, §) — med((X;, 6)) | > €.a.(6)) = 0.

Consequently, the first group of terms in (24) converges to 1 by the NCC. Hence, it suffices
to verify (23).
Our next step is a preliminary to verifying (23).

Step 3. Let Vs = Y1 (6, 6,:)Yiy,.. Then
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(26) lim inf,infig-1 Y51 E(Vas/an(6))? = 2
with equality achieved by 8 € {fn1, - - , Ona}

Proof of Step 3. Notice that Y, = (X}, 6) on

Qujo = {| (X, 8) — med((X;, 0)) | < €xa(0), | (X), §) — med((X;, 0)) | = €:0:(0)}.
Since {#n,i=1, .-+, d} form an orthonormal basis,
(X5, 0) = ikt (X5, O} (Oni, 0)
= Vo on Ny Q.
Let U,js = (X}, 6). Lower bounding,
Y1 EVie/ak(6) = $i-1 E(Ujs A an(6))/az@)w,,=v,,»
=2 — Y1 E(Ukjp A d2(0))/ @2 0) L v,,pv,,9
=2 — Y51 P(Urjo # Vo)
=2- Y2, Y, P(Q,) > 2 asn— o by (25).

To complete the proof notice that
lim,,_m E';.l E Vijam/ a?,(0,.,~) =2,

Step 4. (4) and (5) imply (23).
Proof of Step 4. The idea is to use Step 3 in order to obtain the validity of (18) in the

Lemma with C,/A,B, denoting the sum in (23).
Restricting 6 to be a unit vector in the spanof §,, and 8, for some fixed 1 = i<k =d,

fo i Sreik Bet B (Yo, )"0, 0 +2 St E Vs, Vi, (6, 0040, 6us)
noiDtfy Yi-1 E(Y3s,)*

= limp.inf; ¥%1 EVZie/2a5(0,)
= lim,«infy Y31 E(V7o/20(6)) (a7(6)/ an (6n:))
=1 since =1bystep3and =1 forf =¥b,.
Invoking the Lemma with
Ap = Y51 E(Y3,)" ~ 203(6,)
B}, = Y51 E(Yss,)* ~ 2050
Cr = Y51 EYrs, Yrjs,,

completes the verification of _£23).
Thus, (Tn(Sn - Un)) d N(O) I)

Since the proof of necessity is fairly analogous to the proof in the i.i.d. case which
appears in Hahn and Klass (1978), we briefly sketch the proof indicating the modifications.

PROOF OF NECESSITY IN THEOREM 1. Assuming (2), X(T.S:) — N(G, 2I). The
norming linear operators 7', can be written in the form Tye; = Y2_1 eynej where cjn = (Thei
e,) for the standard orthonormal basis {e;}. Each T, is nonsingular for n sufficiently large
and so has an associated set of unit vectors
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O = Y1 QjnCimeis j=1-.+,d,
where @, = (X4 c%») /2 Expressing S5, and T, in terms of these unit vectors we obtain
LT (S5, Orn) | Qrn)er = L(Ti-1 Tiks (S5, €:) Cirner)

= LT (TaSher)e) = L(TnS5) — N(O, 21).
Thus, utilizing a Lemma of Rao and the Lévy Continuity Theorem exactly as in Hahn and
Klass (1978), Section 2, for any unit vectors
(27) L(Th=1 ((S5, Orn) (€r, Yn) /@Qrn)) —> N(O, 2).

Therefore (for all n sufficiently large) 61, - - - , 0ax are linearly independent. Consequently,
for each unit vector ¢, there exist unique constants B;.(p) such that

Q= Zg-l (Bin(‘P)/Qin)eim

Let b%(p) = Y41 B%.(p). For any sequence of unit vectors {g,}, since Y- (Brn(Pn)/bnldn))er
is a unit vector, (27) implies that

d Bku((pn) <Sft, 0Im)) - N(O, 2).

M (@) Qe

We now appeal to the following uniform version of the NCC for symmetrized random
variables.

e-?((Sfu ‘Pn)/bn(‘Pn)) = -?(

PROPOSITION. For every n = 1, a € J let Xu1o + -+ , Xnja be independent random
variables. Then for every sequence {a,} C J and for every € >0

LT Xoka,) = N(O, 2)

and
lim,, . max:<k<nSUPaesP( | Xita| > €) =0
iff for everye >0 and a >0
(i) limpwSupaes Y1 P(| Xia| >€) =0
(ii) limpswsUPacs | Ti1 E | Xja | Toxg, = — 2] = 0.

Letting X5, = (X%, ¢)/ba(9p), (i) of the Proposition yields (4) with' b.(¢) in place of
a,(p) once the uniform u.a.n. condition is verified for X.,. However, by (27),
limy,omaxi=<nSuP|e=1P(| Sh=1 (X3, Oun) /Qrn)(€r, @) | > €) =0
which immediately implies
(28) limy,_,Max:<j<nSUPLP( | (X5, Orn) /Qin| > €) = 0.
Combining (28) with

P(| (X3, 9)/bu(p) | > €) = P(| Tit ﬁ:;n((g))

=Y, P(| (X3, On) /Qun| > €/ J&) by Cauchy-Schwarz
= d supP(| (X}, Okn) /Qan| > €/ V)

which tends to zero by (3) and thereby yields the uniform u.a.n. condition. Thus, (4) holds
with b.(¢) in place of a.(¢p). Finally by (i) and (ii), there exist €, | 0 such that for all ¢

" ~ . [<2 i bu(@) > (1 + €)balp)
Zh=1 E(((X}, @) /bal@))* A 1) is {>2 if Br(g) < (1 — €)bu(@)’

(X7, Orn) | Qun| > €)
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This implies lim,_..Supjgj=1| b2(¢)/an(p) — 1| = 0. Hence (4) is necessary.

To complete the proof notice that (5) is a consequence of the fact that there exists no
and y > 0 such that for all n = n,,

infigj=10n(p) = infig-17bn(p) = infip-1maxi<i<aBi(p) = 1/d mini<<s@in > 0. 0
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