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SOME LIMIT THEOREMS FOR PERCOLATION PROCESSES WITH
NECESSARY AND SUFFICIENT CONDITIONS

By J. THEODORE Cox' AND RICHARD DURRETT?

Syracuse University and University of California, Los Angeles

Let t(x, y) be the passage time from x to y in Z? in a percolation process
with passage time distribution F. If x € R? it is known that [ (1 — F(¢))* dt
< ® is a necessary and sufficient condition for #(0, nx)/n to converge to a limit
in L' or almost surely. In this paper we will show that the convergence always
occurs in probability (to a limit ¢(x) < ) without any assumptions on F. The
last two results describe the growth of the process in any fixed direction. We
can also describe the asymptotic shape of A, = {y : £(0, y) < t}. Our results
give necessary and sufficient conditions for £'A, — {x : p(x) < 1} in the sense
of Richardson and show, without any assumptions on F, that the Lebesgue
measure of ¢t 'A,A{x : p(x) < 1} — 0 almost surely. The last result can be
applied to show that without any assumptions on F, the x-reach and point-to-
line processes converge almost surely.

1. Introduction. In (1965) Hammersley and Welsh introduced the following model
of the spread of a fluid through a porous medium. Consider a graph L with vertex set Z*
and a set of edges E connecting all x and y with ||x — y| = 1 (here and in what follows
[x—yll =|% = y1| +|x2 — y2|). With each edge e (which we will also call a bond) there
is associated an independent nonnegative random variable X(e), with distribution F, which
represents the amount of time it takes fluid to flow through the opening which the edge
represents.

If x, y € Z? let ¢(x, y) be the minimum travel time over all paths from x to y. ¢(x, y) is
the first time fluid will appear at y if there is a source at x which begins operating at time
0. The object of the study of percolation processes is to determine the limiting behavior of
t(0, x) when x — oo. The first steps in doing this were taken by Hammersley and Welsh
(1965) who observed that the passage time process was subadditive:

t(x, y) + t(y, 2) = t(x, 2) forall x,y,z

and used this to show that if F' has finite mean and e; = (1, 0) then #(0, ne,)/n — v in
probability where y = inf Et(0, ne;)/n. This result was strengthened to almost sure and L’
convergence by Kingman (1968) (see also (1973)) who obtained the result as a consequence
of his subadditive ergodic theorem.

The result remained in this form for several years until it was observed (by several
people independently) that if the distribution defined by 1 — G(t) = (1 — F())* had finite
mean then Et(0, x) < « for all x so Kingman’s result could be applied to show that
t(0, ne;)/n converges almost surely and in L' to the same constant. If we insist on L' or
almost sure convergence then this is the ultimate form of the result. It is easy to show that
if G has infinite mean then Et(0, x) = o for all x % 0 and lim sup £(0, ne;)/n = c. From
Theorem 1.1 below it follows that lim inf ¢(0, ne;)/n < w for any distribution F so we have
almost sure or L' convergence if and only if the mean of G-is finite.
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The last result suggests the problem of determining conditions for convergence in
probability. Reh (1979) and Wierman (1980) have studied this problem. Wierman (1980)
has shown that if EX? < o for some 8 > 0 then there is a finite constant vy so that (0, ne:)/
n — y in probability. To prove the last result Wierman picks % so that 26 > 1 and then
considers the passage time between k-point clusters to produce a finite mean so that
Kingman’s result can be applied. Because of the method of this proof it seems natural to
conjecture that the same result is true in greater generality or, on the basis of the fact
about the lim inf quoted above, that the “weak law” holds without any assumptions at all.
The last statement is true and is our first theorem.

THEOREM 1. Let F be the distribution of a nonnegative random variable. There is a
finite constant y (called the time constant) such that t(0, ne:)/n — vy in probability and

lim inf,, ,.t(0, ne:)/n =y almost surely.

SkETCH OF PROOF. Pick M so that 1 — F(M) < % and call all bonds with travel time
=< M open, > M closed. It follows from known results about percolation processes that with
probability 1 there is an infinite connected set of open bonds and no infinite connected set
of closed bonds, so for each x there is a minimal open circuit A(x) which is part of the
infinite connected set of open bonds and contains x in its interior. Let A(x) be the set of
points on A(x) or in its interior. Define (x, y) to be the minimum passage time from a
point in A(x) to a point in A( y). Using ideas from the proof of Theorem 8.10 in Smythe and
Wierman (1978) it is easy to show that E#(x, y) < o for all x, y (or if you are energetic, that
all moments are finite), and in addition that the random variables ?(x, y) are almost
subadditive so Kingman’s Theorem can be applied to show that #(0, ne;)/n— ya.s. and in
L' where y = inf Et(0, ne;)/n. To translate this into a result about ¢ observe that if we let
u(x) be the sum of all passage times for bonds on A(x) or in its interior then

(R} B, y) = tlx, y) < E(x, y) + u(x) + u(y)
and the distribution of «(x) is independent of x so
t(0, ne;)/n — y in probability

and lim inf, .. £(0, ne;)/n = y almost surely.

From the proof of Theorem 1 sketched above the reader can see that the modified
passage time process { is almost the same as ¢, and ¢ has all moments finite. Using this
observation and techniques developed to prove Theorem 1 it is possible to extend many of
the results proved in Smythe and Wierman (1978) under the assumption of finite mean. As
an example of a theorem of this type we give the following result (see Smythe and Wierman
(1978), Theorem 7.7 for the original version of this result and Reh (1979) and Wierman
(1980) for generalizations).

THEOREM 2. Letp = F(0) and U, be the Bernoulli distribution with U,({0}) = p and
Uy({1}) = 1 — p. If the time constant for U, is O then the time constant for F is 0.

Theorem 1 shows that £(0, ne;) ~ y n. If we extend #(0, x) tox E R 2 by assigning x the
passage time to the closest point in Z? (taking the minimum in case of ties), then it is easy
to use the same proof to show that if x has rational coordinates £(0, nx) ~ @(x)n. If we let
A, = {x: t(0, x) = t} then the results above suggest that ¢t 'A, should approach {x : p(x)
=1} as ¢t > o. In (1973) Richardson proved a result of this type for a growth model which
corresponds to a percolation process in which F has a geometric distribution. Richardson’s
result (when strengthened by Kesten’s contribution to the discussion of Kingman (1973))
states that for all € > 0

(x) P({x:p(x)=1—¢€} CtT'A,C{x:p(x) =1+¢} foralltsufficiently large) =1
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The central part of Richardson’s proof (Section III, pages 517-521) is based on
subadditivity and the existence of second moments so it seems natural to conjecture that
under appropriate conditions a similar result should hold for percolation processes.

To determine what these conditions should be, we observe that if G(¢) = 1 — (1 — F(¢))*
has infinite second moment and we let Y(z) be the minimum of the passage times on the
four bonds which contain z, then for any ¢ < o

Yoz P(Y(2) >c| z||) = c.
Since ¢ (0, z) = Y(z) it follows from the Borel Cantelli lemma that
P(sup.«t(0, 2)/|| z|| = ) =1,

so Richardson’s theorem is false if G has an infinite second moment.

There is a second case in which Richardson’s result cannot hold for trivial reasons. If
EX < o and F(0) > pr (see Smythe and Wierman (1978), pages 30 and 113) then y =0. An
easy argument shows that if y = 0 then #(0, nx)/n — 0 almost surely for all x € R%’so ¢
= 0 and ¢ 'A, will never contain {x : p(x) =1 — €} for all € < 1. In this case () fails trivially
but this difficulty can be remedied by reformulating the result:

THEOREM 3. Richardson’s result is valid for percolation processes if and only if E Y?
< o, If y> 0, (x) holds. If y = 0 then for every compact set K

P(KCt A, for allt sufficiently large) = 1.

REMARK. This theorem generalizes a result of Schiirger (1980) who has shown that in
any dimension d = 2, EY?**? < w is sufficient. While we have proved our result only for d
= 2, it follows from the proof given in Section 3 that in any dimension d = 2, EY<wis
necessary and sufficient.

To describe the limit behavior of £~'A, when EY? =  we have to introduce another
notion of convergence. One definition which is common to measure theory is to say B: —
Bif | B, A B| — 0 where B, A B is the symmetric difference (B, — B) U (B — B,) and | ]
denotes Lebesgue measure. The next result shows that if we introduce an obvious
modification for the case y = 0 then ¢ A, always converges to {x : p(x) < 1} in this sense.
(Here g(x) = inf E£(0, nx)/n.)

THEOREM 4. Let F be an arbitrary distribution. For any K < «
[tT'A A {x:p(x) =1}) N {x: || x| = K}|— 0 almost surely.
For anye>0
P(t7'A, C {x: p(x) <1 + €} for all t sufficiently large) = 1.

To prove this result we let A, = {x: #(0, x) =< ¢} and use ideas from the proof of Theorem
3 to show that ¢ 'A, converges to {x : p(x) =< 1} in the sense of Richardson. Since i, y)
=< #(x, y) we have A, C A, and this proves the second conclusion. To prove the first we
observe that from (1.1) £(0, x) < u(0) + ?(0, x) + u(x) and show that if n > 0 and K < o,
t72 | {x: || x || = K¢, u(x) > nt} | > 0 almost surely. .

Theorem 4 describes the asymptotic shape of a general percolation process. Just as
Donsker’s theorem can be used to find the limit distribution of various functionals of
tandom walk paths, Theorem 4 may be used to obtain results for functionals of the set of
occupied sites. By projecting ¢t 'A, and {x : p(x) < 1} onto the line x, = 0 we can obtain the
following result about the x-reach process first proved by Smythe and Wierman in the
finite mean case (see Theorem 6.3 in [11]).

THEOREM 5. Let x, = sup{m : t(0, (m,n)) <t forsome n€Z}. Ast— »

x,/t — 1/p(e;) almost surely.
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If we regard the x-reach process sample paths as functions then the inverse functions
b(m) = inf{£(0, (m, n)) : n € Z} give us the point-to-line process which was introduced by
Hammersley and Welsh (1965) and has been studied by many authors (see Smythe and
Wierman (1978) for a listing of results). From Theorem 5 it is easy to obtain one of the
basic results about this process.

THEOREM 6. Asm — o

b(m)/m — ¢(e1) almost surely.

In the case F has finite mean, this is a result of Wierman and Reh (1978). At first glance
it seems this result should be a corollary of Kingman’s subadditive ergodic theorem but it
is not because the sequence b(m) cannot be extended to be a stationary subadditive
process. To overcome this difficulty Wierman and Reh introduce a sequence of approxi-
mating processes and the argument is rather involved so we think that obtaining results
for the point-to-line process by “projecting Theorem 4” provides an attractive alternative
to their proof.

By considering other functionals of the set of occupied sites and applying Theorem 4 it
is possible to prove other results. An example of a result we can obtain in this way is

THEOREM 7. Let N, be the number of points in A, with integer coordinates. As t —
[o ]

t2N,— areaof {x:9(x)=<1} almostsurely.

The reader should observe that Theorems 5, 6, and 7 are valid for any distribution F.
Theorems 1 and 2 are proved in Section 2, Theorems 3 and 4 are proved in Sections 3 and
4, and Theorems 5 and 6 are proved in Section 5.

Section 2. In this section we will prove Theorems 1 and 2. We begin by proving

THEOREM 1. Let F be the distribution of a nonnegative random variable. There is a
finite constant y such that t(0, ne;)/n — vy in probability and

lim inf, .. £(0, ne;)/n =y almost surely.

The proof of this result is accomplished by defining a modification of the basic point-to-
point process, showing that Kingman’s subadditive ergodic theorem applies to this new
process, and then comparing with the basic process.

To define the modified- process we have to introduce some definitions. Pick M so that
1 - F(M) < Y. Let p = F(M) and ¢ = 1 — F(M). Let {X(e), e € E} be independent
random variables with distribution F. Call a bond e open if X(e) = M and closed if X(e)
> M. By Theorem 3.14 in Smythe and Wierman (1978) there exists, with probability one,
an infinite connected set of open bonds which we call A, and there is no infinite connected
set of closed bonds.

A self-avoiding circuit C is an alternating sequence of vertices and bonds of the form vy,
e, U1, €z, +++ €,, Un, Where e; connects v;—; and v;, vo, U1, -+, Un—1 are all distinct, and vo
= v,. By viewing a circuit C as a curve in R’ we see that a self-avoiding circuit divides the
plane into two connected components. Let C° denote the bounded component (colloquially
called the inside of C) and let C = C U C°. A circuit will be called open (closed) if all its
bonds are open (closed).

It follows from Lemma 3.6 in Smythe and Wierman (1978) that for each z € Z? there
exist infinitely many open circuits C with z € C° and C C A. Let A(z) be the minimal open
circuit with these properties. Let A(z) = A(z) U (A N A°%C)), i.e., A(2) consists of the circuit
A(z) and all bonds inside A(z) which belong to the infinite open cluster A.
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(Note: This somewhat peculiar definition is necessary for Lemma 2.6 below and is
needed to correct an error on page 140 in Smythe and Wierman (1978).)

We can now introduce the modification of the basic passage time process needed to
prove Theorem 1. Let

{(x, y) = inf {t(x’, y') : x’ € A(x), y’ € A(¥)}

u(x) = Ze&l(x)X(e),
and

V(%) = Ve X(e).
The following result compares ¢(x, y) to t(x, y).

LEMMA 2.1. For all x, y € Z* we have
fx, y) = t(x, y) < i(x, y) + u(x) + u(y).

Proor. The first inequality is trivial, since x € A(x) and y € A(y). To prove the second,
let r be a path from some vertex in A(x) to some vertex in A( ). Then #(x, y) < u(x) + t(r)
+ u(y) where t(r) is the travel time along the path r. Since t(x, y) is the infimum of #(r)
over all such paths r we have #(x, y) < i(x, y) + u(x) + u(y).

The distribution of u(x) is independent of x so it is easy to see from Lemma 2.1 that ¢
and f are almost the same when || x — y || is large. The next step in our proof will be to
show that Kingman’s subadditive ergodic theorem can be applied to determine the limiting
behavior of £(0, x) when x — . To apply Kingman’s theorem we need to show that
E#(0, x) < o for all x. To do this we begin by getting an estimate on | A(z) |, the number of
bonds in A(z2).

For z € Z2 let R.(n) be the annular region in the plane bounded on the inside by the
rectangle z + [-n, n + 1] X [-n — 1, n + 1] and on the outside by the rectangle z +
[-3n + 1, 3n] X [-3n + 1, 3n].

LEMMA 2.2. Let kn(p) = infn=, P(R.(m) contains an open circuit C with z in its
interior). Then k,(p) > 0 and k.(p) > 1 as n — o,

ProoF. From Lemma 3.5 in Smythe and Wierman [11] x.(p) = S,(2n, 2n) 2qQ—-@1-
S,(2n, 2n))"/?)* where S,(m, n) is the crossing probability for an m X n sponge (for a
definition see [11], page 10). By Lemma 3.10, Theorem 3.13, Theorem 2.2, and equation 2.2
in [11], Sp(n, n) > 1 as n — oo.

LEMMA 23. E|A(2)|" < o for allm < cc.

ProOF. Suppose z =0.Let B(n) = {y: ||y || =n}. If B(n) N A = J, then by Whitney’s
Theorem (Theorem 2.1 in Smythe and Wierman (1978)) there is a closed circuit C* in the
dual graph L* (see Smythe and Wierman (1978) page 8 for definition) with B(n) in its
interior. C* must contain at least one of the bonds e} connecting (k + %, %) to (k + %,
—1%). Let D} denote the connected set of closed bonds in L* containing ef. Since g < %,
Df has all moments finite (Corollary 3.7 and Theorem 3.8 in Smythe and Wierman (1978)).
Thus

P(B(n) N A = Q) = Y% . P(3 a closed circuit C* in L* with B(n) in its interior, e} € C*)
=Yi-. P(|D}| = 2k + 2n)
= Y% E(| DY |*)/(2k + 2n)*

for any a < o. Comparison with an integral shows that if a > 1
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P(B(n) N A =0Q) <c./(dn — 2)"

where ¢, = E | D¥|*/2(a — 1).

The next step in proving Lemma 2.3 is to obtain an estimate on how far out we must go
to find an open circuit. Let E; be the event that Ro(3*) contains an open circuit with 0 in
its interior. The events E; are independent, so if 3* = n, P[E4+1 N -+ - N Ef;] =< (1 — ki)’
Since B(6 - 3') D Ro(3) it follows that

P(A(0) C B(6 - 3")) = P(B(3*) NA# D, Ex+1 U + -+ U Epyj)
=1-PBB)NA=0)—P(EinN-.- NEL)
Z1-c4-3 -2 = (1-x).
Letting j = k above gives
PA0) @ B(6 - 9*)) < ca(4 - 3* —2)" + (1 — ko)~
Since |A (0) | = (12 - 9*)? = (144)81* implies A(0) ¢ B(6 - 9*) we have
P(|A(0) | = (144)81%) < c(3 ") + (1 — ka) *

(recall a > 1).
Fix m. By Lemma 2.2 we can choose n large enough so that 81"(1 — «,) < 1 and choose
a large enough so that 81™3™*! < 1. The fact that E|A(0) |™ < » now follows from

LEMMA 2.4. Let Z be a nonnegative random variable such that P(Z = b*) < Ac* for
allk=0.1If b"c < 1 then EZ™ < .

ProoF. Since b™c < 1 we have
Yo Z;‘,':,;E YamIP(Z = n) < Yo b%V™ACk = AD™ Tino (b™c)* < 0.

At this point we have shown that E |A(z) |™ < o for all m. From this we get
COROLLARY 2.5. E(v(2)™) < for allm < .
PROOF. 0(2) = Y.ean X(e) = M|A(2) | = M|A(2) |.

The next step in the proof is to show that ?(f, y) has finite moments of all orders. To do
this we must prove a few facts about the sets A(=2).

Lemma 2.6. () If A(x) N A(y) =@ then A(x) N A(y) =@
(i) If | x — y || = 1 then A(x) N A(y) # 2.

Proor. To prove (i), suppose A(x) N A(y) # @. If A(x) C A(y) then by definition A(x)
C A(y). If A(x) @ A(y) then since we have supposed A(x) N A(y) # @ there are points a
and b in A(x) such that @ € A(y) and b & A(y). Since a, b € A(x) there is a polygonal curve
entirely contained in A(x) which connects a and b. Since a € A(y) and b & A(y), the curve
must intersect A( y) at some point c. Since ¢ € A(y), ¢ € e for some e C A(y). By the choice
of ¢, e C A(x); so A(x) N A( y) D {e} and (i) is proved. (ii) follows immediately from (i) since
| x = y|| =1 implies A(x) N A(y). > @.

COROLLARY 2.7. E(f(x, y))™ < o for all m < c.
Proor. Construct a sequence 2o, - - -, 2x so that zo = x, zx =y, and || 2; — 2;—, | = 1 for

1 =i =< k. From (ii) of Lemma 2.6 it follows that there is a path r from A(x) to A(y) such
that r C U% A(z;). From the definition of A it follows that
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Bx, y) = M Yo |A(zi) | = M Tho |Az:) |

and the desired conclusion follows from Lemma 2.3.

PROOF OF THEOREM 1. Let &, = £(mei, ne;) + v(me;). The process {&nn, 0 =m < n}
is stationary under the shift (m, n) » (m + 1, n + 1) and it follows from Corollaries 2.5 and
2.7 that E£,,» < » so to apply Kingman’s theorem it only remains to show that {£,.., 0 <
m < n} is a subadditive process. Fix < m < n. Let r; be a path from A(le;) to A(me;) and
let r; be a path from A(me;) to A(ne;). There is a path r, which connects the endpoints of
r1 and r3 and which is contained in A(me; ). The union of these three paths forms a path r
from A(le;) to Z(nel) S0

t(le1, ne) < t(r) = t(r1) + v(mey) + t(rs).
Taking the infimum over all such paths r; and r; gives
f(lel, ne;) < f(lel, me;) + v(ime;) + f(mel, nei).

Adding v(le;) to both sides of this inequality gives &, < & + &nn 50 &n. is subadditive in
the sense of Kingman (1973).

Applying Kingman’s subadditive ergodic theorem (Theorem 1 in [6], see page 885) gives
that there is a random variable ¢ such that &,,/n — ¢ almost surely and in L'. The random
variable £ has E{ = y where

Y= infnzl Ego,n/n = limn—-»eo Ego,n/n-

Since &, = £(0, ne;) + v(0) and Ev(0) < it follows from the result for £ that £0, ne;) /
n — ¢ almost surely and in L. To translate this into results about ¢ we observe that

f(O, ne1) = t(0, ne;) < f(O, ner) + u(0) + u(ne;)
so we have
lim inf, .. #(0, ne;)/n = ¢ a.s.

and since the distribution of u(x) is independent of x, we also have that (0, ne;)/n — £in
probability.

To complete the proof of Theorem 1 it only remains to show that £ = y almost surely.
To do this we observe that if 4, = o(X(e):e Z B(n)) then £ = lim inf 0, ne;)/n is
measurable with respect to N %, and this implies that £ is constant (to reduce this to a well
known result order the bonds ej, e, - - - in such a way that %, = ¢(X(e)):j > k.) where &,
=|{e:e C B(n)}|).

At this point we have completed the proof of Theorem 1 so we now begin the proof of

THEOREM 2. Let F(0) = p and U, be the Bernoulli distribution with U,({0}) = p and
U,({1}) = 1 — p. If the time constant for U, is 0 then the time constant for F is 0.

PrROOF. Define

Fr = 0 X<0-
W=1Fx-p
1-p -

Let {X'(e)} and {B(e)} be independent i.i.d. families with distributions F* and U,. If we let
X(e) = X'(e)B(e) then we obtain an i.i.d. family with distribution F.

Let M be chosen so that (1 — F’'(M)) < %. Using the definitions given in the proof of
Theorem 1 define circuits A(x) for the random variables {X(e)} and circuits A’(x) for the
random variables {X’(e)}. Since X(e) = X'(e)B(e) = X'(e), X'(e) = M implies X(e) = M and
we have A’(x) D A(x).
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Let #(x, y) be the modified passage time process for the {X(e)} and let £2(x, y) be the
ordinary passage time process for the {B(e)}. Let n be an integer. From Theorem 4.10 in
Smythe and Wierman (1978) it follows that there is a path r from 0 to ne; with

Zeer B(e) = tB(O, nel).

To relate £ to t2 we make the following observation:

LEMMA 2.9.
£(0, ne)) < Yeer M|A (€) | 1B=1).-

Proor. The inequality is trivially true if A (0) n A (ne;) = 0, since in this case #(0, ne,)
so we may assume A (0) n A (ne;) = @ and hence that  contains a path, say r’, from A (0)
to A (nei). To demonstrate Lemma 2.9 we successively remove bonds e € r’ with B(e) = 1
and replace them with the sets A(e). It is easy to see that if we do this then at each stage
we have a connected set of bonds which intersects A (0) and A (ne;) so that after we have
removed all the bonds with B(e) = 1 we can produce a path r* from A (0) to A (ne;) such
that each bond e* € r* has B(e*) = 0 or e* € A(¢’) where ¢’ € r’ and B(e’) = 1. Since

20, ney) < YeerX(€) < M Yeer, -1 |Ale) |,
we have proved Lemma 2.9.
_ At this point it is easy to complete the proof of Theorem 2. Since | Ae)| =|A’(e)| and
| A’(e) | is independent of r and {B(e)} we have
E(£(0, ne1)) < ME(Zeer|A"(e) | Lipe=1)
= ME(|A’(0) ) E(TeerlB@=1)
= ME(|A’(0) | E(t*(0, ney)).
Dividing by n and letting n — o now shows that if y (U,) = lim Et?(0, ne:)/n = 0 then
y(F) = lim Et(0, ne;)/n = 0.

Section 3. In this section we will prove

THEOREM 3.3. Richardson’s result is valid for percolation processes if and only if
EY’ <o,

PROOF. The necessity of the condition was shown in the introduction so suppose EY?
< o, The first step is to define the function ¢(x) which was mentioned in the introduction.
To do this we need the following

LeEMMA 3.1. Supposer>0.IfEY" < o then Et(0, 2)" <  for all z € Z*.

ProoF. (0, 0) = 0 by definition so suppose z # 0. In this case we can construct four
disjoint paths from 0 to z. Let T, Ts, Ts and T4 be the travel times for these four paths. If
we suppose that the paths are numbered so that the fourth is the longest we have

P40, 2) > s) < P(Ty > s)*.

Let B be the number of bonds in the 4th path. If T, > s at least one of the bonds must
have a travel time > s/B, i.e.,

P(T, > s) = BP(X > s/B).
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Combining this with the previous inequality gives
P(t(0, z) > s) = B*P(X > s/B)* = B'P(Y > s/B)

which proves the desired resuit.
By hypothesis EY? < » so it follows from Lemma 3.1 that E¢(0, x)? < o and g(x) =
E¢(0, x) < ® for all x. To define the function ¢ we will let

@ (x) = lim,.., g(nx)/n.

To define the limit for all x € R? we have to extend the domain of definition of g from Z2
to R® To make life simple later in the proof we will construct a special extension which is
Lipschitz continuous. Let g be the function from R? to R which has 2(z) = g(z) for all
z € Z% and is linear all the triangular areas with vertices ((m, n), (m + 1, n), (m,n + 1)) or
((m,+1,n),(myn+1),(m+1,n+1)).

Using the subadditivity and symmetry of #(x, y) it is immediate that for all x, y € Z*

g(x) +g(y) = glx +y)
glx +y) + g(-y) = g(x)
&(=y) =gy =|ylgle).
Combining the last three formulas gives
(GAY) lgx +y) —gx) | <llyllgle)  forall xyeZ2
From the definition of the extension it follows that
3.2) |&(x+y) —&(x)|=2|yllgler) forall x,y€ R

(Observe that the inequality holds for any x when y is a small step parallel to either axis.
The constant 2 comes from the fact that || (1, 0) — (0, 1) | = 2.)
With formula (2) it is easy to prove

. . . 1_ .
LEMMA 3.2. There is a function ¢ so that lim,_...= g(nx) = p(x) uniformly on compact
subsets of R*. n

Proor. Suppose x has rational coordinates. Let N = min{m = 1:mx € Z?}. Let a, =
£(kNx). Since Nx € Z%, ay + a1 = ary for all k, I = 0, i.e., the sequence a;, is subadditive,
so it follows from an easy argument that

limy ... 2 7'ay = infi=; k' ap.
To extend the convergence to all values of n we observe that if AtN <n < (2 + 1)N
|&(nx) — £(kNx)| =< 2|| Nx| g(e1)
so we have
lim, . n7'g(nx) = infyy n”'g(nx)

for all x with rational coordinates. To extend the convergence to all x € R? and prove the
uniformity we observe that if k,(x) = n~'g(nx)

[ Ba(x) — ha(y) | = 07" | £(nx) — Z(ny) | < 28(er) || x — y||

so the functions 4,, n = 1 are equicontinuous and the Arzela-Ascoli theorem can be applied
to conclude that every subsequence of A, has a further subsequence which converges
uniformly on compact sets. All the subsequential limits are continuous and agree on the
rationals so we have proved Lemma 3.2.

At this point we have shown that g(nx)/n — @(x) uniformly on compact sets. To prove
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Richardson’s theorem we need to do this for the passage times #(0, x) (which are assumed
to be extended to x € R? by assigning x the passage time to the nearest z € Z?, taking the
minimum in the case of ties). The first step in doing this is to observe that the existence
of radial limits for x € @2 follows from Kingman’s subadditive ergodic theorem.

Let x € Q% Let N = inf{m = 1:mx € Z*}. Then a., = #(mNx, nNx) defines a
subadditive process so it follows from Kingman’s subadditive ergodic theorem (see Smythe
and Wierman (1978), Section 5.1) that we have

(nN)'ao, — inf,=; Et(0, nNx)/nN  almost surely.

To extend this result to conclude the almost sure convergence of 27 '#(0, kx) observe that
if nN =< k < (n + 1)N it follows from the subadditivity and (2) that

E |0, kx) — (0, nNx) | = Et(nNx, kx) < 2| kx — nNx| g(e.).
An obvious estimate implies that for all e > 0
Y1 P(| £(0, (nN + j)x) — ¢(0, nNx) | > ne) < o
forj=0, ... N — 1 so it follows from the Borel-Cantelli lemma that
k740, kx) — inf,=; Et(0, nNx)/nN  almost surely.

The last result asserts the almost sure existence of radial limits so at this point we are
ready to consider A, = {x € R?:#(0, x) < t} and prove Theorem 3. The statement of
Theorem 3 is different in the cases y > 0 and y = 0 but the proofs are almost the same so
we will carry out the argument for the case y > 0 and leave it to the reader to check that
the same proof works when y = 0. In the case y > 0 the statement we want to prove is

33) P({x:p(x)=<1—¢€ Ct'A, C{x:9(x) =1+¢} forall¢sufficiently large) = 1.

To prove the first inclusion we will show that for each x with ¢(x) < 1 thereisa § >0
(which will depend upon x) so that

(3.4) P(t'A, D Bs(x) for all ¢ sufficiently large) = 1

where B;s(x) = {||x — y|| = 8}. This is enough to prove the first inclusion in (3.3) since for

alle >0, {x:p(x) = 1— €} is a compact set and hence can be covered by a finite number

of sets Bswx)(x) where the x are chosen to have rational coordinates (the last fact is not

immediate from topological considerations but follows from the choice of §(x) given below).
To prove (3.4) for x = 0 show that there is a K < o such that

(3.5) Y: P(t0,2) > K| 2]|) < o

(for then it follows by Borel-Cantelli that (3.4) holds when § < 1/K). To prove (3.5) we
need to define the constant K and then find upper bounds on P(#(0, 2) > K| z||). To
describe the constant we cover Z2 with disjoint squares z + (—5/2, 5/2]* where z € (5Z)".
It is easy to define 4 disjoint paths from (0, 0) to (5, 0) which lie in {(0, 0), (5,0)} + (-5/2,
5/2.

1. (0,0), (1, 0), (2, 0), (3, 0), (4, 0), (5,0)

2. (0,0),(0,1),(1,1),(2,1), (3, 1), (4, 1), (5, 1), (5,0

3‘ (0’ 0), (0) _1), (1, _1), (2) —1), (3, _1)) (4) _1)) (5) _1)) (5) 0)

4. (0) 0)) (_1, 0)) (_1) —1), (—1, _2), (0’ —2), (1, _2), (2, _2), (3, _2), (4, _2)) (5’ _2))

(6, _2)) (6) _1), (6, 0), (5) 0)'

By translation and rotation through an angle of /2 we can extend the path construction
above to any points 5x and 5y where x, y € Z? and || x — y|| = 1. Let 7(5x, 5y) be the
minimum passage time between 5x and 5y over the four paths. It follows from the proof of
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Lemma 3.1 that E7(5x, 5y)% < o for all x, y € Z2. Using the variables 7(5x, 5y) we can get
bounds on the passage times (0, 52), z € Z2. Let 2o, 21, -+ 2m be a sequence of distinct
points with zo = 0, 2» = z and || 2; — 21| = 1 for i = 1, - . - m. From the subadditivity and
the definition of * we have

40, 52) < Y21 (5zi_1, 52i) < Y71 7(62i-1, 52:).

Let S,. denote the rightmost term of the expression above. The mean of S, is mET(0, 5e1).
To compute the variance of S,., we let Ti = 7(52;-1, 52;) and observe that the variables T;
and T are independent if | i — j| > 1. (This is true because the points 2; are distinct and all
four paths from 5z; to 5z;.1 lie in {521, 5ziv1} + (—=5/2, 5/2]%.) Using this observation we see
that

E(Sk: (Ti - ET))* = ¥ E(Ti — ET)? + 2 32! E(T: — ET)(Tir1 — ETiva)).
The Cauchy-Schwartz inequality implies that
| E(T: — ET)(Tis1 — ET:1) | < (Var(T) Var(T:1))"? = Var(Th)
so E (Ef.l (T; — ET))? < 3k Var(T) and it follows from Chebyshev’s inequality that

(3.6) PQQE, T: > R(ET, + 1)) < 3 Var(Th) /k.

To prove (3.5) we need to improve this estimate. To do this we observe that if z€ Z*
— {0} we can construct four disjoint paths from 0 to z in such a way that the longest path
has at most || z|| + 8 bonds. The paths to z = (21, 22) with 21, 2; = 0 are

1. (0, 0) = (21, 0) = (21, 22)

2. (0,0) > (0,1) > (21— 1,1) = (21 — 1, 22) = (21, 22)

3. (0,00 > (0,-1) > (21 + 1, =1) > (21 + 1, 22) > (21, 22)

4. (0,0) = (=1,0) > (-1,2) > (21 —2,2) > (21 — 2, 22 + 1) > (21, 22 + 1) = (21, 22).
Here x — y denotes moving from x to y by the straight line path. The paths to points in
other quadrants are defined by a clockwise rotation of these paths.

Let z be a point in Z2 and let 2/, i = 0, 1, - - - n, be the sequence of points used in path
j=1,234. Let

U, = Yi" 7(521y, 521)

Ry = maxi<j<s 7(0, 52{)

R, = maxi=< = 7(524 -1, 52).
For i = 0 and 1 we have

P(R;> | z|) = 4P(T. > || z|)-
To estimate £(0, 5z) we observe that (0, 52) < Ro + R; + min;<j=4 Uj so we have
(3.7) P(t(0,52) > (ET. + 4) || z|))
< 8P(T, > || z||) + P(mini=;<s U; > (ET: + 2) | 2]]).
To estimate the second term we observe that from (3.6) ‘
P(U;> (ET, + 1)n)) < 3 Var(T1)/n;
and from the path construction
P(U;> (ET, + 2)| z|) = 3 Var(T) /(|| z|| — 2)

whenever || z|| = zo = min{n:ET\ + 1)(n + 6) < (ET1 + 2)n, n = 3}. Since the random
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variables U,, Us, Us, and U, are independent it follows from this that
P(miniz;< U; > (BT + 2) | 2])) < (9 Var(T))*| | ~*
Combining this with (3.7) gives
(3.8) P(t0, 52) > (ET1 + 4) | 2|))
= (9 Var(T))*|| z|| ™ + 8P(T1 > || 2))

for all z with || z|| = z,.

To estimate the travel times to other points x € Z* we have to add one more term. If
x € 5z + (—5/2, 5/2] we can find 4 disjoint paths from 5z to x which lie in 5z + [—3, 3]?
(use the paths generated in the last construction). Let Rz(x) be the minimum passage time
from 5z to x along one of these four paths. From the subadditivity we have that if x € 52
+ (=5/2, 5/2]? then

t0, x) < ¢(0, 52) + Ry(x).
To obtain an upper bound for Ry(x) we let
R = sup.er—22p Ra(x).
It follows from the definition of R, that
P(Ry(x) > || z||) = P(R2> | z|))

and from the proof of Lemma 3.1 that R; has a finite second moment. Combining this with
(3.8) shows that

(3.9) P(t0, x) > (ET: + 5) | z||) = RHS of (3.8) + P(R, > || z||)
for all x € 5z + (—5/2, 5/2)* when || z|| = zo.

If we replace || z|| by || x||/5 we can reformulate the last result as

LEmMA 3.3. There is an xo < © so that if || x| = xo then

P(t0, x) > (ET, + 6) | x| /5) < (46 Var(T))* || x| ~*
+8P(Ty > .1||x||) + P(R:> .1 x]).

Since T and R have finite second moments it follows from Lemma 3.3 and the Borel

Cantelli lemma that (3.5) holds when K = (ET; + 6)/5.

To prove (3.4) for x # 0 we observe that in order for A; D Bs(xt) for all ¢ sufficiently
large it is necessary and sufficient that

for all but a finite number of 2 € D, = U Bg(xt)
(3.10) =0

10, 2) < o, = inf{t:2 € Bs(xt)}.

Pick x such that ¢(x) < 1 and pick € < (1 — @(x)). From the almost sure existence of radial
limits we have

P (0, 0.x) > (p(x) + €)o.1.0.) = 0.

The next step is to estimate #(o.x, 2). To do this we observe that || z — ¢.x || = 8o so if we
pick 8 so that (1 —¢(x) — €)/8 > (ET: + 6)/5 then it follows from Lemma 3.3 that if [l z]l is
sufficiently large e

(x) P(t(a.x, 2) > (1 — p(x) — €)o2)
= (46 Var(Ty))*(80.)™* + 8P(T: > .180.) + P(R; > .180,).
At this point to prove (3.4) all we have to show it that the sum of the right-hand side
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over all z € D is finite. To do this we observe that since z €Bs,, (xa,) we have

o:([| x| ~ &) s || z]| = 0| x || + 8)

ozllxll( ) ) ozllxll( 3 )
/1= )=1==20 14 =
=l lxll [ x|l

and if 8 was chosen < || x || we have
Il _o=lixll __l=]
el +87 llzll ~llx) -0
Combining the last inequality with (*) shows that
Yeep, P(t(o:x, 2) > (1 — @(x) — €)o.) <

SO

so (3.10) follows from the Borel Cantelli lemma.
At this point we have shown (3.4) so the last detail which remains is to show

(3.11) P(t7'A; C {x:p(x) =1+ ¢} for all ¢ sufficiently large) = 1.

To do this we observe that if e < 1 and ¢ 7’4, n {x:p(x) > 1 + €} #* D then £ 'A, n {x:1 +
€ < @(x) = 2} # D so to prove (3.11) it suffices to show that for each x with ¢(x) > 1 there
is a 8 > 0 (which will depend upon x) so that

(3.12) P((t7'A) n By(x) =D for all ¢ sufficiently large) = 1.

To do this we observe that from the previous part of the proof if we pick x so that ¢(x) >
1, pick € < (p(x) — 1)/2, and pick 8 so that (p(x) — 1 —2¢)/8 > (ET; + 6)/5 then using the
notation defined above we have

P(t(0, 0.x) < (p(x) — €)o, i0)=0
and
P(t(o.x, 2) > (p(x) — 1 — 2€)o. i0.) = 0.

From the subadditivity it follows that (0, z) > (0, .x) — (2, 0,x) so combining the last
two results gives

P(t0,2) < (1 +e€)o. io0)=0.
If 8 was chosen sufficiently small then
(1 + €)o. = 0. = sup{t:z € Bu(xt)}
for all z sufficiently large so we have shown

(3.13)  for all but a finite number of z € D, we have z & A, whenever z € By (xt)
This completes the proof of (3.12) ;md Theorem 3.
Section 4. In this section we will prove
' THEOREM 4. Let F be an arbitrary distribution. For any K < o
| (¢'AA{x:p(x) =1} n {x:]|x|| <= K} |- 0 almost surely.

Furthermore for any e > 0
P(t7'A, C {x:p(x) <1+ €} for all t sufficiently large) = 1.
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The proof will be done in two parts. In the first part we show that Richardson’s theorem
holds for A, = {x:£(0, x) < ¢} (here and in what follows we will assume that passage time
processes are extended from Z? to R? in the same way ¢ was.) In the second (much shorter)
part we use the result for A, and the inequalities

0, x) < £(0, x) < u(0) + £(0, x) + u(x)  forall x € Z?

to obtain the two results in Theorem 4.

To prove Richardson’s theorem for A, we will follow the outline of the proof of Theorem
3. The first step in that outline is to show that lim E#t(0, nx)/n exists. To do this we
consider (0, x) = (0, x) + v(x) (for notation see Section 2). This process is subadditive and
has E#(0, x) < ® so the argument given in the proof of Theorem 3 shows

lim, ... E£(0, nx)/n exists for all x € R?

and the convergence is uniform on compact subsets of R? Since Ev(x) = Ev(0) < o the
result above implies that

4.1) lim,_,. E£(0, nx)/n exists for all x € R®

and the convergence occurs in the same sense.
At this point we have completed the first step. The second step is to prove

(4.2) #(0, nx)/n — @(x) almost surely for all x € @*

but this result is contained in Section 2, so there is nothing to show, and we are ready to
consider A, = {x € R?:#(0, x) < ¢}. As in Section 3 we will carry out the proof only in the
case y = ¢(1, 0) > 0 and leave the case y = 0 to the reader. In the case y > 0 the statement
we want to prove is

43) P({xpx)=<1-—¢€}C t7'A,C {x:p(x) <1+¢€} for all ¢ sufficiently large) = 1.

The third step in the outline is to prove the first inclusion. To do this we will show that for
each x with @(x) < 1 there is a § > 0 (which will depend upon x) so that

(4.4) P(t'A, D Bs(x) for all ¢ sufficiently large) = 1.

This is sufficient to prove the first inclusion for reasons indicated in Section 3.

The key to the proof of (4.4) for A, was the inequality given in Lemma 3.3. Our next
goal is to obtain a similar result for Z. To do this we will again construct several disjoint
paths from 0 to x. The paths we construct in this proof will be slightly different since we
have very little control over how large the circuitsA (x) in the definition of fcan be. Let M
be the truncation level used in Section 2 (i.e., M is chosen so that 1 — F (M) < %) and call
all bonds with travel time <M open, >M closed. As we observed in Section 2 this implies
there exists, with probability one, an infinite connected set of open bonds and there is no
infinite connected set of closed bonds. This implies that for each z € Z* there is a minimal
self-avoiding circuit c(z) of open bonds which contains z in its interior. Let ¢(z) be the set
of bonds which are on c(2), or in the interior and part of the infinite connected set of open
bonds. For technical reasons which will become evident in the proof of Lemma 4.2 we have
to use ¢ instead of A in this section. .

To get estimates on the travel time from 0 to z we will construct special paths from 0
to z using the é(z). To construct these paths we need the following

'LEMMA 4.1. Let 2o, 21, - -+, 2m be a self-avoiding path from 0 to z. Then U ¢(2)
contains a path from A(0) to A(z).

ProoF. Let I = {i:c%z:) € c%z;) for all j 5 i}. It is easy to see that all the z; are
contained in the interior of some c(z;) with j € I. To prove Lemma 4.1 we will show that
there is an I’ C I so that U.cr é(c;) is connected and intersects A(0) and A(z). To construct
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I’ start with the smallest i, € I so that 0 € c°(zi0). To pick the next index find the smallest
J so that z;  ¢°(z;) and then pick the smallest #; so that i; € I and 2, € ¢°(z;). (Observe
that this guarantees c’(z;) N c°(z;) # @ and that neither of the sets c%(z;) and c¢%(z:)
contains the other). We can continue this procedure, each time picking the point with
least index which is not contained in the interior of any previously chosen circuit, until the
point z is contained in the interior of some circuit. At this point we stop and let I’ = {i,,
-+, i} be the set of indices generated
It is easy to see that R = U* =0 €(2;) is connected. To prove this observe that if j < & it
follows from the construction that co(z, ) €%z ), c®(2;) D c’(z;_), and co(z,) n co(z, )
# (J so repeating the path argument in ‘the proof of Lemma 2.6 now shows that &z, ) N
€(z;) #Dforj=1, ... k. Since each é(2;) is connected this shows that Ris connected
To complete the proof of Lemma 4.1 it suffices to show that B intersects A(0) and A(z),
but this is trivial. If é(z;) N A(0) # O this is true and if éz;)) N A(0) # O, c(z;) must contain
A(0) in its interior so we will have é(z;) D A(0) (thanks to the inclusion of all the interior
bonds which are part of the infinite connected set of open bonds).
The construction in Lemma 4.1 shows how to associate with each self-avoiding path z,,
-+, Zm from 0 to z a route from A(0) to A(z) through a connected set of open bonds. The
next step is to obtain estimates on the length of this route. To do this we observe that the
route we constructed is contained in UZ, é(z;)and the individual terms in the sum are
small — é(z) C A(2) so Lemma 2.3 implies that

4.5) E|é()|" <o forall r<ow,z€Z?
where | ¢(2) | is the number of bonds in é(z). To obtain estimates onYm, | ¢(z;)| we need
an estimate on the covariances.
LeEMMA 4.2. For any positive g < , and x, y € Z*
| Cov(|é(x) ], | E(»)])| = 2'9E | &(0)|***||x — ¥ || 7%
PROOF. Let %:(x) be the o-algebra generated by the X (e) with e C Bi(x) = {y:||x — y||
=< k}. Now any circuit which contains x in its interior and has length i must lie in B;(x) so

if|lx —y|l=i+J, {|é(x)] =i} and {|c(y)| = j} are independent. Combining this
observation with the definition of the covariance gives that

Cov(|é@)], | €M) = Tijiiesstz-n F(P(|Ex) | =i, | &(y)| =J)
—Yissiti izt PP(| E(@)| = DFP(|E(Y)| = J)-
If || x — y|| = & each of the sums above is smaller in absolute value than
2 Nizrsz Ym1 GP(| E(x)| = i)
=2 Nierpi®P(|E(x)| =)
=2E|&0)|*"/(/2)°.

To obtain the conclusion stated in Lemma 4.2 observe that | Cov(|é(x)]|, | é(y)|)| is smaller
than the last expression above.

Using Lemma 4.2 it is easy to obtain a bound for Y%, | é(2;)|. For simplicity we will
conﬁne our attention to a special type of paths (geodesics).

LEMMA 4.3. Let 2o, «++ 2, be a path with | z; — z;|| = |i — j| for all i, j and let L, =
Y21 €(2)|. If p = E| é(0)| then

P(Ln> (u+1)(m+1) <A /(m + 1)
where A, = (Var(| £(0)|) + E | &(0)|%(=?/6)).
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ProoF. Letp=E|é&0)|, :=|8é(z:)| — p, and Sp =Y7=0 Ti.
ES% = (m + 1)E1} + 2 Yosicjzm E1:7j.
To estimate the second term we observe that
| Yosicjsm ETit;| < m Tie1 | EToTs|

and from Lemma 4.2 (with ¢ = 2) the right-hand side is

=< (m/2) E|&(0)|°(n*/6)
so we have shown ESZ < A,(m + 1). The desired result now follows from the fact that

P(Lyp> (p+1)(m + 1)) = P(S, > (m + 1)) = ES% /(m + 1)

To prove (4.4) we need to improve Lemma 4.3 so that the error is O(m -3). To do this
we need to construct three paths from 0 to z which are well separated. Defining these
paths in general requires the discussion of several cases so we will consider first the case
z = (n, 0) with » > 0. In this case we let % be the smallest integer = n'/* and define the
paths to be

1. (0,0) — (0, 2k) — (n, 2k) — (n, 0)
2. (0,0) > (n, 0)
3. (0,0) — (0, — 2k) — (n, — 2k) — (n, 0)

where again x — y denotes moving from x to y by the straight line path. Let
Ro=3Y7 o1 |€00,/)],
R =Y o|é(n,j)|,
and Up=Y%1|éG, 4—2h)k)| for =123
From Lemma 4.1 it follows that there is a path from 0 to (n, 0) with length at most
V=R, + R, + mini<x=3 U
To estimate Ro and R, we use
LEMMA 4.4 If S, is the sum of m identically distributed nonnegative random variables
Xy, + ooy X then
ES} = 4m*EX}.

Proor. If we expand (Y% X))* we obtain m* terms of the form EX;X,X;X;. The
terms are each

00

< E (max;<;=« X;)* = f (4x%)4(1 — F(x)) dx = 4EX},

0

so we have proved the desired result.

Using Lemma 4.4 and Chebyshev’s inequality gives

P(Sn > mPf) < ESt/m* < 4E | é(0) |'/m*#~".

Setting 8 = 4 and m = 5n'/* (there are 2k + 1 < 2n'/* + 3 terms in the sum defining Ro)
gives
(4.6) P(Ro, > 625n) = Az/ns
where A, = 4E | £(0)|*/5".

To estimate min U, we need to show that the circuits associated with the three paths

are almost independent. To do this we break the plane into three regions D, = {x:x; =
n'4}, D, = {x:n"* > x, > —n"%}, and D; = {x:—n'* = x5}. The probability that some
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circuit on one of the paths (1,(4 — 2h)n'/*) — (n — 1,(4 — 2h)n'/*) lies outside its region is
no more than 3nP(|&(0)] > n'/*) which by Chebyshev’s inequality is no more than
3E | é(0)|"*n2 .

To compare the U, with independent variables we will use a special construction.
Generate by independent mechanisms three sets of passage times for the whole plane and
let U, be the total lengths of the circuits associated with the three paths in their respective
planes. By taking region D, from plane 4 we can define a fourth plane. Let U, be the total
length of the circuits for the three paths in this plane. If we let Q' be the event that all the
circuits in the definition of the U, lie in their respective regions then on ', U, = U for &
= 1, 2, 3. From this observation it follows that

P (mini<p=s Un > (4 + 1)n, Q)
= P(miny<pes Un > (4 + 10, ')
=P(U, > (u+ n)®
so applying Lemma 4.3 and results in the last two paragraphs gives that
4.7 P(mini<s<s Un > (u + 1)n) < Asn™®
where A; = (3E | c(0)|"® + A}). Combining this with (4.6) and the definition of V shows
P(V> (u+1251)n) = A;n~3

where A4 = 24, + A;. (This estimate can obviously be improved but is sufficient for our

purposes.)

The last inequality says that with a probability which is at least 1 — A4n "2 there is a
path of length < (1 + 1251)n from A(0) to A(ne;) which lies in the set of bonds with travel
time < M. Since £ (0, ne;) is the minimum passage time from A(0) to A(ne;) we have

P(£(0, ne)) > (n + 1251)Mn) < A;n™.

To prove (4.4) we need to generalize this result to all z € Z2 It is easy to see that this
can be done by generalizing the proof given above. If & is the smallest integer > || z||'/*, z;
> 2k, and z; = 0 we define the three paths from 0 to z by

1. (0,0) — (0, 2k) — (21 — 2k, 2k) — (21 — 2k, 23) — (21, 22)
2. (0, 0) = (21, 0) = (21, 22)
3. (0, 0) = (0, —2k) — (2, — 2k, —=2k) > (21 + 2k, 2 > (21, 22).

If 2, z; = 0 but z; < 2k we replace the first path by (0, 0) — (2; — 2k, 0) — (21 — 2k, 22)
— (21, 22) and define the other two paths as above. As before the paths to points in other
quadrants are defined by clockwise rotation.

The last paragraph describes the paths to be used in the proof. If we define R, Ri, Ui,
U,, and U; as we did above (letting R, and R; be the contributions of (0, —2k) — (0, 2k)
and (z; — 2k, 22) — (21 + 2k, z2) respectively it follows from the arguments above that R,
and R; are both =< 625 ||z|| with probability 1 ~ 2A4,||z||® and the U, are almost
independent. Since the U, are derived from geodesics, Lemma 4.3 and the observations
above imply that

(4.8) P(£0,2) > (u+ 1261)M || z |)) < Ad| z | >

We can now prove (4.4) by proceeding as in Section 3 using equation (4.8) instead of
Lemma 3.3. To prove (4.4) with x = 0 we observe that if K > (u + 1251)M then (4.8)
implies that

Y. P{0,2) > K| z|) <=

so it follows from the Borel-Cantelli lemma that (4.4) hold§ for x = 0 when é§ < 1/K.
To prove (4.4) for x # 0 we observe that in order for A; O Bj(xt) for all ¢ sufficiently
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large it is necessary and sufficient that

for all but a finite number of z € U~ Bas:(xt)

(4.9) £(0, 2) < 0. = inf{t: 2 € Bu(xt)}.

Pick x such that ¢(x) < 1 and pick € < (1 — @(x))/2. From the almost sure existence of
radial limits we have
P(£(0, 0.x) > (p(x) + €)a. i0.) =0.
To estimate (0, z) we recall that from Section 2
£(0, 2) = £(0, 0. x) + v(0:x) + (02, 2).

To bound the second term we observe that from Corollary 2.5 Ev(o.x)* = Ev(0)® < » so
the Borel-Cantelli lemma implies that

P(v(o.x) > €0, 1.0.) =0.

To estimate the third term pick 6 > 0 so that (1 — ¢ (x) — 2¢€)/8 > (u + 1251) M and observe
that it follows from (4.8) and the observation that || o.x — z|| = 8o, that we have

P(f(0.x, 2) > (1 — @(x) — 2€)0,) < A4(d0,) >

Using the fact that || z||/] x|| + 8 < o. < | 2|/ x|| — 8 (see Section 3) it follows from the
Borel-Cantelli lemma that

P(t(0.x, 2) > (1 — p(x) — 2¢)0, i.0) =0.

Combining the last five results proves (4.9) and completes the proof of (4.4).

The final step in proving Richardson’s theorem for A, is to prove (3.12) of Section 3 with
A, instead of A.. As in Section 3 pick x so that ¢(x) > 1, pick € so that p(x) — 1 — 3¢ >0,
and pick 8 so that (p(x) — 1 — 3€)/8 > (u + 1251) M. Since

£(0, 2) = £(0, 0z,) — v(2) — £(2, 0,x)
the desired result follows (as it did in Section 3) from the fact that

P(#(0, 0.x) < (p(x) —€)o, i0) =0
P(v(z) >e0, i0) =0

and P(#(z, 0.x) > (p(x) — 1 — 3e)o, i.0.) = 0.
We have now established
4.10) P({x:px)<1—¢€} C t7'A, C {x:¢(x) =1 + ¢} for all ¢ sufficiently large) = 1

and completed Part I of the proof of Theorem 4.
The second part of the proof is to show that (4.10) implies the conclusions of Theorem
4. As always we will deal only with the case ¢ # 0. Since A, C A, the second conclusion of
Theorem 4 is an immediate consequence of (4.10). To prove the first statement in Theorem
4 we observe that for any € > 0
| 7 'AA(x:p(x) = 1) < |{x:p(x) =1 — € —tT'A
+|{x:l—e<p@) <l+e}|+|tTAN {x:9(x) > 1+€)}).

It follows from the second conclusion of Theorem 4 that the third term — 0 a.s. The
second term =((1 + €)®) — (1 — €)% {x:p(x) < 1}| which is small if € is small so it suffices to
show that

lim sup,..|{x:p(x) <1—€} —¢t'A| =0 as.
for each € > 0. Since ¢(0, y) < u(0) + £(0, y) + u(y)
(xipx)=1—€ —tTAC {x:9(x) =1 — ¢ ul0) + £(0, xt) + ulxt) > ).
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For any positive 8 < ¢, it follows from (4.10) that for almost every w
(x:9(x) =1 —¢€ u(0) +£0,xt) > (1-8)t) =
for all ¢ sufficiently large, so
lim supr.« [{x:@p(x) =1 — €} — t A,
= lim sup;.. [{x:@(x) =1 — €, u(xt) = 8t}|.
If we pick K large enough so that {x:¢(x) <1} C [-K, KT* then
[{x:p(x) =1 — ¢, ul(tx) > 8t}|

= Yeer-keke? 1(u>s

(2Kt)

so we are done once we prove

. 1
LEMMA 4.5. llmt_,mm ZZE[—KI,KI]Z 1(u(z)>t) =0a.s.

Proor. For N > 0 let Sn(2) = Y.cn, =X (e), and note that
Loy = Lisy@»sg + 1gA(2)|>N}.
If we let

. 1
£ = lim sup..» W Yeer-ke ke 1u>sn

(N)

= lim SUp; e som—5 Deer-Ke k2 1(Sy>61)

(2Kt)
&Y = lim sup .o ———3 (2Kt)2 Yee-kexor 14¢A(2)[ >N},

then £ < ¢V + ¢,
The first step is to show £V = 0 a.s. To see this, note that for any <J, 8¢ = JJ for all ¢
sufficiently large. Hence it follows from the multiparameter ergodic theorem that

N < lim SUPrw =g Yoel-keke 1(sy=ay = £(J) as.

(2Kt)

where £(<J) is a random variable with E£(J) = P(Sy = J) (see Dunford (1951) or Smythe
(1976)). This implies that £ i 1s a nonnegative random variable with mean smaller than
P(Sy=J) for any o, so £V =

Repeating the argument above shows that ¢4V is a finite random variable with E¢§Y
= P(JA(0)| = N). Since £ = ¢™ + £’ for all N this implies that £ = 0 almost surely.

Section 5. In this section we will prove Theorems 5 and 6. The first result concerns
the x-reach process x; = sup{m:¢(0, (m, n) < ¢ for some n-€ Z}.
THEOREM 5. Ast— o
x/t— 1/@(1,0) almost surely.
Proor. 1/¢(1, 0) = sup{y:¢(y, 0) = 1} so it follows from the first conclusion of
Theorem 4 that
lim inf, . x./t = 1/¢9(1, 0).
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To prove the opposite inequality we observe that from Theorem 4 we have that for all
€e>0

Pt A C{x:p(x) =1+¢€} for all tsufficiently large) = 1
so to complete the proof it suffices to show that
1/9(1,0) = sup{y:¢(y,x) =1 forsome x € R}.

If @ (1, 0) = O this is obvious so suppose ¢(1, 0) = y > 0. Let x, y € R be chosen so that
¢(y, x) < 1. From symmetry it follows that ¢(y, —x) < 1. Since ¢ is a norm the triangle
inequality implies

(3, 0) = p(4(y, x) + %(y, —x))
= %p(y, x) + Yop(y, —x) =1

and so y < 1/¢(1, 0). Since (y, x) is an arbitrary point with ¢(y, x) =< 1 this proves the
desired result.
The next result concerns the point to line process b(m) = inf{¢(0, (m, n)):n € Z}.

THEOREM 6. Asm — o
b(m)/m — ¢(1,0) almost surely

PrROOF. b(m) < u(0) + £ (0, (m, 0)) + v(m, 0) so it follows from results in Section 2 that
lim supm—e. b(m)/m < ¢(1, 0).

If (1, 0) = 0, this is the desired result so suppose ¢(1, 0) = y > 0. From Theorem 4 we
have that for all e > 0

P(t™'A,C {x:¢(x) <1+ ¢} for all ¢ sufficiently large) = 1
and from the proof of Theorem 5 we have
1/y=sup{y:p(y, x) =1 forsome x € R}.
Combining the last two results shows
lim inf,. ... b(m)/m = ¢ (1, 0)/(1 + €).

Since € was arbitrary the proof is complete.

NoOTE ADDED IN PROOF. We have recently learned that Gunnar Branvall (Uppsala
University Department of Mathematics Report No. 11, December 1979) has independently
proved Theorem 3 stated above. His work also includes “weak moment” versions (assuming
EX® < » for some & > 0) for our other theorems.
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