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LAWS OF THE ITERATED LOGARITHM FOR ORDER STATISTICS
OF UNIFORM SPACINGS

By Luc DEVROYE!

McGill University

Let X,, X5, --- be a sequence of independent uniformly distributed
random variables on [0, 1], and let K, be the kth largest spacing induced by
the order statistics of Xj, - -+, X,-;. We show that

lim sup(nK, — log n)/2 logen = 1/k  almost surely,
and
lim inf(nK, — log n + logsn) = ¢ almost surely,

where —log 2 < ¢ = 0, and log, is the j times iterated logarithm.

1. Introduction. Consider a sequence X;, Xz, - - - of independent identically distrib-
uted random variables with a uniform distribution on [0, 1]. If X(;) < X(g) < - - - < X,y are
the order statistics corresponding to Xj, - - -, X,_1, then the maximal uniform spacing (or,
the maximal gap) M, is defined by

M, = maxi<i=» Si

where S; = X1, Si = X4 — X¢-n for1<i<n,and S, =1 — X(,;). The S/s are called the
spacings; see Pyke (1965).

Slud (1978) showed that nM, — log n = O(logzn) a.s.; we will refine Slud’s result and
show that

(1.1) lim sup(nM, —log n)/2logan =1 as.
and that
(1.2) lim inf nM,, — log n + logsn = ¢ a.s.

where —log 2 < ¢ = 0. Along the way, we will obtain a few large deviation results for M,,.
In Section 2, we state without proof a few known results about the distribution and the
weak convergence of M,,. In Sections 4 and 5, we will establish (1.1) and (1.2) for K,,, the
kth largest spacing among S, - - -, S,, when the constant “1” in (1.1) is replaced by 1/Z.

2. Auxiliary results. It is well-known that (S, - - -, S,) is uniformly distributed on
the simplex {(x1, - -+, x) | x; = 0; Yx; = 1}, and that, therefore
PSS >a; 58 >a)=1-Y%a)', Thia<l
=0, otherwise,

where a4, - - -, a, are nonnegative numbers. From this, one can get Whitworth’s formula
(Whitworth (1897); see also Kendall and Moran (1963)):

PM, > x) = P(UL [S: > x]) = Ei P(S; > x) — ij P(S; > x; Sj >x)+ ...

= Yimphea (1)1 — kx)n_1(2> , all x>0.
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A very useful property of uniform spacings is the following.

LeEmMMA 2.1. If Y, ---, Y, are independent identically distributed exponential ran-
dom variables, and if T, = YY;, then (S1, - - -, Su) is distributed as (Y1/T5, -- -, Y./T,).
In particular, M, is distributed as L,/T, where L, = max(Y;).

For a proof of Lemma 2.1, see Pyke (1965).

LEMMA 2.2. (Sukhatme, 1937). If Yy, - - -, Y, are independent identically distributed
exponential random variables with corresponding order statistics Yoy < Y < «-+ <
Y, then the following random variables are also independent and exponentially
distributed:

nYy, (n—1D)(Ye — Yo), -+, 2(Yu-1y — Yu-2)), Yo — Y.

An immediate consequence of Lemma 2.2 is the following.

LeEMMA 2.3. M, is distributed as
2 (Yi/0) /Y= Y
where Yy, -+, Y, are independent exponentially distributed random variables.

The limit distribution of M, was found by Levy (1939) and was rederived later by
Darling (1952, 1953) and others.

LeEmMMA 24. For all x € R, P(nM, < log n + x) — exp(—exp(—x)) as n — .
LEMMA 2.5. nM,/log n — 1 in probability as n — .

Note. If G, is the distribution function of nM, — log n and G(x) = exp(—exp(—x)), and if
a, log n — ® as n — o, then

P(|nM,/log n — 1| > a,) = Gu.(—ax log n) + 1 — Gu(ax log n)
2.1) = 2sup; | Ga(x) — G(x) |
+ G(—a,log n) + 1 — G(a, log n) — 0.

The distribution function G(x) = exp(—exp(—x)) has mean y = 0.5772157. . . (the Euler
constant) and variance #2/6; see Gnedenko (1943), Gumbel (1958), Barndorff-Nielsen
(1963) and David (1970) for a closer analysis of its properties. A careful application of
Lemma 2.3 also gives

LEMMA 2.6. E(nM, —log n) — vy as n — , and Var(nM,) — 7%/6 as n — .

3. Large deviation results. We will first derive exponential estimates for the
probability in the tail of the gamma density. We recall here that the sum T, of n
independent exponentially distributed random variables has the gamma density g.(x) =
x" e */(n—-1)!,x=0.

LEMMA 3.1. Forall x > 0,

P(T./n — 1> x) < exp(—nx*(1 — x)/2)
and

P(T,/n — 1 < —x) < exp(—nx?/2).
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ProoF. Here and throughout the paper we will use these analytic inequalities, valid
for all x = 0:

(3.1) e *P<l+x=<e*<1+x+x%*/2
3.2) l—xse™ "B g™ <o <] —x+ 122

Lemma 3.1 is now easily proved by Chernoff’s classical technique (Chernoff, 1952). For
any 0 < s < 1, we have P(T,/n — 1 > x) < e ™ E(e*™™) = ™)1 — 5™,
This expression is minimal when 1 — s = 1/(1 + x)(s = x/(1 + x)), so that the said proba-
bility is not greater than (e™*(1 + x))* = (1 — x + x%/2)(1 + x))" = (1 — x%/2 + x3/2)" =
e =972 Gimilarly, for all s > 0, P(T,/n — 1 < —x) < e ™E(e*T™") = ™~(1 + 5)™"
= (e*(1 — x))" =< (e***/%)* = ¢7"**/2 where we let s = x/(1 — x) whenever x < 1. For x =
1, the result is trivially true.

LEMMA 3.2. Let k=1 be a fixed integer, and let a, — 0 and a, log n — . If K, is the
k-th largest spacing among S,, - -+, S,, then

P(nK,/log n — 1> a,) ~ n~**/k!
and
P(nK,/logn —1=< —a,) ~ n* % exp(—n°)/(k — 1)!.

Proor. We will use the following fact about the tail of the binomial distribution. If B
is a binomial random variable with parameters n and p, then np — 0 implies P(B = k) ~
P(B = k), and np — « implies P(B < k) ~ P(B = k — 1) (Feller, 1957, page 140).

K, is distributed as L,/T, where L, is the kth largest of n independent identically
distributed random variables with exponential density and whose sum is 7, (Lemma 2.1).
For arbitrary a, b > 0 we have

P(L,< (1 —a-—b)logn) — P(T,<n(1-— b)) <PnK,/logn<1-—a)

(3.3)
=P(L,<(1—-a+ b)logn)+ P(T,=n(1+ b))
and
P(L,> 1+ a+ b)logn) — P(T, >n(l + b)) = P(nK,/logn>1+ a)
(3.4)

=P(L,> 1+ a- blogn) + P(T,<n(1-0d))..
Let us take @ = a, and b = n™"/*, Lemma 3.2 follows if we can show the following things:

(i) P(L,< (1 — a)log n) ~ exp(—n*)n*1e/(k — 1)},

(i) P(L,> (1+ a)log n) ~ n™**/k!;

(iii) P(| T, — n|> bn)/min(P(L, < (1 — a)log n), P(L;, > (1 + a)log n)) — 0;
(iv) P(L,< (1 —a—b)logn) ~P(L,< (1 — a+ b)log n);

(v) P(L,> 1+ a+ b)logn)~P(L,> (1+ a— b)log n).

Clearly, P(L;, < (1 — a)log n) = P(B < k) where B is binomial with parameters n and p
= exp(—(1 — a)log n) = n*/n. Since np — x, we have P(B < k) ~PB=Fk —1) =

kf L@ = pyr T~ (np)*t exp(=np)/(k — 1! = n*V exp(-n®)/(k — 1!

Similarly, P(L;, > (1 + a)log n) = P(B = k) where now B is binomial with parameters n
and p = exp(—(1 + a)log n) = 1/n'** Since np — 0, we have P(B = k) ~ P(B = k) ~
1/n*k!. This proves (i) and (ii). The same asymptotic results are valid if in (i) and (ii) we
replace a by (a + b) or (a — b) on both sides. The ratio of the two terms of (v) (left divided
by right) is ~n* ~ 1. The ratio of the two terms of (iv) is ~n2* ™% exp(n@™® — n'**?)
~ 1. :
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To prove (iii) we first use Lemma 3.1: P(| T, — n| > bn) < 2 exp(—nb*/4) for n large
enough. It remains to check that n** exp(—nb?/4) — 0 and that n*™"* exp(n® — nb?/4)
— 0. This follows from a — 0.

4. Outer Bounds. In 1961 Barndorff-Nielsen (and independently Robbins and Sieg-
mund (1970) and Deheuvels (1974)) established laws of the iterated logarithm for Z, =
min(X;, ..., X,) where X, ..., X, is a sequence of independent uniform [0, 1] random
variables. These results can be summarized as follows. Let a, be positive and nonincreasing.
Then,

(i) Z. < anio. (fo.) when Y a, = » (¥ a, < »). See Geffroy (1958) for the first proof.

(i) Z, > a, i.0. (f0.) when } a. exp(na,) = » (} a. exp(—na,) < ») under the

assumption that na, is ultimately non-decreasing (Robbins and Siegmund, 1970).
Barndorff-Nielsen’s result uses the series Y log:n(l — a.)"/n instead of
Y a. exp(—na,). For related work, see Frankel (1972) and Wichura (1973). For a
short proof of the first order result: Z, > (1 + ¢)logzn/n i.o. (f.0.) when e =0 (¢ > 0),
see Kiefer (1970). For a survey, with proofs, see Galambos (1978).

In this section we derive sufficient conditions (of the summability type) for nK, >
(1 + ax)log n finitely often a.s. and nK, < (1 — a,)log n finitely often a.s.

LEMMA 4.1. Let A, As, --- be a sequence of events with P(A,) — 0 as n — o, If
either ¥ P(A;, N A,y) < wor Y P(A, N ALy) < o, then P(A,fo.) = 1.

ProoF. See Barndorff-Nielsen (1961).

THEOREM 4.1. Let a, — 0 and a, log n — © as n — o such that (1 + a,)log n/n is
ultimately nonincreasing. Then, P(nK, > (1 + a,)log n i.0.) = 0 when

(4.1) Y1 log n/n't*n < oo,

ProoF. Let A, be the event nK, > (1 + a,)log n. By (2.1), P(A.) — 0 as n — . Then,
for n large enough,

P, N A5.) = PnK, > (1 + ax)log n)2k(1 + a,+1)(log(n + 1)/(n + 1))
= 2k(1 + o(1))n*k! " log n/n,
from which Theorem 4.1 follows after applying Lemma 4.1.

THEOREM 4.2. Let a, — 0 and a, log n — ® as n — » such that (1 — a,)log n/n is
ultimately nonincreasing. Then, P(nK, < (1 — a.) log ni.0.) = 0 when

4.2) Y1 (log n/n)n** exp(—n®) < .
Proor. Let A, be the event nK, < (1 — a.)log n. Once again, we will use Lemma 4.1.

Obviously, P(4,) ~ n* ™% exp(—n°)/(k — 1)! = 0 as n — . Also, if K}, is the (k + 1)st
largest spacing among Si, - - -, S,, then for n large,

PASNAp) = PA; N Aper N [Kn < (1 — @par)log(n + 1)/(n + 1)])
= P(K,< (1 - a,)log n/n)2k log n/n
= 2k(1 + o(1))n** exp(—n*)k! ™" log n/n.
REMARK 4.1. It follows trivially from Theorems 4.1 and 4.2 that nK,/logn — 1 a.s. as
n — o, Of course, we have done too much work by invoking Lemma 3.2. For a short proof
of nM,/log n — 1 a.s., see Slud (1978) or Devroye (1979).
REMARK 4.2. Condition (4.1) is satisfied if for some 8 > 0, J = 2, we have

an = (k log n)'(logzn + ¥ 1=z login + 8 logsn).
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In particular, it is satisfied if we take a, = (2 + 8)logzn/(k log n), 8 > 0. Hence,
(4.3) lim sup(nK, — log n)/2 log:n < 1/k a.s.
REMARK 4.3. Condition (4.2) is satisfied if for some J = 3, § > 0, we have
a, = (log n) *(log(2 logzn + k logsn + 2}’=3 log;n + & log 4n)),
or when for some § > 0, a,, = log((2 + 8)logzn)/log n. Hence,
(4.4) lim inf(nK, — log n + logsn) = —log 2 a.s,,

independent of k. The influence of % on the lower outer bound is only in the second order
term of the sequence a,. In other words, whenever M, is small, it is very likely that the
second and third largest spacings are very close in magnitude to M,.

5. Inner Bounds. In this section we will prove the following theorems:
THEOREM 5.1. lim sup(nK, — log n)/2 logan = 1/k a.s.
THEOREM 5.2. lim inf(nK, — log n + logsn) = c a.s. for some c € [—log 2,0].

We will use the notation [ - ] for the integer part of a number. Furthermore; we will need
two lemmas.

LEmMA 5.1. If b= exp(a«/]_' log j), where a > 0, then
(bje1 — b)/bj~ alogj/2v]  as j— o

The same is true for c; = [b;].

Proor. In view of (Vj + 1 — vj) ~ %+/j and log(1 + 1/j) ~ 1/, we have (b;1 — b,)/b;
~ a(Vj + 1log(j + 1) — Vj log j) ~ alogj/2Vj.

LEMMA 5.2. If b; = exp(j log j), then

bi/bj.1~1/ef as j—> oo,

The same is true for c; = [b;].

Proor. By (3.1) and (3.2) we have b;_1/b, = (j — 1) exp(j log(1 — 1/j)) =
1/(e(j — 1)), and b;_1/b; = (j — 1) P exp(-1 = 1/j) = (j — D) 'e” (1 — 1/j) = 1/ej.

ProoF oF THEOREM 5.1. In view of (4.3) we need only show that nK, — log n > (2/k
— 8)logzn i.0. almost surely, for all § > 0. We define the following sequences:

n; = [exp(~j log /)],

t = [n;(2/k — 8/2)logan;/log 1],

a; = (2/k — 8)logzj/log j,

d; = (1 + a))log j/J,

dj= (1 + (3/k)logzn,/log n;)log n;/n;,
dj = (1 — log(3 logzn;)/log n;)log n;/n;.

Let us define the following events: Ay is the event that K, € (d/, dj) for all j = N; By is
the event that for some j = N, none of the random variables X,, , - - -, X +, -1 belong to the
set C;, where C; is the union of % intervals of length d; each, with the restriction that the
leftmost point of each interval coincides with the leftmost point of one of the % largest
spacings.
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We will see that & + n, < nj.: for all j large enough, and that dj > d;, .. for all j large
enough. Thus, Ay N By C [Ky+s, > dy+, for some j = N]. The theorem now follows if we
can show that P(A%) + P(B%) — 0 as N — . From Theorems 4.1 and 4.2 we deduce that
P(A%) — 0 as N — . Furthermore,

PBY) =[[iv 1 — (1 — kd})?) < exp(—Y5n (1 — kd})5) =0
whenever
Y21 (1 — kd})s = oo,

Because (1 — kd})? = exp(—djkt; — k*d/*t;/2) and dj’; — 0, it suffices to check whether
Y exp(—kdjt;) = . We have exp(—kdjt;) ~ exp(—(2 — 8k/2)logzn,. (1 + (3/k)logzn;/log
n;)) ~ exp(—(2 — 8%/2)logzn,) ~ (Vj log j)**/2, which is not summable with respect to ;.
We will now show that n; + ¢ < nj,; for all j large enough. Indeed, n;.; — n; ~ n; log
7/24j (Lemma 5.1), while & ~ (1/k — 8/4)n;/j.
Finally, let us establish that d > d;, +, for all j large enough. Clearly,

dn vy, =log(n; + )/ (n; + &) + (2/k — 8)loga(n; + &)/ (n; + 1))
<log nj/(nj + &) + t;/n? + (2/k — 8)logan;/n;
< (log nj/n;)(1 = (1 + o(1))t;/ny) + 0o(1)/ny; + (2/k — 8)logzn;/n;
< log n;/n; — ((2/k — 8/2)(1 + o(1))logzn; — (2/k — 8)logzn;)/n;
= log n;/n; — (8/2)(1 + o(1))logzn;/n;.
Also, d] = log n;/n, — log(3 logzn;)/n; > dy + for all j large enough.
ProOF oF THEOREM 5.2. We will show that for all § > 0, the inequality nK, < log n
— logsn + & is satisfied i.0. almost surely, that is, a.s. lim inf(nK,, — log n + logsn) < 0. This
result together with (4.4) imply the statement of Theorem 5.2.
For given 6 > 0, define n; = [exp(2j log /)1, d; = (log n; — logsn; + 8)/n;, t; = nj — n;_, and
a; = (logsn; — 8/2)/log n;. Let further N; be the kth largest gap defined by X;, , - -+, Xs 1

on [0, 1]. Obviously, N; < d; i.o. implies that K,, < dj i.0. Since the N;’s are independent, N;
< d; i.0. almost surely whenever Y, P(N; < dj) = «. By Lemma 3.2,

P(N; < (log /) (1 — a;)) ~ t{*™"% exp(—t}»)/(k — 1)!
because a; log t;— . Also, exp(—t{) = exp(—n}) = exp(—c’ logzn;) ~ (2j log j)~° for some
¢’ < 1. Thus, ¥ P(N; < d;) = « if d; > (log t;/t;)(1 — a;) for all j large enough. Now,
diti/log n, = (¢;/n;)(1 — (logsn; — 8)/log n;) = (1 — O(j ~*))(1 — (logsn; — 8)/log n;)
which is greater than 1 — a; = 1 — (logsn; — 8/2)/log n; for all j large enough.

6. Applications.

ExXAMPLE 6.1. Random covers. Assume that we try to cover [0, 1] by intervals of
length 4 centered at X;, ..., X,—1 (where the X/s are independent and uniformly
distributed on [0, 1]). Let A, be the event [[0, 1] is entirely covered]. Then, if n4, = log n
— logsn + 6,

1, i >0
P(A"m')‘[o, if 8+log2<0.

If n4, = log n + (2 + 8)logzn, we have

1, if §<0

P(Af'i”'):[o if 8>0.
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It is perhaps interesting to compare this result with Shepp’s covering theorem (1972):
let 4= ¢ = ... = 0 be the lengths of arcs thrown at random on the circle with unit
circumference (¢; < 1). Then the circle is covered almost surely if and only if

z‘;:=1 n_2 exp(/l + .00+ fn) = 00,

If 4, = (1/n)(1 — (1 + 8)/log n), then this condition is satisfied when é < 0 and is violated
when § > 0.

ExAMPLE 6.2. Uniform convergence of nonparametric estimates. Assume that f is a
uniformly continuous function on [0, 1], and that f is estimated by

X, —x n X —x
fn(x) = =1 f(XL)K( fn )/ZFI K( Z )

where X, - .-, X, are independent identically distributed uniform [0, 1] random variables,
and K(u) is a nonincreasing nonnegative function of ¥ when u > 0, and a nondecreasing
nonnegative function of u when u < 0. Let the support of K be a compact set [a, b] (clearly,
a<0=<?d) witha<b.

It is clear that sup. | f.(x) — f(x) | — 0 a.s. for all uniformly continuous f if and only if
M, > (b — a)4, f.o. almost surely. Now, if we take n(b — a)4, = log n + (2 + d)log.n, then

sup: | fu(x) — f(x)| > 0as. as n—ow

for all uniformly continuous f if § > 0; the statement is false if § < 0.

EXAMPLE 6.3. Estimating the minimum of a density. Let f be a uniformly continuous
density on [0, 1], and let z be the unique point with the property that f(z) = min, f(x).
Assume that X, X;, ... is an independent sample from f, and that z is estimated by Z,,
the midpoint of the largest interval created by X, ..., X,. From nM,/log n — 1 a.s. for
uniform distributions, one can show that Z, — z a.s. as n — «. For the study of laws of the
iterated logarithm of M,, in the non-uniform case, additional assumptions about the rate of
increase of f near z seem necessary. Notice also that if the maximum of f were estimated
by the midpoint of the smallest interval, then one would not obtain almost sure convergence
as in the case of Z,.

ExaMPLE 6.4. Rate of convergence of nearest neighbor estimates. Let f and X;, X;,
. -« be as in Example 6.2, but consider now the nearest neighbor estimate f,(x) = f(X}(x))
where X7 (x) is the nearest neighbor to x among Xi, - - -, X,,.. If f is Lipschitz with constant
C, then sup; | fo(x) — f(x) | = max(CM,+1/2; CXa); C(1 — X(»))) where Xy < - -« < X are
the order statistics obtained from Xj, - - -, X,,. From the properties of X;) and M,, (Theorem
4.1) we have the following rate of convergence result:

sup: | fu(x) — f(x) | (2n/Clogn) > 1+ a, fo. as.

when a, log n — o, (1 + a,)log n/n is ultimately nonincreasing and Y-, log n/n'** <
0. On the other hand, if f(x) = Cx, then the supremum is equal to the maximum of the
three given terms, so that we may conclude, by Theorem 5.1, that there exists a Lipschitz
function with constant C such that

supx | fu(x) — f(x)|2n/(Clog n) > 1 + (2 — 8)logzn/log n io. as. forall §>0.
In other words, in the class Lip(C), we have
(6.1) lim sup((2n/C)sup. | fo(x) — f(x)| — log n)/logsn < 2 a.s.
but there always exists an f in Lip(C) for which (6.1) is valid with equality.
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