THE NATURAL MEDIAN

DIETER LANDERS AND LOTHAR ROGGE

University of Cologne and University of Duisburg

In general the median of a random variable is not uniquely determined. This leads to difficulties in estimation and test theory. This paper suggests a limit process for choosing exactly one median. The choice uses the whole distribution of the random variable in a natural and reasonable way.

Consider a random variable X on a probability space. Denote by P and E the probability and expectation, respectively. Assume $X \in L_{\epsilon}(P)$ for some $\epsilon > 1$. For each $s \in (1, \epsilon]$ let m_s be the s-mean of X, i.e., the unique number closest to X in $(L_s(P), || \cdot ||_s)$. Denote by $[\underline{m}, \overline{m}]$ the interval of all medians of X and define

$$\rho(y) = E[\operatorname{sign}(y - X) \log |y - X|] \quad \text{for } y \in (\underline{m}, \overline{m}).$$

THEOREM. If $\varepsilon > 1$ and $X \in L_{\varepsilon}(P)$, there is an m_1 in the interval $[\underline{m}, \overline{m}]$ of all medians of X such that $m_s \to m_1$ as $s \downarrow 1$. Moreover either (i) $\rho(y) = 0$ for exactly one y or (ii) $\rho(y) > 0$ for all y or (iii) $\rho(y) < 0$ for all y and m_1 satisfies $\rho(m_1) = 0$ in case (i), $m_1 = \underline{m}$ in case (ii), $m_1 = \overline{m}$ in case (iii).

REMARK. The theorem suggests to define a "natural median", in a unique way, as the median m_1 , described above. This m_1 is not only a median but it is also close to the s-mean m_s for s close to 1.

PROOF OF THE THEOREM. Write a^{δ} for $|a|^{\delta}$ sign a and define $\phi(y, \delta) = E(y - X)^{\delta}$, $y \in \mathbb{R}$ and $0 \le \delta \le \varepsilon$. It is well known (see [1]) that the s-mean m_s fulfills

$$\phi(m_s, s-1) = 0 1 < s \le \epsilon.$$

Let $m_0 \in \mathbb{R}$ be an accumulation point of m_s for $s \downarrow 1$. Then there exist $s_n \downarrow 1$ with $m_{s_n} \to m_0$. Write $\delta_n = s_n - 1$. If $m_0 \in [-\infty, \underline{m} - \eta)$ for some $\eta > 0$, then we obtain from (1) and the monotonicity of $\phi(\cdot, \delta)$ that

$$0 = \phi(m_{s_n}, \delta_n) \le \lim \inf_{n} \phi(\underline{m} - \eta, \delta_n) = P\{X < \underline{m} - \eta\} - P\{X > \underline{m} - \eta\}$$

contradicting the meaning of \underline{m} . Thus $m_0 \ge \underline{m}$; by symmetry $m_0 \le \overline{m}$. Hence $m_{s_n} \to \underline{m}$ if $\underline{m} = \overline{m}$, whence $\lim_{s\downarrow 1} m_s = \underline{m}$ in this case.

Now assume $\underline{m} < \overline{m}$: For each $y \in (\underline{m}, \overline{m})$ the function $[0, \infty) \ni \delta \to (y - X)^{\underline{\delta}}$ is twice differentiable P-a.e.

The first and second derivatives of this function are for $\delta \in [0, \epsilon/2]$ bounded by a fixed P-integrable function. Hence, as $E(y-X)^0 = 0$, we obtain from the Taylor expansion of $\delta \to \phi(y, \delta)$

(2)
$$\phi(y, \delta) = \delta \rho(y) + \frac{1}{2} \delta^2 \phi''(y, \xi(\delta))$$

with $0 < \xi(\delta) < \delta$ and

(3)
$$\sup_{0 \le \delta \le \varepsilon/2} |\phi''(y, \xi(\delta))| < \infty.$$

Received November 1, 1979; revised October 17, 1980. AMS 1970 subject classifications. Primary 60G25; secondary 62G05. Key words and phrases. Median, approximation. Let $y \in (\underline{m}, \overline{m})$ with $\rho(y) > 0$. Then according to (2) and (3) eventually $\phi(y, \delta_n) > 0$. Since $0 = \phi(m_{s_n}, \delta_n) \ge \phi(y, \delta_n)$ if $m_{s_n} \ge y$, we obtain $m_{s_n} < y$ eventually and hence $m_0 \le y$. Similarly $\rho(y) < 0$ implies $y \le m_0$.

Since ρ is an increasing and continuous function, one of the cases (i), (ii), (iii) holds, and $m_0 = m_1$ as specified in the assertion. Since this holds for each accumulation point m_0 , we have $\lim_{s \downarrow 1} m_s = m_1$.

In [2] the concept of s-means was extended from $L_s(P)$ to $L_{s-1}(P)$. The s-mean m_s of $X \in L_{s-1}(P)$ is the unique number fulfilling (1), i.e., $E(m_s - X)^{\frac{s-1}{2}} = 0$. Using this generalization of an s-mean the assumption $\varepsilon > 1$ in the theorem above can be weakened to $\varepsilon > 0$.

Hence a natural median can be defined for each $X \in \bigcup_{\epsilon>0} L_{\epsilon}(P)$.

Acknowledgement. We thank the referee for improving the presentation.

REFERENCES

- [1] Ando, T. and Amemiya, L. (1965). Almost everywhere convergence of prediction sequences in $L_p(1 . Z. Wahrsch. verw. Gebiete 4 113-120.$
- [2] LANDERS, D. and ROGGE, L. (1981). Isotonic approximation in L_s . Journal of Approximation Theory. 31 199-223.

MATHEMATISCHES INSTITUT DER UNIVERSITÄT KÖLN WEYERTAL 86-90 D-5000 KÖLN 41 WEST GERMANY Universität Duisburg Fachbereich 11 - Mathematik Lotharstr. 65 D-4100 Duisburg 1 WEST GERMANY