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LIMITING POINT PROCESSES FOR RESCALINGS OF COALESCING
AND ANNIHILATING RANDOM WALKS ON z°

BY RICHARD ARRATIA

University of Southern California

Let p(x, y) be an arbitrary random walk on Z% Let & be the system of
coalescing random walks based on p, starting with all sites occupied, and let
7 be the corresponding system of annihilating random walks. The spatial
rescalings P(0 € &)'/%, for t = 0 form a tight family of point processes on R“.
Any limiting point process as ¢ — « has Lesbesgue measure as its intensity,
and has no multiple points. When p is simple random walk on Z¢ these
rescalings converge in distribution, to the simple Poisson point process for d
=2, and to a non-Poisson limit for d = 1. For a large class of p, we prove that
PO € n)/P(0 € &) > % as t — . A generalization of this result, proved for
nearest neighbor random walks on Z', and for all multidimensional p, implies
that the limiting point process for rescalings P(0 € £)"“n, of the system of
annihilating random walks is the one half thinning of the limiting point
process for the corresponding coalescing system.

1. Introduction. We consider two interacting particle systems on the d-dimensional
integer lattice Z%: coalescing random walks &, and annihilating random walks 7,. Each
process consists of identical particles, one starting from each site x € Z% Each particle
undergoes a continuous time random walk on Z¢, with mean one exponential holding times
between jumps, based on some fixed transition kernel p. These random walks are indepen-
dent, except that whenever a particle jumps to a site which is already occupied by another,
there is interference. In the coalescing system &, the two particles coalesce into one (one
particle vanishes); in the annihilating system 7, both particles in a collision vanish. The
state space for each system is % = {all subsets of Z¢}, where x € £ or x € 7, if there is a
particle present at site x at time ¢ The basic ergodic theory of these particle systems is
easy; the configuration ¢ is a trap, and starting from Z¢ or any other initial configuration

gt —>d 84», Ne —>d 8¢.

Here, the convergence in distribution of & to 8, the probability measure on & which is
concentrated on the single configuration ¢, means that for any finite K C Z¢,

PENK#¢)—>0 ast— o,

See Griffeath (1979) for an exposition of this and other basic results about interacting
particle systems.
Since & —a 8, it is natural to consider spatial rescalings

ve = ks,

choosing a, so that the density of particles per unit volume in R? is always one. Rescalings
of infinite particle systems are also considered in Holley and Stroock (1979) and Bramson
and Griffeath (1979). For a > 0, x = (x1, +--, X4) € R% and A C R?, write ax = (axi,
coo, axaq), A = {ax: x € A} C R The following notation, which depends on the
underlying random walk p, will be used throughout this paper. Let

(1) .Pt = P(O e gt)’ o =Ptl/d,
and for any B C R4, t =0 let
B,={x€Z% aux € B} = (p:/?B) N Z°.
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Thus, for any compact convex B C R having Lebesgue measure m(B) > 0,
(2) Ela&NB|=E|& N B,| =p|B:|—> m(B) ast— .
Consider »; = a;{; as the random measure

3 Ve = Yxet, Oax

on R? having an atom of mass one at the rescaled location of each particle. Statement (2)
shows that the family {, ¢ = 0} is tight, so every sequence » with #; — o must have a
subsequence which converges to a limiting point process u on R In general, for arbitrary
p, we can show that any limit p is a simple point process (i.e. p has no multiple points)
having Lebesgue measure m as its intensity. What limits p are possible?

This question can be answered completely when p is simple random walk on Z% for
eachd =1,2, ..., there is a point process p; on R? such that

adi—>apa ast— o,

Theorem 1 states that for d = 2, the limit above exists and is the basic Poisson point
process. For d = 1, the limiting point process p; on the line is 7ot Poisson (Arratia 1979);
formula (20) given in Section 2 specifies p, in terms of its zero function. The proof of
Theorem 1 depends upon knowing the asymptotic behavior of p, = P(0 € &), obtained for
simple random walks on Z% d = 2, in Bramson and Griffeath (1980b):

pe = (mt)V? d=1
(4) = (wt/log t)™* d=2
= ('Ydt)_l d=3,

where yq is the probability that a d-dimensional simple random walk never returns to its
origin. The other key ingredient for Theorem 1 is a negative correlation result, that

P(x,y€ &)< P(x€ &)P(y € &) = pi,

which we prove for arbitrary random walk p, using Harris’s correlation inequality (Harris
1977).

What relation is there between the systems £, coalescing random walks, and Ne,
annihilating random walks? There is a coupling such that, for all ¢ = 0, for every w,

(5) M C &.

Recall that we start with all sites occupied: 7o = & = Z°. The coupling is easy to construct
directly: in each system, particles undergo the same random walks, and when two particles
collide, one of them disappears in £, while both of them disappear in 7,. It may be brash
to suggest that since twice as many particles vanish per collision in 7, compared with &,
then the ratio of the density of particles in the two systems should go to one half as ¢ goes
to infinity:

(6) P(OEm)/P(OE&)=P(OEmIOE£z)—>1/é ast— o,

Indeed, by the standard duality of coalescing and annihilating random walks with the finite
voter model {7 starting with a single individual at x, (6) is equivalent to

W) POEN|0EL) =P(|¢isodd || 0] >0) - % ast— oo,

Since | {7 | is a time change of simple (symmetric) random walk on the line, starting at one,
with absorption at zero, (7) is highly plausible for any p. The only case for which (7) was
previously known is that of p being a nearest neighbor walk on the integers; in this case
the holding times for | {7 | before absorption are all exponential with mean %. The reader
is invited to try to prove (7) on his own for a special case such as simple random walk on
Z%. Theorem 3 establishes this one half density relation for any genuinely multidimensional
p, and for random walks on the integers having ¥ p(0, x)| x| = . In the remaining cases,
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p a non-nearest neighbor walk on the integers with finite expectation, relation (7) remains
unproved.

For a large class of random walks p, Theorem 3 reduces the problem of finding the
asymptotic density of particles in the annihilating system 7, to a problem about the
survival probability for the finite voter model ¢{{. Partial results describing P(¢? # ¢)
appear in Sudbury (1976), Kelly (1977), and Sawyer (1979). For simple random walk on
Z?, d = 2, asymptotics for p, = P(0 € £,) = P({? # ¢) were finally established by Bramson
and Griffeath (1980b). Thus, for 1, = 77, the system of annihilating simple random walks
starting from all sites occupied,

PO € n) = 1/(2V7t) d=1
= log t/(2nt) d=2
= 1/(2yat) d=3.

The case with d = 1 above is in Griffeath (1979); the cases with d = 2 are an immediate
consequence of Theorem 3 and the asymptotics (4) found by Bramson and Griffeath.

The one half density relation suggests that for large ¢, 7, may be approximately a “one
half thinning” of £, i.e. a subset of ¢ obtained by tossing a fair coin for each particle in &
to decide whether to retain or delete that particle. Theorem 4 gives a precise version of
this: if p is a multidimensional random walk on Z¢, or a nearest neighbor random walk on
Z', then for any compact K C R?, with K, given by (1),

Yack, (P&NK,=A) Ypca |27 = PN K, =B|&NK,=A)|) >0 ast— o

A more palatable restatement of this appears as Corollary 3: there exist versions of
©O(a:£,), the one half thinnings of the rescaled point processes a:{;, such that for any
compact K C R¢,

P((am) |k # (Oa:é) k) > 0 ast— o,

where |k denotes the restriction of a measure to K. This implies a weaker result, Corollary
4: for multidimensional random walk, or nearest neighbor random walk on the line,

if af —ap (along some sequence) then a,n — Op

along the same sequence, where Op is the one half thinning of the point process u on R

Combining the one half thinning result with the convergence results for rescalings of
coalescing simple random walks on Z¢ (a Poisson limit for d = 2, a non-Poisson limit when
d = 1) and the asymptotic formulas (4) for p, = af, we get:

For the system 7, of annihilating simple random walks on
Z“ starting with particles everywhere,

d=1: (mt) ™, =4 Oy
d=2:  (wt/log t)"*y, —q Ou; = Poisson, intensity %
d=3 (yat) Yy, —q Ops = Poisson, intensity %.

Here O, is the one half thinning of the point process u,; specified by formula (20). For d
= 2, the one half thinning ©p. of the intensity one Poisson process ys on R is the Poisson
point process with intensity one half.

The one half thinnings Op, that are the rescaled limits for rescaled annihilating simple
random walks are examples of a “compound point process.” In general, if 8, 81, B, - - - are
iid., R*-valued random variables which are independent of a point process u = ¥ 8., then
the B-compound of y is the random measure ¥, 8:8.. In the one half thinning example
above, B is the fair coin variable with P(8 = 1) = P(8 = 0) = %. For d = 2, another
example of a B-compound of the Poisson point process s on R? with 8 exponentially
distributed, arises as the limit of rescalings of a system y, of coalesing simple random walks
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on Z% in which mass is preserved. Start with a particle of mass 1 at each site x € Z°.
Whenever two particles in v, collide, they coalesce into a single particle whose mass is the
sum of the colliding masses. All particles, regardless of their masses, still undergo identical
random walks, independent apart from the coalescing interference. The state space now is
(Z*)?", where ¥:(x) = n means that there is a particle of mass n at site x € Z% n =0
(representing no particle present), 1, 2, -... This system arises naturally in studying
coalescing and annihilating random walks; the coupling (5) may be achieved by taking

& = {x: y:(x) >0}, e = {x: y:(x) is odd}.
The appropriate rescaling of vy, is the random measure p; on R¢ defined by
(8) M = Exee,Pth(x)aa,x,

having atoms of mass p;, 2p;, ---, carried on the lattice a;Z%. Extending a moment
calculation by Sawyer (1979), Bramson and Griffeath (1980b) show for simple random
walk on Z%, d = 2, that for any a = 0,

9) lim;_, . P(y,(x) >§ Ye(x) > o) =e°

Theorem 2 says that in a rescaled limit, these exponential masses are independent of the
particle locations and each other. More precisely, for simple random walk on Z¢ with d =
2, e converges in distribution to the 8-compound of the simple, intensity one Poisson point
process, where 8 is exponential with mean one. In terms of Laplace transforms, Theorems
1 and 2 are equivalent to, and are proved by showing: for any continuous non-negative f
having compact support in R¢,

L,(f) = Ee” /" — L, (f) = e T 0= m,
Lm(f) = Ee Jfdn L,‘d(—log L,;of) = e J/0+)) dm

(where », and g, are specified in (3) and (8).)

2. Rescaling Coalescing Random Walks

2.1 Arbitrary Random Walks. We continue with the notation », = a.£;, where p,
=POE &), a:=(p:)"? and & = ¢7is a system of coalescing random walks on Z¢, starting
with all sites occupied, based on an arbitrary random walk p. This rescaling is appropriate
in the sense that the family {»., £ = 0} of point processes is tight, with respect to the vague
topology.

[Here are the details: Let B denote the e-neighborhood of B in the Euclidean metric on
R®. We have, for any ¢ = 0, and B bounded

(10) Ev(B) = |aZ® N B|p: < m(B“?)p, = m(B*?) < w.
Using Chebyshev’s inequality, this implies, for compact B, that
lima_.m Sup:=o0 P(l’zB > a) = O,

which is equivalent to tightness for the family {r,}. See Kallenberg (1975) for a general
reference on random measures.]

Consider a limiting point process u on R that is, suppose that v, —a p for some
sequence ¢, — o, It is easily seen that for any compact, convex B C R?,

Eu(B) < lim sup Ev,(B) = m(B).

If we are merely given some translation invariant spatially ergodic ¢ C Z¢ having p, — 0,
without knowing that the £, are obtained from coalescing random walks, then a limiting
point process p might have Eu(B) < m(B). This can happen iff the random variables
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v(B) are not uniformly integrable, which indicates clustering in &. Another way to detect
clustering in &, relative to the scale of distance a; = P(0 € &)'/?, would be through the
existence of multiple points—atoms of mass 2, 3, - - -, in a limiting point process p. Lemma
1 will be the key to showing that no such clustering occurs—the full strength of Lemma 1
is not needed here; an estimate such as: for x # y € Z¢

(11) P(x,y € &) < cp?,

for some finite constant ¢, would be enough to establish Corollaries 1 and 2. It is necessary,
in our proof of Theorem 1, to have (11) with ¢ = 1 in order to conclude that for simple
random walk on Z¢, d = 2, the limiting point process  is a simple Poisson process, rather
than some mixture of Poisson point processes (i.e. a Cox process).

LEMMA 1. For any A C Z° and for an arbitrary random walk p on Z°, let £{ be the
system of coalescing random walks starting with a particle at each site x € A. For any
x#y€Z°
12) P(x,y € £') = P(x € &')P(y € &7).

In the special case A = Z°, this becomes

P(x,y€ &) < pi.

Proor. Let ({2, B C Z% be the family of voter models based on p, all constructed
together via a single random substructure 2. (2 is a collection of Poisson flows T'(x, y) on
[0, ) having rate p(x, y) = p(0, y — x); the event times of T'(x, y) tell the voter at x when
to discard his opinion and adopt the opinion held by the voter at y.) Thus for any B, C C
Z°% for each w, {8YC = {8 U €. By the usual duality between coalescing random walks and
the voter model, (12) is equivalent to
(13) PEiNA#¢,INAF#¢)=P(iNAF*S)PEINAF).

We apply Harris’s (1977) elegant theorem on positive correlations: for a monotone Markov
process on a finite partially ordered state space E, a necessary and sufficient condition for
the set of measures on E having positive correlations to be preserved by the semigroup is
that the process can only jump up or down. Ignore momentarily the requirement that the
state space E be finite. Take

E={(B,C):BCCC2Z%

with the ordering (B, C) = (B’, C’) iff B C B’ and C C C’. Define the process starting at
(B, C) € E to be

X5 = (82,80

this process is monotone and has only jumps up and down. For an initial distribution
having positive correlations, take the deterministic configuration ({x}, Z¢ — { y}) which
has zero correlations; thus we are considering the process

Xo= ({58 =520 -8).

The conclusion, that for every ¢ = 0 the distribution of X, has positive correlations, says
that for any increasing functions f, g on E,

E(f(X.)g(X:)) = Ef(X,)Eg(X.).
Take
f((B, C)) = 1enaxs,  &((B, C)) = lacc;
these are increasing functions on E. The previous inequality becomes

(14) PEiNA#¢,{NA=¢)=PEiNA#)PEINA=9)
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Replacing the event ({Y N A = ¢) by its complement yields formula (13).

To comply with the requirement in Harris’s theorem that the state space E be finite, an
approximation is needed. For any r > max(| x|, | y|) let S, = {z € Z¢:| z| < r}. For each
« modify the substructure 2 to create a new substructure 2,, by deleting all event times
of the clocks T'. .-y having | z| > r or | 2’| > r. Construct a family of voter models (,¢{Z, B
C Z%) based on 2,; in this family no site outside S, can give or receive influence. Let E,
= {(B,C):BC CCS,} CE, and for (B, C) € E. define the process ;X% = (,¢8, .¢°);
this is a monotone Markov process on the finite state space E,. Take unit mass on ({x},
S, — {y}) as the initial distribution. Define increasing functions f, and g, on E. by

(15) fr(B, C) = 1pnass, & (B, C) = lans.cc.
The theorem on positive correlations yields
(16) P({iNA#¢,{iNA=¢)=ZP({iNA#*)P(INA=4).

Define 7, = inf{¢: {7 # /{7 or {¥ # ,{7}. Almost surely, 7, — ® as r — oo; this is equivalent
to the claim that the substructure 2 for the voter model has no influence from . Thus,
taking limits as r — o in (16) yields formula (14). 0

A slight generalization of this is needed for Theorem 2; Lemma 1 is exactly the special
case m = n = 1 of the following lemma.

LeEmMaA 2. For an arbitrary random walk p on Z°, A C Z°, let y# be the system of
coalescing random walks with mass conserved, starting with a particle of mass one at
each sitex €EA. ThenV t,m,n=0,x#y € Z°,

(17) P(yi(x) = m, v} (y) = n) = P(y#(x) = m)P(y#(y) = n).
ProoF. In terms of the usual coupling with the family of voter models, (17) is
equivalent to
P&ENA|lz=zm, |INA|=n)<=P(|{iNA|=m)P(|ENA|=n).

The proof of this is exactly the proof given for Lemma 1, with the increasing functions f.
and g; of (15) replaced by

frm(B, C) = 1iBnajzm,  &rn(B, C) = ljans)—cl<n. il

COROLLARY 1. Let v, be the random measure on R® defined by (3), for an arbitrary
random walk p on Z°. For any bounded B C R?,
(18) var(»,B) < E(».B).
If, along some sequence t; — ©, v, —q p, then

Ew(B) = m(B),

i.e. the intensity of any limiting point process u is Lebesgue measure m on R°.

Proor. With B, given by (1), ».(B) = | & N B |. Identify £ with its indicator function,

ie. write £(x) = 1if x € &; &(x) = 0 otherwise. Lemma 1 says that E(&(x)&(y)) < p?ifx
# y. Thus

E(1B)® = E(YxeB, £(%))* = Yen, E(£(x)) + Tanyen, E(&(x)E())
<|B¢|p: + | B:|’p = E(v.B) + (E(».B))’,

which shows (18). Let B C R“ be bounded and convex. A calculation like (10) shows that
Ev,B — m(B) as t — . It follows that E(uB) < lim, E (v, B) = m(B); the intensity of the
limiting point process is absolutely continuous with respect to Lebesgue measure. Since
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m(dB) = 0 implies Ex(dB) = 0 and hence p(dB) = 0 a.s., B is a y-continuity set. Thus as
random variables, »,B —q uB, and formula (18) shows that the » B are uniformly
integrable, so that EuB = lim E», B = m(B). ]

COROLLARY 2. With the same hypotheses as Corollary 1, any limiting point process
u is simple (or orderly), i.e.

P(u({x}) > 1 for some x € S;) = 0.

Proor. It follows easily from Lemma 1 that for any bounded B C R¢,
P(»n.B>1)=P(&N B> 1) < Yinyen Plx,yE€E &) < |Bt|2]h2 = (Ev,B)~

Write S, = {x € R?:| x| <r}. There is a constant ¢ depending only on d, such that for any
r € (0, 1), S: can be covered by n, < ¢/m(S,) translates Uy, Us, -- -, U,, of S,. Now

P(u({x}) > 1 for some x € S;) = P(p(U;) > 1 for somej, 1 <j < n,)
=Y P(u(U) > 1) = ¥, lim; P(v,(U)) > 1)
= Y, lim; (Ev, Uj)*
= 3 m(U)? = (¢/m(SH)(m(S,) = e-m(S,).
Taking a limit as r — 0,
P(u({x}) > 1 for some x € S;) = 0. ]

2.2 Simple Random Walks. For the remainder of this section we will consider only
the case where p is simple random walk on Z¢, i.e. p(x, y) = 1/(2d) if |x — y| = 1, p(x, y)
= 0 otherwise. Thus, when a particle moves, it chooses any one of the 2d neighboring sites
in the lattice Z¢ with equal probability. For the system of coalescing simple random walks,
the asymptotic behavior of p, = P(0 € &) is known in all cases (d = 1 in Bramson and
Griffeath 1980, d = 2 in Bramson and Griffeath 1980b). The d'" root of these asymptotics
is:

o = (mt)V? d=1
(19) o= (nt/logt)™% d=2
a = (yat) ™ d=3.

Since ¢7'/? is the appropriate normalizing factor for a simple random walk on Z¢ for any d,
we see that a,/t /% — o as ¢ — o, when d = 2. Thus it is quite plausible that the limiting
point process should be Poisson when d = 2, and not Poisson when d = 1. The case d = 1,
coalescing simple random walk on the line, is analyzed in Arratia (1979). The result is that
v: —4 g1, Where the limiting point process y; on R can be realized as the state at time 1/7
of a system of coalescing standard Brownian motions on the line, starting with a particle
at each x € R. A self-duality relation for the system of coalescing Brownian motions leads
to a formula expressing y; in terms of its zero function:

(20) P(u(B) = 0) = P(§ji/, = ¢).

Here B C R is a finite disjoint union of intervals, and 4?2 is a finite system of annihilating
standard Brownian motions on R, starting with a particle at each site in dB. For contrast,
the zero function for the limiting point process p, for d = 2 is

P(pa(B) = 0) = e™™®
for any Borel set B C R<.
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THEOREM 1. Ford=2,ast— o,
v = opd —>a Md,

where pq = P, is the simple Poisson point process on R® whose intensity is Lebesgue
measure m. Here, ¢, is the system of coalescing simple random walks on Z°, starting with
all lattice sites occupied; o, is given asymptotically by (19).

Proor. To show that », = «,¢ is approximately Poisson, we will run the system
for a while with the collision mechanism suspended—particles will follow independent
random walks with no interference, and lattice sites may be multiply occupied. For any
t=e(=27...),set

At=At(t) =t/ogt d=2

= t1/2+1/d d >3

so that a, VAt — o, and At = o(t), hence p;—a¢/p: — 1, as t — . Set

(21) s=s(t)=t—At

and let £, be the system of coalescing random walks with the collision mechanism suspended
from time s to time ¢ = s + At. Write &(x) =0, 1, 2, - - . for the number of particles at x
€ Z4, for each ¢ there is a coupling such that V w, V¥ x € Z¢,

&(x) = &(x).
Let
Vo= b = Yeeza gt(x)sa,,h
We claim that for any compact B C R¢,
(22) P(v|p# |p) > 0 ast— o,

where |p denotes the restriction of a measure to B. [Proof: Write p,(x, y) for the transition
density of continuous time simple random walk on Z% run for time ¢ The density of
particles in &, is

E&(y) = E(Tx £(x)pa,(x, ¥)) = Yz psPa, (%, ¥) = ps.

Thus
P(§(x) # &(x)) < E(&(x) — &(x)) = ps — pr,

SO
P(v|p # n|B) < erB, P(&(x) # g_t(x))
=< |B:|(ps — p:) = (E».B)(ps — p:)/p:— 0 ast— oo,

This establishes the claim (22).]
For each ¢ define a transition kernel q,(x,_dy) on R¢ which describes the motion of each
particle of »; = as¢; to its location in 7 = a:é;:

q:(x, B) = pa (a;'x, a;'B).
(These do not form a semigroup.) Since ap/A_t—> o,
(23) Supxerd q:(x, B) >0 ast— o

for any compact B. By the independence of the particle motions going from », to 7,

(24) E(exp[—f f(y)i,(dy)] |vs) = exp[f log(f e g, (x, dy)) vs(dx)]
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for any Borel function f on R“. For a similar analysis of a completely independent particle
system, see Liggett (1978).
For each ¢ define a random measure M; on R? by

(25) M.(B) = f qe(x, B)vi(dx) = Yet, Pa,(%, Br)

so that
E@(B) | &) = M(B).

(To check that this is really a random measure, having M,(B) < « a.s. for compact
convex B, compute

EM(B) = EE(»(B) | &) = Ev«(B) = ps| B:| > m(B) ast— .

This also shows that the family {M,} is tight.)

Start with any convergent sequence of {»;}, say ».—4 v as ¢t — . Since P(v/|s # ¥ |5)
—s 0, 7, —q v also, as ¢ — » along this sequence. Take a subsequence along which M, —q M.
The Laplace transform of » can be computed as the limit of the Laplace transform of 7,
along the subsequence for which » —4 » and M, —¢ M. Let f € C? (R?), the set
of continuous non-negative functions on R? having compact support. Write g.(x) =
—log [ exp(—f(¥))q:(x, dy). By (23), sup | [ exp(—f(¥))q:(x, dy) — 1| — 0 as ¢ — o; thus

8(x)
[ (1 — exp(=f(y)))q:(x, dy)

Now along our subsequence,

(26) — 1 uniformly in x.

Lf=E exp(—f f(x)v(dx))

= lim L;(f) = lim EE(exp[— f f(x)t%(dx)]

(by (24)) = lim E (e~ f&=mdn)
(by (26)) = lim E(e /U atxdlyd))
(by (25)) = lim E(e_ﬂl_‘-’_ﬂ”)M,(dy))

=1lim La(1 — e) = Ly(1 — ™).

Thus » = Py, the mixture of Poisson processes directed by the random measure M.

We want to show that » is the simple Poisson process with intensity m, i.e. that M = m
(a.s.). Take B to be compact and convex, and consider the random variables »(B) and A
= M(B). The distribution of »(B) is a mixture of ordinary Poisson distributions with
parameter A directed by A, so that E»(B)? = E(A?) + EA. We know that EA = E»(B) =
m(B); the bound (18) of Corollary 1, together with »,(B) —4 »(B) yields

Ev(B)? < lim sup E(».B)® < lim sup[(E».B)* + E ».B] = m(B)” + m(B).

Thus E(A?) < (EA)? so A = m(B), (as.). We have M(B) = m(B) as., for each compact
convex B, so M = m (a.s.). Thus » = P, the simple Poisson point process on R¢ with
intensity one. Since this limit is obtained along a subsequence of an arbitrary convergent
sequence (with £; — o) from the tight family {», ¢ = 0}, the theorem is proved. ]

Let v, be the system of coalescing random walks on Z¢ with mass conserved, starting
with a particle of mass one at each lattice site. Write y.(x) = n to indicate that there is a
particle of mass n =0, 1,2, --- at x € Z%; interpret y,(x) = 0 as “no particle present.” In
terms of the usual coupling of the family (¢#, A C Z?) of coalescing random walks, which
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has the additive property: for all A, B C Z*,
gV = £ U EP,
the system y, may be defined by
vlx) = [ {y €Z7: ¢ = (x}}|.
For each site x, the mass y,(x) at x has mean
Evyi(x) = Yyeze ply, x) = 1.
The particle locations for y; are the same as those for &: for each w,
x €& iff yix) >0.
The expected mass of a given particle in vy, is
E(v(x) | v(x) > 0) = Ev.(x)/P(y/(x) > 0) = 1/px.
Thus we rescale both the spatial locations and the masses of the particles; let

Me = erzd pth(x)sa,x = ergl p,y;(x)&,,x.

THEOREM 2. Let p be simple random walk on Z% d = 2. As t — ®, y, converges in
distribution to the B-compound of P,. Here, B is the exponential distribution with mean
one on R* and P,, is the simple Poisson point process on R whose intensity is Lebesgue
measure m. In terms of Laplace transforms,

Lm(f) - me(—log Lo )= eI f/(1+Ndm
for every f € C¥(R).

ProoF. Define a particle system ¢* on Z X Z* by: forx € Z4, n=1,2, - -+,
(x,n) €§F iff ydx) =n.
Consider a spatial rescaling v} of £f as a point process on R¢ X R™*:
v¥ = Ymet; Saxpmn-
We will repeat the proof of Theorem 1 to show that
27 v} —a Prxg,

where P, is the Poisson point process on R¢ X R* with intensity m X 8.
To see that this establishes Theorem 2, compute Laplace transforms. Given f € CZ(R9),
define g on R? X R™* by

&(x, a) = af(x).

Now
L,f = E exp(—Y.ez¢ peye(2) f(e,2)) = E exp(—f g duz")
=L, (g — Lp,,(8) = exp(—f (1—e*) dim x ,8))
(28) = exp(—J’ (1-e ™ )ﬁ(da)m(dx))

= exp<—f a- Lﬁ(f(x))m(dx))

=Lp (—log Ls ° f).
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This shows that as random measures on R?,

U —4 the B-compound of P,,.
The expression (28) for the Laplace transform of the limiting random measure can be
simplified; since L(t) = (1 + )77,

Lp (—log Ly~ f) = exp(—f (1 — Lg( f(x))m(dx)) = g /f/UHfmdn)

To prove the Poisson convergence (27), take s and ¢ as given by (21). Let £ be the
system ¢} run with the collision mechanism suspended from time s to £, writing & (x, n)
=0,1,2, - .- for the number of particles at (x, n), x € Z%, n=1,2, - .. The corresponding
point process on R? X R is

T’f = Z é?‘(x, n)s(a,x,p,n)~
We need to show that there are couplings of £ and £ such that

(29) P(v¥ |pxr+ # 7! |Bxr+) > 0 ast—

for every compact B C R In Theorem 1, there was a coupling such that », < %, but such
a relation for the * system is not possible. In £*, a particular at (x, n) may jump to (y, n)
if x and y are nearest neighbors in the lattice Z% if there already is a particle at (yy, m) (for
m=1,2, ..., possibly even m = n) then both particles vanish in collision and are replaced
by one particle at (y, m + n). Consider a joint construction of the systems &, £7, &, and
£¥ in which for each r € [s, t],

x€¢ iff (x,n) €L forsomen=1,2, ---;
gr(x) = Znal g(x, n).

Consider (v, 0 < u < At), a coalescing system in which mass is conserved, starting with
a particle of mass one at each x € £,. Thus with the natural coupling, y5(x) = n indicates
that n particles from ¢, have coalesced together to form a single particle in &, at site x, so
for each u € [0, At],

X E &y Iff yi(x) =1
With this coupling, for any x € Z¢,
(30) {w: £¥(x, n) # £ (x, n) for some n} = {&(x) # &(x)} U {y&i(x) = 2}.
Compute

Evé(x) = Yyeza puly, )P (y € &) = Ty pul(y, X)Ds = ps.
Now
P(yiix) = 1) = P(x € &) = p,

)

P(yix) = 2) < p, — pe.
Therefore the event in (30) has probability <2(p; — p.), so

P(7* | pxr+ # v* | Bxr+) < Yeen, P(&*(x, n) # £ (x, n) for some n)
=<|B:| 2(ps—p) >0 ast— .

This shows that (29) holds. V
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The transition kernel of R? X R* which describes the motion of each particle in »} to
its new location in 7 is

q((x, @), B X I) = pai(a5'x, o' B)1/(pa/ps);
for any compact B C R¢
SUP(xa) g7 ((x, @), BXR*) >0 ast— o,

Define random measures on R? X R* by
Mt*(B X I) = Z(z,n)E&; pAt(Zy Bt)ll(Ptn) = f (I?((x, a), B X I) dV: (x) a)~

so that
E@*BXI)|&) =MHB X I).
For I C R™ of the form [a, ), x € R?
E (Y emes; Padz, )1 pn)) = Yoezdn=asp, P((2, 1) € £)pac(z, x)
= Ynzap, P((0, n) € §¥) = P(v:(0) > a/p,)
= e ‘p, (by (9) and p./p: — 1.)
Thus, for I = [a, ») and B compact convex C R?,
Ev*(B X I) = EM! (B X I) = E Y:eB, Yemet;, Paclz, X)Li(pm)
= |B:| e °ps = m(B)e™
= (m X B)(B x I).

Note that E(¥(B X R")) = E(n(B)) < ¢ < » for compact B, so that the familes {7, ¢ =
0} and {M#, t = 0} of random measures on R? X R* are tight. Starting with any convergent
sequence of v/, say »* —4 v*, take a subsequence along which M} converges, say M} —,
M*. A Laplace transform calculation similar to (26ff.) shows that »* is the mixture of
Poisson processes on R¢ X R* directed by the random measure M*. Lemma 2 is now used
to compare first and second moments of the random variable »*(B X [a, ®)) and show that
M* = m X B almost surely. This establishes (27) and concludes the proof of Theorem 2. [0

3. Annihilating Random Walks. The one half thinning relationship between the
system 7, of annihilating random walks and the system £ of coalescing random walks is
natural when viewed in terms of the dual system, the family of voter models ({3, A C Z9).
(See Griffeath (1979) for an exposition of all the material in this paragraph.) The voter
model §, is the spin flip system on Z? in which the voter at any site x changes opinion at
a rate equal to the proportion of his neighbors (weighted by p) who hold the opposite
opinion; equivalently, the flip rates are

c(x, §) = Y yeztqmmcin P (%, ¥).

Identify the state space {0, 1}*" for this spin system with &= {all subsets of Z%}, and write
¢ for the voter model starting with opinion 1 held by the voters at sites x € A, opinion 0
held everywhere else. When A = {x}, write {7 for the voter model {/* starting with a lone
dissenting opinion at x. Thus {w: {¥ # ¢} is the event that this dissenting opinion survives
until time ¢, and | {7| is the size at time ¢ of the dynasty of converts to that dissenting
opinion. For each ¢ = 0, there is a coupling, based on a random substructure 2 of event
times, of £, the system of coalescing random walks starting with all sites occupied, 7, the
corresponding system of annihilating random walks, and ({#, A C Z%), the family of voter
models started at each possible initial configuration, such that for every w,

(31) = {x: {7 # ¢}, ne = {x:| {7 is odd}.
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Thus the one half density result of Theorem 3 is equivalent to a statement about the
parity of the finite voter model:

(32) POEn/POEE) =P(|¢]isodd | #¢) > % ast— o,

When the voter model is in state A, for some finite A C Z¢, it grows in size by one (i.e. A
— A U {x} for some x & A) at rate Y.za,eca p(x, ¥), and decreases in size by one at rate
Yxea,yza D(x, ). By the translation invariance of p, these two rates are equal. We write

(33) r(A) = Yoega yea DX, ¥) + Yrcapa D%, ¥) = 2 Tiea ga P(%, ¥)

for the total jump rate out of state A. The configuration ¢ is a trap for the voter model, i.e.
r(¢) = 0; but for any finite A # ¢, r(A) = 2(1 — p(0, 0)) > 0. Thus | {?| is a time change of
S, a simple random walk on Z*, started at one, with absorption at zero, and with mean one
exponential holding times between jumps. In the special case where p is a nearest neighbor
random walk on Z, the state of the voter model {° before absorption is a block of
consecutive integers, with r({’) = 2. Using the reflection principle and the local central
limit theorem, taking X, to be simple (unstopped) random walk on Z started at zero,

P(|& |is odd| §° # ¢) = P(Sz is odd | Sz > 0)
= P(Xz =0)/P(Xs:=00r1)
— % ast— oo,
This is the only case of p for which the one half density relation (32) had been established.
Theorem 3 extends this to arbitrary multidimensional random walks p, and to p on the
integers Z having Y | x| p(0, x) = o,

For any random walk p, the size of the finite voter model, conditional on survival, tends
in probability to infinity: for any m,

(34) P(|Zzm|#¢)—>1 ast— o,

This is stated and proved as Lemma 3. If p is multidimensional (Lemma 4) or p has
Y1ez p(0, x) | x | = ® (Lemma 5), then

limy, .o infacz¢m=a<o 1(A) = 0.

Combining this with (34) yields, for these random walks, that the border size of the voter
model ¢° conditional on survival, tends in probability to infinity: for any r,

(35) Pr$)=r|{’#¢) > 1 ast— .
Contrast this with the nearest neighbor case on the line, where for all ¢
(36) Pr() =2\ #¢) =1

Here is a quick proof of Theorem 3, that the one half dansity relation (32) holds for any
random walk which satisfies (35). This argument cannot be extended to derive the one half
thinning relation, Theorem 4. A second proof of (32), involving a randomization of the
substructure 2 of event times for the voter model, will be given as our formal proof of
Theorem 3. This second proof of Theorem 3 is really a special case of the proof of Theorem
4, but this latter proof is sufficiently complicated that it is useful to write out the full
argument in the special case.

FIrsT PROOF OF THEOREM 3. We want to show that (32) holds. Given € € (0, 1), set
(37) ro = 8¢ °log(1/€)
and using (35), take & so large that ¢ > ¢ implies
(38) Pr(f)>n|f#¢)>1-e
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At any jump of {°, r({7) changes by at most 2. Let
(39) At = €/16.
Foranyc=1,
P(|r($)) —c| >ecforsome s€ [¢, ¢t + At] | r(§F) = ¢)
40) = P({° has at least ec/2 jumps during [¢, ¢ + At] | r($) = ¢)
=< P(X = ec/2), where X is a mean At(1 + €)c Poisson random variable
- EX? _ [At(1 + €)c][At(1 + €)c + 1] - 16At(At + 1/(2¢) < 16At= N

= (ec/2)* (ec/2)* - €’ €’

For a continuous time Markov chain Y whose states can be partitioned into “odd” and
“even” states which alternate with each other, and with all jump rates lying in the interval
[(1 — €)c, (1 + €)c] it is easily proved that

2

[Here is a proof of (41). Let f(t) = P(Y, is odd), and write [a, ] for the interval of rates.
Then

1—-€¢ 1 _
__eZcAt

(41) P(Yy is odd) =

f (&) = al — f®) — bf() = —(a + B)(f(t) — a/(a + b)).
Gronwall’s inequality yields
(f®) — a/(a + b)) = e™“*(f(0) — a/(a + b)) = —a/(a + be™“*"",

flt) = — (1= ™,

from which (41) follows.] Using ro and At as specified by (37) and (39), we get, for any ¢
=T 0y
1—€¢ 1

(42) P(YM is Odd) > — 5 e—Zr(,At -

— €.

N =

Given that { = A with r(A) = ¢ = ry, (40) shows that {4 can be coupled to a comparison
Markov chain Y as described above, so that

P(S&# Ya) <e
and hence, by (42)
P(| ¢ is odd) > % — 2e.

Thus

P(|$%a|is 0odd | r(3) = ro) > % — 2,
and this together with (38) yields, for any ¢ > &,

P(|§ac] is odd) = (% — 2€)(1 — )P ({ # ) > (Yo — 3€) P ({Prar # ¢).
The same argument shows that for ¢ > &,
P(|{ha] is even, §far # ¢) > (Yo — 3€)P($Pae # ).

Thus, for ¢t > t,,

| % — P(|¢ac) is odd | {2rac # ¢)| < 3e.

This establishes (32) and concludes the first proof of Theorem 3. The second proof also
starts from statement (35); the heart of this second proof is presented as Lemma 6.
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A natural generalization of the one half density relation (32) between annihilating and
coalescing random walks is that such a relation should hold independently at each of n
sites. Let A = {x1, Xs, - - - , X,} C Z% | A| = n; it should be the case that for each B C A,

PuNA=B|ACE) —2™ ast— o.

Expressed in terms of duality (31) with the family of voter models, this is: for any qi, g2,
sy qn € {O’ ]-}y

P(|(|=¢gmod2,i=1ton|{F#¢,i=1ton)—>2™" ast— o,

Although this is plausible, it is intractable; there is no random walk p for which we can
prove the required analog of (34), namely that for each finite A C Z¢, for every m

P(|§F|lzmVxEA|F#dVXEA)>1as t— oo,

Intuitively, the worst case is when the set A is a cluster; a proof along the same lines as the
proof of Lemma 3 requires a lower bound on the probability of the conditioning event of
the form: for every a > 0,

e’P({f#¢pVxEA) =e”PACE) > o ast— oo,

A different way of generalizing the one half density result (32) involves the notion of a
one half thinning ©¢, of £: independently toss a fair coin for each particle in & to decide
whether or not to retain that point. Equivalently, if »;,» is a random subset of Z¢ whose
distribution is product measure with density one half, and »,/» independent of £, then

95: = 'ft n Vi/2,

or any random set with this distribution, will be called a one half thinning of . With the
usual notion of convergence in distribution for random elements of {0, 1}%", the statement
that 7, gets close to a one half thinning of £ as ¢ gets large is: for any finite K C Z¢,

0=1lim o Yack P(&NK=A)Tsca | PmNK=B|&NK=A) —271)),
This result, for each fixed K, holds almost trivially since
(43) PEGNK=A)—>1 if A=¢
—0 if A=9¢,

i.e. since £, converges in distribution to ¢.

We cure this, and arrive at the statement of Theorem 4, by replacing K above with sets
K, C Z? such that E | ¢ N K|— ¢ > 0. The uniform integrability estimate (Corollary 1) on
the random variables |§ N K| now ensures that lim sup P(& N K, = ¢) < 1, so that
objection (43) has been overcome.

Corollary 3 gives an almost literal translation of Theorem 4 in terms of the rescaled
point processes discussed in Section 2: for each ¢ there exists a version O¢; of the one half
thinning of £ such that, for every compact K C R?,

(44) P((amd)|x # (aO&)|x) = 0 ast— oo,
Using Laplace transforms, Corollary 4 follows immediately:
(45) if 0§, —>ap, then an—qOp,

the limit in distribution for rescaled annihilating random walks (along some sequence ¢;
— o) exists and is the one half thinning of the limiting point process for the coalescing
random walks.

Since the notion of convergence of point processes requires only that corresponding
atoms get close in position, statement (45) is not as strong as statement (44). As an
example, we will produce {0, 1}#* valued processes 7; C £, for which (45) holds, with a
limiting Poisson point process, while (44) fails. Let the distribution of £; be »,, product
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measure with density p, — 0. Let
=8N {xEZ%x1 + x3+ -+ + x4is even}.

Then o,/ and a7’ converge to the simple Poisson point processes on R? having intensities
respectively 1 and %, but for any version of ©¢), for any compact convex K C R? having
Lebesgue measure m (K) > 0,

Plo) |x# a®¢ |x) = PO N {x EKyixxy + « -+ + xgis odd} # ¢) > 1 — e ™ &V4,

LEMMA 3. For the voter model based on an arbitrary nontrivial random walk p, for
every m

P(||zm|#*¢)>1 ast—

Proor. The jump rate for {7, conditional on ¢ # ¢, is at least ¢ = 2(1 — p(0, 0)) > 0.

By comparison to a process which always jumps at rate c, then exists A¢ such that
P (¢ has at least m — 1 jumps during [0, At], or {4 = ¢) > Y%,

for all finite A C Z¢. With probability 2~ the first m — 1 jumps are down, so
(46) P({f=¢)=2"

for all A C Z? having |A| < m. An upper bound on the rate of extinction of the voter
model ¢! is available from duality with coalescing random walks £, and Lemma 1 (recall
that p, = P(0 € &) = P({ # ¢)):

d
—pi=—5 POEg) = Youseza P(0, x € £)p (0, x) < Txro Pip (0, x) < pi.

By (46),
Derae=p:— 2P0 < |{| < m)
so that
PO < || <m) = 2™p; — prsar) = 2™pZAL.
Thus

P(|P)|<m|{#*¢)<2"pAt—0 ast— o, 0

For any A C Z¢, define

47) A= {(x,y):x%yEZ% p(x,y) >0, and1=|{x,y}NA|}.
For any C C (Z9)?, define
(48) 15(C) = Yupecp(x, y).

With this notation, formula (33) for the jump rates of the voter model is

r(A) = 1p(84) = 2 Yrearga P (%, ¥).

LEMMA 4. For any genuinely multidimensional random walk p on Z*,

(49) lim,, ,winfaczd: n<jaj<e 7'p(8A) = 00

Proor. Fix two linearly independent x1, x, € Z¢ with
A = min(p (0, x1), p(0, x2)) > 0.
Consider a subset of the support of p:
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S={(x,y) E@ZHY:y—x=x1 or y—x=x)}.
For i = 1, 2 define maps
Bi:A—> SNdA
x— (x + kxi, x + (& + Dxy),

where £ is the maximal interger such that x + kx, € A. The map x — (Bi(x), Bz(x)) from
Ainto (S N dA)%is 1 — 1 since each of the pairs B; determines a line in R, and these two
lines intersect exactly at x. Thus

|[A|=|SNAA, so n@A)=r,(SN3A)=AV|A]| O

LEMMA 5. For any random walk on Z such that Z | x| p(0, x) = o, the conclusion (49)
of the previous lemma holds.

Proor. We may assume without loss of generality that p is symmetric and irreducible.
Thus there is a set K = {x, x2, - - -, xx} whose elements are positive integers with greatest
common divisor 1, such that

A= minlsiskp(o» xi) >0.

Let /= max(xy, ---, x). Since 1 = a;1x; + - -- + apx: for some integer coefficients a;,
it follows for any integers a < b that there is a path

(50) a=50,81,8,,5=b

from a to b, with displacements |s; — s;_1| € K, which stays inside the interval (a — ¢,
b + ¢). Let r > 0 be given; take m so large that

Yi=exp(0, x) =T

For integers 0 < i < x write
Aix = (l + xZ) n A.
If A; . # ¢ define
Qi x = min(Az,x)

so that @, € A, and a;,. — x € A. If for each i, x with /= x =m and 0 =i < x we have A, .
# ¢, then those pairs (a; x, @« — x) are sufficient:

rp(dA) = Y S5 plais, aix— x) =Y xp(0, x) = 1.

If, on the other hand, A; . = ¢ for some i, x with /< x = m, 0 = i < x, then choose any
integer j € [0, 3x) such that | A ;.| =|A|/(3x). The assumption A; . = ¢ guarantees, for
every n such that @ = 3nx + j € A, that b = 3nx + { € A. A path of the form (50) leads to
an edge e, = (¢,, d,) € 0A having p(c,, d,) = A, and

Bn—-1lx=c.<d,.<(Bn+2)x.

This last relation is needed in order to conclude that for different n, the edges e, are really
distinct. Now if | A | > 3xr/A, then

rp(aA) = Zn:3nx+jEAp(cn, dn) = (IA I/3x)A >r.

LEMMA 6. For any € € (0, 1), with
At=¢/8,and r = (4/e)log(l/e),
for any random walk p on Z°, for any finite A C Z¢, r,(dA) = r implies
|% — P(| ¢4, is odd)| <.

Here, {* is the voter model on Z® based on p, starting from A.
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Proor. We use a randomization—take a flow of jump times having double the usual
rate, and then select with a fair coin which times will be used to run the process. Such a
device appears in Griffeath (1979) to prove that “cancellative systems having pure births
are exponentially ergodic.” This randomization can be viewed as a modification of the
usual coupling proof (run two copies of the process independently, starting one of them in
equilibrium, until they reach the diagonal, then run both together along the diagonal) that
a finite state irreducible Markov process converges to its equilibrium distribution. In the
context here, our proof is a modification of the coupling proof that a two state (even, odd)
Markov chain which flips back and forth between even and odd at rate r each way, starting
from a pure state Geven Or 8o4a can be coupled to the chain in equilibrium (%)(8even + Soqa)
by time A ¢ with probability exactly 1 — (“)exp(—2rA¢).

Construct the voter models {7 for every B C Z¢ simultaneously from a substructure 2
consisting of independent exponential alarm clocks 7'.,,) which ring at rates p (x, y). When
the clock for the pair (x, y) rings, the voter at site x is influenced by the voter at site y: the
configuration either flips at x or else remains unchanged, so that its components at x and
y agree.

Write a = (x, y) for a pair of sites in Z% and let T, = T, be the random set of times
at which the clock for (x, y) rings, with

T.={t.(1) < t.(2) < -..}.

To say that T is a Poisson flow or Poisson point process on [0, ®) with rate or intensity
p(x,y) is to say that £,(1), £,(2) — t.(1), £(3) — £.(2), - - - are independent and exponentially
distributed with mean 1/p(x, y). Thus, the substructure 2 is a family of independent
random flows T, of event times, indexed by pairs a = (x, y) € (Z¢)%

Construct 2 as the one half thinning of another substructure 2’ having double the
usual rates. That is, let 2’ = (T(.,), x, y € Z¢), where T"(x, y)={t.1)<ti(2)<.--}is
a Poisson flow with intensity 2p(x, y), let € = (¢, )(@); x, yEZ% i=1,2, -..) be a
collection of fair coin tossing variable ( P(c,(i) = 0) = P(c.(i) = 1) = %) independent of
2, and set

To(w) = {t:(, 0)1cal, ) = 1,i=1,2, ---}.

When c.(i) = 0 so that £,(i) is not an event time in the substructure 2, we say “there is a
phantom effect at time #,(i),” and when ¢, (i) = 1 we call the effect at time t. (i) “real.” For
any C C (Z?)® having r,(C) = ¥ xecp(x, y) < o, write

Tc=UsecTa

for the set of all event times of 2’ for edges in C; T¢ is a Poisson flow with intensity
2r,(C). Let

7(w) = inf T4, and
a.(w) = (x,, y.) = the pair a such that r = £/(1)
be the time and place of the first effect in 2’ on some edge in dA. Let
G={w:c, (1) =0}

be the event, having probability %, that the effect at time 7 in 2’ is a phantom effect.
Thus, for all w,

[$7 N {x., 7. }| = 16 (mod 2).
Define H to be the event
H = {w:| {8 — {x., . }| = 1 (mod 2)}.
Although G and H are not ind_ependent, there is an event F having P(F) > 1 — 2¢,
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conditional on which G and H are independent. F' is a 2’-measurable event which
guarantees that r < At and each of the sites x., y, can neither give nor receive influence at
any time before At other than 7. To make this precise, for any x € Z¢ let

N:=08({x}) = {(x,9):p(x,9) >0,y # 2} U {(5, x):p(x,5) >0,y # x},
and for any pair a = (x, y) € (Z9)? let
N.= N:UN,.
Note that r,(N,) = 2 and r,(N,) < 4. For each a € 94, define the event
Fo={wia.=a,7=At[0,At1N (Th, — {1}) = o).
Define the event F by
F =U,csa F..
It can be seen that
forw € F, | {8 | = 16 + 1y (mod 2).
Here is the argument that P(F) > 1 — 2¢. For any « € A and ¢ € [0, A¢t],
P(F,|r=t a;:=a)

=P(TNnroaN(t,At]=¢, Th 5aN[0,At] =¢|T=¢ & = @)

= P(TN,noa N (¢, At] = ¢, Th -2a N [0,At] =)

Z e VP NA = g 7B = e 5 ] — ¢,
Integrate over ¢ € [0, A¢] to get

P(F,)=2(1—-€P(r=At,a, =)
and sum over a € dA to get
P(F)=(1—¢) P(r < At).
Since 2’ has double the usual rates, and 7,(3A) = r = (4/€)log(1/¢), and At = ¢/8,
P(r> At) = e 208t < p=2r8t _ ¢

Thus P(F)= (1 —€)?>1— 2.

Next we show that G and H are independent, conditional on F, and that G is independent
of F. Notice that for any a = (x, y) € A, the event F, N {| {4, — {x, y}| = 1 mod 2} is
measurable with respect to the o-field generated by 2’, (c.(i) : i = 2), and ( cp(i), BE (Z9)?
— {a}, i= 1), i.e. with respect to the information in 2’ and ¥ excluding the variable c.(1).
Thus we can compute

P(FNG N H) = Yoeis neas P(Fa, c(l) = 0, | ¢4, — (2, =1
=Y % P(Fo {8 — {x,7}|=1)
=% P(FnN H).

The same argument using the complements of G or H establishes the claims of indepen-
dence.
Finally,

P(|¢#|isodd) = P(FNGN H®) + P(FN G°N H)
=%P(FNH)+%P(FNH)
=%P(F)>%(1—-2)=%—c¢
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and similarly
P(|¢4;] is even) > 14 —e. 0
THEOREM 3. Let p be any random walk on Z? for which statement (35) about the

voter model holds. In particular, p may be any genuinely multidimensional random walk,
or a random walk on Z having 2| x| p(0, x) = . Then

(51) POE)/POEE) > % ast— oo,

Here, 1. is the system of annihilating random walks, starting from all sites occupied, and
&, is the corresponding system of coalescing random walks.

Proor. Given € € (0, 1), set r = (4/€)log(1/€) and At = €/8. Lemma 6 guarantees that
for finite A C Z%, r,(dA) = r implies

| % — P(| ¢8| is odd)| < e.
Since the flip rates for the voter model at any site are at most 1,
P({8:#¢) = e >1—¢ for any A # ¢.
Thus r,(dA) = r also implies
| % — P(| {4:| is even, {2, # ¢)| < 2e.

By relation (85), (which follows easily for those particular cases of p mentioned by using
Lemmas 3, 4, and 5,) there exists ¢, such that ¢ >t, implies

PN zr|&#¢)>1 -«
Thus for ¢ > ¢,
P([$feae] is 0dd) = (1 — €) (% — 20)P($? # ¢) > (% — 3)P({Prae # ¢).
The same inequality holds for P(| {%.a| is even, {%:a; # o), so that
| % — P(|$fvae| is 0dd | {lar # $)| < 3e.
Thus P (| is odd | § # ¢) — % as ¢ — oo, which is equivalent to (51) by duality. O

Now we embark on a proof of Theorem 4. The main part of the argument lies in Lemma
8, which generalizes the technique of Lemma 6.

LEMMA 7. Let p be a genuinely multidimensional random walk on Z% let r > 0 and
n > 0 be given. There exists m such that for any disjoint finite sets A,, A, + -+ , A, C Z°,

| Ai]l = m for i = 1 to n implies the existence of Ci, Cs, - - - , C, C (Z°)? satisfying, for 1 <
L,j=n,
(52a) C; C A, and r,(C) = r;

(52b) there is a basis {d), ds, - - - , d.} for (Z/2)" such that for any (x, y)ECQC,
|{x, ¥} N A;| = 1 iff the jth component of d; is 1;
(52c) ifi#J, (x,y) € C; and (u, v) € C;, then {x,y} N {u, v} = ¢.

Informally, condition (52b) says that for the voter models ¢, if the first jump is caused

by an alarm clock for a pair (x, y) € C;, then d; will be the parity change in () ¢* | mod 2,

i=1ton) € (Z/2)". Condition (52c) may be restated: if i # j, a € C,, then CiN N, # ¢.
Proor. Continue with the notations x1, xz, A, S from the proof of Lemma 4. Let

m; = F'ro/_\’
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(m; is the number of pairs from S needed in each C; to yield a rate =r), let
me = 6mn,

(ms is the number of pairs from S needed for sets C, so that subsets C, of size exactly m,
may be chosen to satisfy the “no interference” condition (52c)), and take

m = (msn?)?

for the value m whose existence this lemma asserts. Assume now that we are given disjoint
sets A; C Z¢, satisfying m =< | A;| < » for i = 1 to n. Let

Ap=2Z%- Ui A,
N={0,1,..-,n}.
Define a subset of the border between A; and A,
B = (d4) N (64,) N S.
Define an undirected graph G on N by
G={(@i,j) € N*: | Bj| = mq}.

We prove that G is a connected graph by showing that any nonempty connected component
IC N must contain 0. Suppose to the contrary that 0 & I. Let A = U;c1A;, so that m = | A |
< o and by Lemma 4,

(53) |8A N S| = Vm = man?.
In the partition
3A N S = User Ujen-1 Byj,

each Bj has | B;;| < ms, since the choice of I as a connected component means (i, j) € G.
This partition involves at most n” sets By, giving | 34 N S| < n’m; in contradiction to (53).
Thus, 0 is an element of every connected component of G.

Since G is connected, there is a subgraph 7' C G which is a connected tree on N. Fix
such a T and define a map

s:N—-{0} > N
s(i) = the unique vertex: (, s()) is the first edge of a path in T from i to 0.
Let ey, ey, - - - , €, be the standard basis for (Z/2)" and let e, = 0. For i = 1 to n, define
d; = e; + esq).
To see that {di, ds, - - , d,} is a basis for (Z/2)", check that each e; is in its linear span.
Just follow the path in 7T from i to 0, i.e., with A (2) = min{k:s*@i) = 0},
e = Eﬂ%_l dsrg).

Fori=1ton,let
C; = B,

so that the C, are disjoint subsets of S, and the C; in place of the C; satisfy (52b), and | C; |
= my = 6m;n. Observe that for any pair « € S,

(N, — {a}) N S|=6.

Choose any subset C; C C; having | Ci | = m.. Proceed recursively, at the i stage, i =2 to
n, choosing

Ci C Ci — (Ursj<i Uaeg, (N2 N C2))
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to have | C,| = m,. This is possible since | C;| = mz = 6m.n; the union is taken over exactly
(i — 1)m, values of a, and each N, N C, has at most 6 elements. This produces sets C;, C,,
«+.,C,such thati<j, a € C;, and B € C; imply B8 & N,. This establishes (52c). Notice that
rp(C) = A|Ci| =A(Cr/AT) =r. O

LEMMA 8. For any genuinely multidimensional random walk p, € € (0, 1), and
positive interger no there exists m with the following property:
Given disjoint finite subsets Ay, As, -+ , A, C Z% n < no, with each | A;| = m, define the
random joint parity vector in (Z/2)™

Q= (¢"|mod2 i=1ton).
For At = €/8n,,

(54) Yeewzmn | 27" — P(Qa = q)| < 4e.

PROOF. Set r = (4no/€)log(no/€) and take m as determined by Lemma 7 (depending on
p, r and no; this m will also work forn =1, 2, - .. , no in place of n,.) Let A, Az, ---, A, be
any disjoint finite subsets of Z? having | A;| = m, with n < n,. The unqualified indices i, j
will always be taken to range over 1, 2, ..., n. By Lemma 7, there are sets of pairs C; C
dA; having r,(C)) = r, satisfying also (52b) and (52c). Condition (52b) says that if the first
effect in 2 to change any of the {/* is at a € C, then the change in @, produced by that
jump will be d..

We continue with notation from the proof of Lemma 6: there is a double rate substruc-
ture 2, an independent collection of fair coins % used to thin 2/, and the resulting ordinary
substructure 2 is used to construct the family of voter model ({4, A C Z?). Define

ni=Te,

to be the time of the first effect in the double rate substructure 2’ to involve a pair in C;.
Define the random pair

Bi= (x;, y) € C;

to be the pair a such that 7, = 7/,(1), i.e., the place at which the effect at 7; occurs. Define
the 0, 1-valued variable

¢ = cp(l)

to be the value of the coin in € which determines whether the effect at time 7, is real (¢;
= 1) or phantom (¢, = 0). The vector of these c¢; is a random element of (Z/2)"

C(w) = (CI) C2y vy cn)

for which each possible value has probability 27".
Consider the set of sites involved at the random times 7

B(w) = U= {x;, i}
Note that | B| = 2n since i 5 j implies 8; & N . Define a modified parity vector @/, similar
to @, but which “resets” the opinions on B to what they were initially, just before counting
up the ¢ (mod 2):
Qw)=(¢t"-B|+|ANB|mod2i=1ton).
For any a = (x, y) € C; define the event
F.={B=0an=At (Tv, — {n})N[0,At] = ¢},

which says that 7; < At is caused by an effect in 2’ at a, and that sites x and y are not
involved in any other effects in 2’ during [0, At]. Thus, on F, there cannot be any
interaction before At between what happens at time 7; (a real or phantom effect, indicated
by ci(w) = 1 or 0) and the rest of the evolution of the family of voter models. Define F,
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representing successful coupling, with no interference possible, by
F=U,ec, -+ Unec, (N1 F).

A little reflection shows that for w € F,
Qu(w) = QX(w) + Y1 cilw) d.

Taking D to be the n X n matrix over Z/2 whose rows are di, d, « -+, dn, this may be
rewritten as

Qu(w) = Q%(w) + c(w)D, for w E F.

By arguing that conditional on F, Q% and c are independent, and that ¢ is independent of
F, it can be seen that for all qi, g2 € (Z/2)"

(55) PQ%=q,c=qyF)=2"P(QL=q,F).
Thus, for any q € (Z/2)",
P(Qslw) = q) = P(Qulw) = q, F)
= Yoezo P(Q& = qi, ¢ = (g —q)D7', F)
=Y2"P(@Lk=qy, F)
=27"P(F).
Once it is shown that
P(F)>1-—2¢
we are done since
Yoezan | 27" — P(Qalw) = @) = 2P(F°) < 4e.
Thus, all that rermains is to demonstrate the independent claim (55), and to show that
P(F)>1-2e
Here is the proof that P(F) > 1 — 2¢. For any choices of a; € C; and ¢; € [0, At], using
i # j implies C; N N, = ¢,
PN~ Fy, | mi=t, ar,= aifor i = 1 to n)
= P(T,rc, N (6 At] = ¢, T, -, N [0,A¢] = ¢,
fori=1ton| 7 =t,a,=afori=1ton)
= P(TN,nc, N (&, At] =, T, ¢, N [0, At]=¢fori=1to n)
= II exp(—2rp,(N,)At)
= exp(—8nlt) > 1 —e
Integrating over ¢; € [0, At], i = 1 to n yields
P(NL F,) = (1 —€)P(r:< At, o, = a; for i = 1 to n).
Summing this over C; X C; X --. X C, yields
P(F)=(1—¢€)P(r;<Atfori=1ton).

For each i,

P(r: > At) = exp(—2r,(C)At) < exp(—2rAt) = exp(—-2 (4—n° log @> i) = ¢/no.
€ €
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Since n < n,,
P(ri=Atfori=1ton)>1—c¢,
so that
P(Fy>(1-¢€)?>1-2e

To show the independence result (55), start with any choices of a, € C;, and q1, Q2 €
(Z/2)". On the event N7, F,, c is determined by coin tossing variables ¢y (1), i =1to n.
The event N F,, is measurable with respect to 2’ (without using any of the information in
%, saying which of the event times in 2’ are real and which are phantom). On the event
NF,, @%: is measurable with respect to 2’ and that part of ¥ which excludes the first coin
¢a, (1) for each pair of &;. Thus, conditional on NF, ga,, @4: and c are independent:

P(c=gqq:,NF,, Q% = q1)
=P((c,,(1),i=1ton) = g, Q% = q:|NF,)P(NF,)
= P((co(1), 2= 1to n) = g2 |NF,)P(Q% = q:| NF,)P(NF,)
=27"P(Q% = q1, NF,,).
Sumlfning the outer equality over all choices of the a; € C, yields (55) and ;:ompletes thS
proof.

The counterpart to Lemma 8, for a nearest neighbor random walk p on the line, is easy
because the jump rate (36) for this voter model is constant. In contrast to Lemma 8, where
At = €/8no, in Lemma 8’ below A¢ must be taken very large to accommodate either € small
or no large.

LEMMA 8. Let p be a nearest neighbor random walk on Z*', and let € > 0 and no be
given. There exist m and At > 0 such that, foranyn<noand as < a; < --- < an having
a; — a;-1 = m for i = 1 to n, the joint voter model parity

Q.= (| {f**| mod 2, i=1ton)
satisfies
Yaezon |27 = P(Qa=q)| <e.

PROOF. Let R, be the random walk on (Z/2)", starting at @o, and having jumps,
expressed in terms of the standard basis {e;, e, - -, e,},

g—qte atrate 1,fori=1orn
gq—>q+e +eatrate2, fori=1ton — 1.
Up until time
T =min<;=p inf{t:{%"""“‘i =6},

@ and R can be coupled so that @, = R,. Take m so large that P({{%™ = ¢) < ¢/(4no), and
thus P(r = At) < €/4. The distribution PR;" of R, converges to m,, having mass 27" at
each point of (Z/2)". Take At so large that the total variation distance|| PR;; — ., ||, which
is the same regardless of which pure state R is started in, is less than €/2. Now

| 7. — PQa: || < ||m — PR:!|| + | PR3} — PQ:} || <€/2 + €/2 =€. O

THEOREM 4. Let p be a genuinely multidimensional random walk on Z° or a nearest
neighbor walk on Z'. Let K C R? be compact and convex, and define sets K, C Z% by (1),
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so that
(56) supi=0 E(& N K,) < c < oo,

The system m, of annihilating random walks, starting with all sites occupied, is asymp-

totically the one half thinning of the corresponding system &, of coalescing random walks,

ie.

(57) lim,—, o XACK, P(gt NK,= A)(EBCA |2_|AI - P(Th NK = Blgt NK,= A) l) =0.
Proor. We show that (57) holds for each choice of ¢ < o, uniformly in arbitrary choices

K, C Z° satisfying (56); the geometric structure of the K, does not enter into the argument,

except in the case d = 1 where it is necessary to assume that each K, is an interval.

For the family of voter models ({7, A C Z¢) with the standard additive coupling induced
by a substructure £: ’

g‘i‘ = Nxea .{f

introduce abbreviation for the set of individuals whose initial opinions survive until time
t:

S ={x €Z%{F# ¢}
and for the set of those whose dynasty of followers at time ¢ has odd cardinality:
(58) ¢4 = {x € Z%| {2 is odd}.

The usual coupling on [0, ¢] is coalescing random walks ¢, annihilating random walks 7,
(both starting from Z¢, all sites occupied) and the family of voter models yields, for all w,

(59) & = Sz, Ne = S?dd~

Fix ¢ < » and sets K, C Z¢ satisfying (56); in d = 1 also require that the K, be intervals.
Introduce the abbreviation, for finite A C Z% ¢t =0

g(A) =Fpca |27 - P! NK, =B|S,NK,=A)|.

Since each g;(A) is the total variation distance between two probability measures on the
collection of all subsets of A,

0=g(A)=2.
Using the coupling (59), our goal (57) becomes
(60) lim .. Yack, P(S:N K, = A)g:(A) = 0.

Let € € (0, 1) be given; we will find ¢, depending on ¢, p, and ¢, such that the sum in (60)
is less than 10e when ¢ > ¢,. ‘
Set no = c¢/e, so that by Chebyshev’s inequality and (56),

(61) P(K.NS|>no) <e

In the multidimensional case, let m, depending on n,, p, and €, be determined by Lemma
8, and set At = €/(8no). In the nearest neighbor, d = 1 case, let m and A¢, depending on no
and ¢, be determined by Lemma 8’. Fix any ¢ > At and set

s=1t— At

For n < no and any disjoint finite A;, As, - - -, A, C Z? satisfying | A;| = m [require also, in
the d = 1 case, that the A; as well as UA; be intervals] Lemma 8 or Lemma 8’ says

Yoewmn |27 — P(({a, i=1ton)=qgmod?2)|<de.
Since the part of the substructure 2 up to time s is independent of the part of Zafter s, for
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any A C K, with |[A|=n,A = {x1, +++, %},
Yol2"=P((|¢]i=1ton)=q|{F=Afori=1ton, K,NS;=A)|< 4e.
Average this over all allowable choices for the A,, ---, A, to get:
Yel2 = P((|¢F],i=1ton)=q||{f|=mfori=1ton, K, NS, =A)| <4e.

[In the d = 1 case each {7 is an interval, so K; N S, = A, together with K, being an interval,
implies that U7-, {;* is an interval.] Using the notation (58), this can be rewritten

(62) Shca |27 = P(S!NK,=B|S.NK,=A,|{f|=zmVxEA)| < 4e

Consider the events

E ={|¢|=zmVxeK,NS,, K.NS,=K,NS,}.
Our final goal will be to show that
(63) P(E)—>1 ast— oo,
To show how (60) follows from (62) and (63), define
4% ={ACK;PE|NK NS =A)>1—¢€).
Choose ¢ so that ¢ = ¢, implies P(Ef) < € Since
> P(Ef) =Yack, P(S:N K, =A)P(E;|S:N K, =A)
=Yackagy PSINK,=A).e=eP(S:NK, & b)),

t > t, implies
(64) PS,NK, € 9)>1-¢

Now for A € ¢, with |A| = n < n,,

PK,NS,;=A, |{({|lzmVx€A|K.NS,=A)>1—¢€

and (62) together imply
(65) YBca |27 = P(S!*NK,=B|K.:NSi=A)| <2+ 4e.

[This argument has the form: if a measure p = Ap; + (1 — A)p2 is a mixture of two
probability measures, then for the total variation distance from a probability measure v,

Iy —ml <My = il + L= Np = gl <A@ + 1] » = pell

with A < € and || » — p2|| < 4€.] Formula (65) may be rewritten: for A € %, with |A|=n <
no,

8:(A) <-6e,
so the sum in (60) may be estimated, for ¢ > £,:
Yack, P(S: N K, = A)gi(A) < Tacaa=n, P(S:N K, = A)-6¢
+ Yack:ag gorjajsn P (SN K, = A).2

(using (64) and (61)) < 1-6€ + 2¢-2 = 10e.

Thus all that remains is to verify (63). Recall that s = ¢t — At; At is fixed as ¢ varies; we
write p, = P(0 € &) = P({f # ¢) so that condition (56) is: | K;| p: < c. Define events, for k
=1,2 -

E[,k={'§:IZkaEKtnSs, K,ﬂSs=KtﬂSt},
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so that E, = E,,, D E. if k = m. To get P(E{) — 0, write
Efp=Usex, {0< || <k U{|$| =4, $T=1¢}),

so that by translation invariance and (56),
(66) P(E{)<infes=m P(Es) =< (c/p:) infri=m[PO<|{3| < k) +P(|$3|Z b, §0=9)].
Since the flip rate at any site in the voter model is at most 1,

DPi/ps = P(§i# ¢85 # ¢) = e '
By conditioning on ¢?,

P =k, 2 =0) < P(| 2| = k) supajaj=+ P({8: = ¢) < ps supaya=k P(§4: = o).
Thus, continuing with (66),
P(E;) = ce™ infup=m[P(|$2| < k|{2# ¢) + supaja=+ P8 = ¢)].

Lemma 3 says that the first term above goes to zero as ¢ — o, for any fixed k. To see that
the second term can be made arbitrarily small by choosing % large enough, note that the
embedded Markov chain for ¢* must pass through a sequence A;, A_1, +--, A; of
configurations having | A; | = i before reaching ¢. The jump rate out of A; is 1, (84.) = | A:|
= i. For a pure death process which starts at £ and jumps from i to { — 1 at rate i, the time
until extinction has mean ¥ %_, (1/i) and variance ¥, 1/i% the probability that this process,
starting at &, is extinct by time At tends to 0 as % increases. A comparison of { 4 with this
process shows that

SUp4jai=k P({8: = ¢) > 0 ask >,

Thus P(E{) — 0 as t — o, concluding this proof. O

COROLLARY 3. Let p be any genuinely multidimensional random walk on Z¢, d = 2,
or a nearest neighbor random walk on Z%, d = 1. For each t = 0 there exists versions of
., and of %, a one half thinning of &, such that for any compact K C R,

P(nant#®&nK[)—)0

PrOOF. When the sum in (57) is €, there exist versions of n, and ©¢, such that
P(ntﬂK[¢®£tﬂKt)=e.

Let 8™ be the sphere of radius n centered at the origin in R¢, and fix an increasing sequence
t, — o such that for ¢ = t,, with K = S,, the sum in (57) is less than 1/n. For ¢ € [¢t,, t.+1)
select versions of 7, and ®¢; such that

1
P(n.NS?#0&NSY) <;.
These are the required versions. 0

COROLLARY 4. Let p be a genuinely multidimensional random walk, or a nearest
neighbor random walk on the line. If for some sequence t; — o,

at,f t,>d [,
then
QrNt, —>d Ou,

where the point process O is the one half thinning of the point process p on R*.
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ProoF. Write C7(R“) for the class of all nonnegative continuous functions on R
having compact support. The Laplace transform L, a random measure p on R is defined
by L,f = E (exp(—[ f dp)) for f € C7. The one half thinning O of a random measure is
characterized by

L(G;L)f= Lu(_log(l - % (1 - e_f)))~

Suppose f € C7 with support contained in a compact set K. Let g = —log(1 — %(1 — e ™)),
so that Le, f = L,g. Take versions of 7, and ©¢ as in Corollary 3. We have

IL“t'hf_ Lpr' = 'L“m:f_ Le“zfzfl + 'L"‘lgzg - Lﬂgl

The first term above is dominated by P(n. N K; # ©¢ N K,) which goes to zero as ¢
approaches infinity; since g € C the second term goes to zero along the subsequence ¢; by
the hypothesis a;,§, —a p. Thus L, , f— Le,f for every f € C?, so o, —a Op. ]
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