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A CLASS OF MULTIVARIATE NEW BETTER THAN USED
DISTRIBUTIONS

BY ALBERT W. MARSHALL! AND MOSHE SHAKED?

University of British Columbia and Indiana University

A class of multivariate distributions with new better than used (NBU)
marginals is introduced. A number of necessary and sufficient conditions for
a distribution to be a member in the class are given. Closure results, which are
useful for the identification or construction of members in the class, are
derived. In particular, simple proofs of some well known preservation prop-
erties of the class of the univariate NBU distributions are obtained. Two
examples of replacement models, that give rise to multivariate NBU distri-
butions in the class, are discussed.

1. Introduction. The class of “new better than used” distributions was introduced
in the context of reliability theory where it arises in the study of replacement policies. A
univariate distribution F or corresponding random variable T is said to be new better than
used (NBU) if P{T =0} = 1 and if

(1.1) P{T>s+t|T>s}<P{T>t} forall s¢t=0.

With the notation F(¢) = 1 — F(t) = P{T > t}, this condition can be written in the form
F(x) =0for all x <0 and

(1.2) F(s+t)<F(s)F(t) forall s, t=0.

It is well known (see Barlow and Proschan, 1975, page 159) that if F has an increasing
hazard rate average (IHRA), then F is NBU, but not conversely.

Multivariate extensions of the IHRA property have been considered by Buchanan and
Singpurwalla (1977), by Esary and Marshall (1979), and by Block and Savits (1980). The
purpose of this paper is to discuss a multivariate extension of the NBU property that is
quite analogous to the multivariate IHRA extension of Block and Savits (1980). Some
ideas developed here lead naturally to other multivariate NBU conditions we discuss in
another paper (Marshall and Shaked, 1980).

In the following, “increasing” stands for “nondecreasing” and “decreasing” stands for
“nonincreasing.”

2. Definition and equivalent conditions. The condition (1.2) that F is NBU can
be rewritten in the form

(2.1) P{Te(a+B)A}=P{TE€ aA}P{T € BA)}

for every a = 0, 8 = 0 and every set A = (s, ©) such that s = 0. Sets A of the form (s, )
are open and have increasing indicator functions. They have natural multidimensional
analogs: A set A C 2" is said to be an increasing set, or to be an upper set, if x € A and
x;<y,i=1, ..., nimplies y € A. Sets of this kind are also called upper layers, e.g., by
Robertson and Wright (1974) and Steele (1978).
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In the remainder of this paper, sets and functions are assumed to be Borel measurable
whenever measurability considerations are relevant.

2.1. DEFINITION. A random vector T = (T, ---, T) is said to be multivariate new
better than used MNBU) if P{T;=0,i=1, .--,n} =1and if
(2.2) P{(T€(a+B)A}y=P{T€aA}P{TE BA}

for every a = 0, 8 = 0 and for every open upper set A C [0, )",

A number of conditions equivalent to MNBU can be given but some terminology is
useful for their statement.

A real function g defined on [0, »)” is said to be subhomogeneous if

(2.3.1) ag(t) < g(at) for every a € [0, 1] and every t = 0,
or equivalently, if
(2.3.11) ag(t) = g(at) for every a = 1 and every t = 0.

If equality holds in (2.3.i) for every a € [0, 1] and every t = 0, or if equality similarly holds
in (2.3.ii), then g is said to be homogeneous. Homogeneous functions of the form

(2.4) g(t) = maX1sjsmminlsisnaijti, 0= ;=< o, = 1, ..-,n, ] =1..-,m

are particularly important examples.

2.2 THEOREM. For a random vector T = (T}, - -, T,) such that
P{T;=0,i=1,.--,n}) =1,

the following conditions are equivalent:

(i) T is MNBU;
(ii) for every a >0, B > 0 and every increasing binary (i.e., indicator) function ¢,
1 1 1
K —_ < - —T);
@5 E¢(a+BT><E¢(“ T>E¢(ﬁ )

(iii) for every a > 0, 8 > 0, y € (0, 1) and every nonnegative increasing function h
defined on [0, ©)",

1 1 1
. ——T|=<En|—T)|Er"|—T|;
as or( ) < w (L) (L)
(iv) for every nonnegative increasing subhomogeneous function g, g(T) has an NBU
distribution;
(v) for every nonnegative increasing homogeneous function g, g(T) has an NBU
distribution.

Proor. The equivalence of these conditions is established by showing that (i) = (ii)
= (iii) = (i) = (iv) = (v) = ().

(i) = (ii). Let ¢ be the indicator function of the increasing set A (not necessarily open)
and fix a > 0, 8 > 0. Esary, Proschan and Walkup (1967), pages 1468-1469 show that for
every € > 0, there exists an open increasing set A, possibly depending on a and 8 such that
A CA.and such that P{T € aA.} = P{TE aA} + eand P{T € BA.} = P{T € BA} +
&. Since (2.2) holds for A,

E"’(Z—i”ﬁ T) =P{T€(a+p)A}<P{TE (a+ p)A} = P{T € aA,} P{T € BA.}

<[P{T € ad) +][P(T € BA} +¢] = I:Eq:(—‘l; T) + e][&p(% T) + e].
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Upon letting ¢ — 0, it follows that (2.5) holds.

(ii) = (iii). Let A, 2= 1,2, -+ be an increasing sequence of increasing step functions
with the property that lims_,..h, = k pointwise; to be specific take
1 1 .
R (t) =‘T ifl—2-,;-sh(t)< 2‘ , i=1, .-, k28

=k if h(t) = &.

Denote the indicator function of a set A by Is. Then
1
hi(t) = ?3: ? IA,,k (t)

where A; = {t:h(t) = ék‘ i=1,.--,k2"* k=12, ... is an increasing set. Note that

AprD «-+ D Apar . Because of the monotone convergence theorem, it is sufficient to show
that (2.6) holds for function % of the form

h(t) = Y21 aida, (t)

where ;=0,i=1,.--,mand A; D -+ D A, are upper sets. For notational convenience,

let Am+1 = ¢.
In the following, the first inequality follows from (ii), and the second equality is obtained

by two changes of order of summation:

Eh(ﬁ T) =Y2,a;P{T € (a + B)A;} = Y21 a;P{T € aA;} P{T € BA;}
=32 N2 (@ + -+ + Amina )] P{T € a(Ai — A1)} P(T € B(A; — A1)}
<Y YR (@ + -+ @)@+ -+ + @) TP{T € a(Ai — A1)}

-P{T € B(4; — A1)}
= [T (a1 + -+ + @) P(T € a(A; — Air1)}]
ZrRi(a+ - + @) "P{T € B(A; — Aj)}]

= Y i 1-y i
—Eh(aT)Eh (BT).
(iii) = (ii). This is trivial.

(i) = (iv). Let g be a nonnegative subhomogeneous increasing function. Fix a >0 and

set
¢(t) = I(s:g(s)>a)(t)-

Let a € (0, 1). In the following, the first inequality is obtained from (2.3.ii) and the second
inequality follows from (ii):

P{g(T)>aa} P{g(T) > (1 —a)a} = P{g(% T) > a} 1z>{g(1 1 aT) > a}

= Eé (% T)E¢(Ti—a T) > E¢(T) = P(g(T) > a).
Since a > 0 and « € (0, 1) are arbitrary, it follows that g(T) is NBU.

(iv) = (v). This is trivial.
(v) = (i). Let A C [0, )" be an open upper set and define the function g on [0, ®) " by

£g(t) =sup{0>0:%t€A},if{0>0:%teA}#qb

=0, otherwise.



262 ALBERT W. MARSHALL AND MOSHE SHAKED

Then g is a nonnegative homogeneous increasing function and for every § = 0, P{g(T) >
8} = P{T € 8A}. Since g(T) is NBU,

P{TE€ (a+B)A}=P{g(T)>a+ B} =P{g(T)>a} P{g(T) > B}
= P{T € a4} P(T € BA). 0

2.3 REMARK. Various modifications of the conditions given in Theorem 2.2 are possible.
In (iii), the nonnegative increasing functions can be replaced by the nonnegative increasing
continuous functions. Also in (iii), it is sufficient to require that (2.6) holds for some y €
(0, 1). Condition (v) can be replaced by the seemingly weaker condition that requires g (T)
to be NBU for each g nonnegative continuous increasing homogeneous function, or even
by the condition that requires g(T) to be NBU only for g of the form (2.4).

The equivalent conditions of Theorem 2.2 is an analog of a set of conditions that Block
and Savits (1980) have used to define a multivariate increasing failure rate average

(MIFRA) property. Because

2.7 T is MIFRA if and only if g(T) is IFRA for every nonnegative increasing
homogeneous function g,

it follows that MIFRA = MNBU.

3. Closure properties. The following closure properties are important for the eval-
uation of the MNBU concept introduced in Section 2, and they are also useful for the
identification or construction of examples.

3.1. ProPERTY. If T = (T4, ---, T,) is MNBU, then any joint marginal is MNBU.

3.2. ProPERTY. If T= (T, -+, T») is MNBU and 7 is the life function of a coherent
system, then 7(T) is NBU.

3.3. ProPERTY. If T=(T, --.,T,)isMNBUand a;=0,i=1, ..., n, then 2a;T;is
NBU.

Properties 3.1—3.3 follow directly from (v) with obvious choices of particular functions
8. These results are important special cases of the following:

3.4 ProPERrTY. If T is MNBU and g; is a nonnegative subhomogeneous increasing
function defined on [0, )", j =1, ..., m, then (g:1(T), - -, g.(T)) is MNBU.

ProoF. Let g be a nonnegative subhomogeneous increasing function defined on [0,
o) ™. Then the composition g (gi(t), - - -, gn(t)) is a nonnegative subhomogeneous increasing
function defined on [0, »)”. Consequently, the result follows from (iv). O

1t follows from 3.3 that if (T, ---, T,) is MNBU and a; =0,i =1, ... n, then (a: T},
«eo,a,T,) is MNBU. .

3.5 ProPERTY. IfS=(S}, :-+,S»)and T = (Ty, .-, T,) are MNBU and if S and T
are independent, then (S, T) is MNBU.

Proor. To show that (S, T) satisfies (ii), let « = 0, 8 = 0 and let ¢ be an increasing
binary function defined on £2™*". Denote the distribution function of S by F and the
distribution function of T by G.

In the following sequence, the first inequality follows from the fact that S satisfies (ii);
the second inequality follows from the fact that T satisfies (ii) and that a product of
increasing binary functions is an increasing binary function. The last inequality follows
from ¢ < 1.
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o[ o(rpsaisn)] - [Jolemoatn
ezl
=J'J' j¢<%s,&i_ﬁt)¢<%s’,&i—ﬁt) dG(t)} dF(s) dF(s')
<[ o)l ae) aoo]
x [ [ ,¢<% s, %t’)gﬁ(% s’,%t’) dG(t’)} dF(s) dF(s)

= j J Ud)(i s, —l—t)qb(i s, it') dG(t) dG(t') dF (s) dF(s')
s/g'Jtt a a B B

) dF(s) dG(t)

B t) dF(s')] dG(t)

1 1 1 1
=E¢|—S,—T |E¢|{—=S,—T].
o(as2m)ee(Fs57) 0
3.6. CoroLLARY. IfT,, .-, T, are independent NBU random variables, then
(a) T=(Ty, ---, T,) is MNBU,
(b) g(T, ---, T,) is NBU whenever g is a nonnegative subhomogeneous increasing

function.

ProOF. (a) is immediate from Property 3.5. (b) follows from (a) and (iv).

The class of univariate NBU distributions is closed under formation of coherent systems
and under convolutions (see Barlow and Proschan, 1975, pages 182-184); according to
Corollary 3.6, these well-known facts are special cases of Properties 3.2 and 3.3.

3.7 PROPERTY. If TV, ¢ =1, 2, .-- is a sequence of MNBU random vectors that
converges in distribution to T, then T is MNBU.

Proor. This fact can be easily verified by first proving that (iii) holds for every
nonnegative increasing continuous function A and then by using Remark 2.3. 0

4. Examples.

4.1 A replacement model. Suppose that devices di, - - -, ds are available to perform
tasks t, &, t;. Upon failure of d; (which performs all three tasks simultaneously), it is
replaced by d; (which performs tasks ¢; and ¢;) and by ds; (which performs only task &;).
When device d; fails, it is replaced by ds (which performs only task ¢;) and by ds (which
performs task &). Let X; be the lifelength of the ith device,i =1, ---, 5, and let T} be the
time that ¢ is performed using these devices, j = 1, 2, 3. Then

T1=X1+X2+X4, T2=X1+X2+X5, T3=X1+X3.

It follows from Property 3.4 that if Xi, ..., X5 are independent NBU, then (T}, T3, Ts) is
MNBU. Thus, for example, 7( T4, T:, Ts) is NBU when 7 is the life function of a coherent
system,; this fact is not easy to verify directly.

4.2 Freund's (1961) distribution. Suppose that devices d; and d; are placed in service
together, and are subjected to respective constant hazard rates A; and A until one or the
other fails. From the earliest failure time on, the remaining device d; is subjected to a new
constant hazard rate u; > A;. If T is the life length of d;, j = 1, 2 then it can be shown that
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(T, T2) has the same joint distribution as
(4.1) (min(X;, Xz + X3), min(Xz, X1 + X))

where X, X, X; and X, are independent exponential random variables with rates A, Ao,
1 — A1, g2 — A2 respectively. Since exponential random variables are IFRA, it follows easily
that (T, T,) satisfy the “MIFRA condition” of Block and Savits (1980). Using quite
involved analysis, these authors obtain the special case A; = y. that (71, X5) is MIFRA.

In the above model, (T}, T:) is MNBU whenever Xj, ---, X, are independent NBU
random variables. Random variables of the form (4.1) arise from a model somewhat like
that of Example 4.1.
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