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A NEW PROOF OF SPITZER’S RESULT ON THE WINDING OF TWO
DIMENSIONAL BROWNIAN MOTION!

BY RICHARD DURRETT

University of California, Los Angeles

Let W(¢) be a two dimensional Brownian motion with W(0) = (1, 0) and
let @(¢) be the net number of times the path has wound around (0, 0), counting
clockwise loops as —1, counterclockwise as +1. Spitzer has shown that as ¢
— oo, 47p(t)/log ¢ converges to a Cauchy distribution with parameter 1. In
this paper we will use Levy’s result on the conformal invariance of Brownian
motion to give a simple proof of Spitzer’s theorem.

Let B} and B? be two independent Brownian motions with B} = 1 and B = 0, and let
C, = B} + iB?be a complex Brownian motion. Since C; almost surely never hits 0, we can
define the total angle swept out up to time ¢ to be the unique process 8; with continuous
paths which has 6, = 0 and sin(6,) = B?/| C;| for all ¢ > 0. In words, the process 6; records
the angle and keeps track of the number of times the path has wound around 0, counting
clockwise loops as —27 and counterclockwise loops as +2x. Spitzer (1958) proved the
following limit theorem for 4,.

THEOREM 1. Ast—

dx
1+ x%

Y
P(20,/log t = y) —> J

Spitzer’s proof is ingenious but requires a lot of computation; see Ito and McKean
(1965) pages 270-271 for a succinct version. He introduces the double transform f(a, 8, x)
= [§ e™® E.(exp(iaf,))dt and observes that f(a, 8, x) = g.s(| x|) where g, satisfies

2

1 n 1 ’ o

3 (g (r) + 78 (r) - 'r—zg(r)) - Bg(r) =-1

The last equation is solved to obtain an explicit formula for g,s which, with the help of
Erdélyi (1954), is inverted in terms of Bessel functions. With an explicit formula for
E.(exp(iad;)), the last step is to let £ — o and use a few facts about Bessel functions to
complete the proof.

As the reader can imagine, filling in all the details in the outline above requires some
work. The purpose of this note is to give a computationally simple proof of Spitzer’s
theorem based on a result of Lévy (1948) which we now pause to describe. (The reader
might enjoy looking at Lévy’s original “proof” (see page 270) for an intuitive but
nonrigorous explanation. A complete proof (with a serious typo in the final formula) can
be found in McKean (1969) on page 109.)

Let f be a nonconstant function which is analytic on the entire complex plane, and let
D, be a complex Brownian motion which starts at 0. Lévy’s result is
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THEOREM 2. F, = f(D,) is a time change of a complex Brownian motion starting at
f(0). To be precise, if we let

oy = J’ | F/(Ds)|? ds
0

and ¥e = inf{s:0, = ¢},

then F(y,) has the same distribution as a complex Brownian motion starting at f(0).
We will use this result with f(z) = e”. Since e° = 1, so after the time change, F, = ¢

has the same distribution as C,. The first advantage of constructing C; as F(y,) is that we

can write down the angle process for F(y,) — if A; = ReD, and B, = ImD,, then 6, = B(y,).
The second and more crucial feature of this representation is that

t t
o = f | exp(iD,) | ds = f exp(24,) ds
Y 0

so y and B are independent.

Combining the last observation with the scaling relationship c¢B; =4 B(c’t) reduces the
proof of Theorem 1 to studying the limiting behavior for 4y,/(log £)* (more details on this
point are given at the end of the proof). The first step in doing this is to realize

P(y: =< y(log t)*/4) = P(a(y(log t)*/4) = t)
and changing variables ¢ = e* gives
P(o(y(log t)’/4) = t) = P(c(yu?/4) = ") = P(log o(yu?/4) = u).
To compute the limit of the last quantity, we use the following.

LEMMA. Let M; = maxo<s<;A;. Ast — o
(log o(¢))/2M(t) — 1 in probability.

Proor. To get an upper bound, observe that log o(¢) < log(¢ exp(2M;)) so
log a(t) <1+ log ¢ .
2M(t) 2M(t)

From the scaling relationship M(¢) =4 t'/2M(1), so we have shown that for all ¢ > 0

1
P(Oga(t)sl-l-s)'—)l as t— oo,

2M(t)
This proves half of the lemma. To prove the other half, observe that if we let L.(¢) be the
Lebesgue measure of {s € [0, £]:A, = (1 — ¢)M,}, then o(¢) = exp((2 — 2e) M(¢))L.(¢) so
log a(2) = 1—e4 log L.(¢)

2M(t) 2M(t)
From the scaling relationship we see that (L.(£), M(¢)) =4 (¢tL.(1), t*2M(1)) so

log o(t) log(¢L.(1))
P(ZM(t) 21—28)2P<W2—8)—> 1

as t — oo, completing the proof of the lemma.
With the lemma proved, it is routine to complete the proof. Write

logo(yu®/4) M(yu*/4) _ 1)
My WD

P(log o(yu?/4) = u) = P(
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From the lemma and the scaling relationship, it follows that if § > 0, then for u sufficiently
large the right hand side is

2
ZP((I —s)M(Ly‘+2/4)z 1) —8=P(M(y)2—l—i-—§) -3

Since § is arbitrary and P(M(y) = 1) = 0, it follows that
lim inf, ... P(log o(yu®/4) = u) = P(M(y) = 1).
A similar argument using 1 + § in place of 1 — § shows that the lim sup < P(M( y)=1),s0
asu—
P(log o(yu®/4) = u) > P(M(y) = 1)
and using the computation above the lemma, we have
P(y(t) = y(log t)*/4) = P(M(y) = 1).
Introducing the random variable T = inf{¢ > 0: A, = 1}, we can write the last conclusion
as
P(y(¢) = y(log t)?/4) — P(T: < y).
The last result gives the limiting behavior of y(£). To obtain the conclusion of the
theorem, we observe that
P(20(t)/log t = y) = P(2B(y:)/log t < y)
and since B and y are independent, it follows from the scaling relationship that the right
hand side
= P(B(4y./(log t)*) < ).
Since Brownian motion has continuous paths, it follows now that as £ — «
P(26(t)/log t < y) — P(B(Ty) < y).

The last term, being the hitting distribution of the line {(x, y):x = 1} for a two dimensional
Brownian motion, is known to be a Cauchy distribution with parameter 1, so the proof is
complete.
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