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ON THE INTEGRAL OF THE ABSOLUTE VALUE OF THE PINNED
WIENER PROCESS

By L. A. SHEPP

Bell Laboratories, Murray Hill

Let W= W,, 0 <t =1, be the pinned Wiener process and let £ = [} | W).
We show that the Laplace transform of £, ¢(s) = Ee™*° satisfies

(%) j e (V2 s¥2)s V2 ds = — v Ai(u)/Ai (1)

0
where Ai is Airy’s function. Using (*), we find a simple recurrence for the
moments, E£¢" (which seem to be difficult to calculate by direct or by other
techniques) namely E¢" = e,,s/;(36s/§)"‘/ I‘(Sn +1
T'(Bk + %)/T'(k + %) and forn =1,

) where ¢ = 1, g, =

6k + 1
e =gn+ 22=1 en—k(;:) mgk.

1. Introduction. The pinned Wiener process W,,0 < ¢ < 1, is obtained by conditioning
a standard~Wiener process W;, 0 < ¢ =< 1, to pass through zero at ¢ = 1. It is clear from the
fact that W is Gaussian with mean zero and covariance

(1.1) EWW,= min(s, t) — st, 0<st=<1
that E [§| W,| dt = [ E| W.| ds = ¥/ (4v/2), but higher moments of

1
(12) géf | W.| dt
0

are awkward and unwieldy to obtain directly, and are of some interest in certain problems
in random walk arising in empirical distribution theory.
Kac’s formula for

(1.3) . u(x) = Ex f e_“‘_J;’V(X”)dS f(X,) dt,
0

where X; is a time-homogeneous Markov process starting at x at s = 0, is a natural tool to
find the distribution of random variables of the form (1.2). However, there is difficulty
with a direct use of (1.3) in this case, because although X = W is a Markov process, it is
not time-homogeneous. Although Kac’s formula has an extension to non-time-homogene-
ous processes X, the formula involves partial rather than ordinary differential equations
and so is awkward. Here we use Kac’s technique in a novel way, starting with a time-
homogeneous process (namely the Wiener process) and introducing conditioning by
allowing f(x) to be a 8-function at x = 0, to obtain a formula for W in place of W.

Using the above technique described in detail in Section 2 and solving the resulting
ordinary differential equation, we obtain, implicitly,

(1.4) ¢(s) = Ee™*

via
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(1.5) f e ¢ (V25%%)s™V2 ds = VnAi(u)/Ai’' (1)
0

where Ai is the usual Airy function [2]. Further, inverting the Laplace transform on u in
(1.5), we can obtain ¢(v2s%?)s™/2. Hence, in principle at least, we know ¢ (s), which is the
Laplace transform of the density f; of £, and which could then be used (in principle) to
determine f; by a second inverse Laplace transform. A remarkably similar (but note the
ratio on the right is inverted) implicit double Laplace transform, viz.,

(1.6) f e (s'2) ds = ¢’ (w) /Y (w),
0

(with ¢ a parabolic cylinder function) was indeed numerically inverted in [3] but the
present case with s*? in (1.5) appears to be more difficult to treat numerically. (The next
paper in this issue, by S. O. Rice “The integral of the absolute value of the pinned Wiener
process - calculation of its probability density by numerical integration” performs this
numerical inversion of (1.5).)

The moments E£” can be read off from (1.5). Define

(17) en = E£T (3” + 1)(36«/5)"/1‘(%) )

2

By comparing asymptotic expansions of both sides of (1.5) as u — o, using [1, page 448],
we obtain that for n = 1,

)

This gives the results in Table 1 for n < 5.
‘ Of course for n — o, E£" — o, Indeed,

1\ (1 N
1"(3n + 5)1‘(5)(3&/5)

(rea)r(37)

from (1.7) and the fact that the sum in (1.8) is nonnegative, so that E£” = n™? const.”,

(1.8) e, =

(o)
n) 6k +1

+ Z;:=1 en—k<k 6k 1 1 .
I‘(k+§)

Ef =

TABLE 1
n E¢" Et" (E¢"y'/" e, 97"
0 1 1.0000 1.0000 1
1 T
1 ~ /= 0.3133 0.3133 ‘1
4 V2
2 7 0.1167 0.3416 7
0 . .
21 T
—_— \/= 0.0514 0.371 .32,
512 \/; 8 782
4 19 0.0264 0.4030 19.11.7.3
o . . .11.7.

101 T
_— 0.0155 0. .7.5.32.9°
a2 \/; 4343 101.7.5.3%.2
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which is of course not surprising since £ is unbounded.
The technique may also be applied to integrals

(1.9) g,,=j | W, |# ds
()

for any B # 1, but except for B = 2, the function playing the role of the Airy function in
(1.5) has apparently not been studied. The case B8 = 2 is interesting because of the
comparison of the present technique with the Karhunen-Loeve series technique. Both
techniques are discussed in detail in Section 3. It is remarkable that in this seemingly
simpler case, no simple recurrence for the moments of ¢; can apparently be obtained.

2. Proof of (1.5). We begin by using Kac’s formula [2, page 54] for the Wiener process
X starting at x. The expectation (1.3), for f bounded and of compact support and V=0, is
the unique bounded solution to

1
(2.1) ~3 u”(x) + (a + V(x))u(x) = f(x).
Taking V(x) = | x|, let ¢(x), ¥(x) be two solutions of the homogeneous equation corre-
sponding to (2.1) with zero right-hand side, with ¢ bounded at + o, { bounded at — and
(2.2) oY — oY =2
Then the Green operator applied to f,

(2.3) u(x)=¢(x)f Y (w)f(u) du+¢(x)f ¢ (u)f(u) du

is the solution to (2.1). Since Airy’s functions Ai and Bi [1, page 446] satisfy g” = xg, and
Ai(x) is bounded at x = + o, we have

(2.4) & (x) = doAi (2"3(x + a)); x=0

¢(x) = diAi(2V3(—x + @) + d2 B (2V3(—x + a)); x=<0.
By symmetry,
(2.5) Y(x) = ¢ (—x), —0 < x <o,

Because of (2.2) and the fact that ¢(0") = ¢(07), ¢’(0") = ¢'(07), we easily determine do,
di, and ds, and obtain
2—1/3

T AiICP)AT(27)
Setting x = 0 in (1.3) and (2.3) we obtain

(2.6) ds =

00 . 0 00
2.7) E f e““"f.,'w*"“f<m> dt = ¢(0) f Yf + ¥(0) f of
0 -0 0

since when x = 0, X, becomes the ordinary standard Wiener process W starting at x = 0.
In order to obtain the conditioned, or pinned, Wiener process W, we choose

V2
(2.8) flx) == x(|x] <e)
where x = x(| x| < ¢) is either one or zero depending on whether | x| < ¢ or not, and allow
¢} 0in (2.7). On the right side we get
(2.9) Var $(0)4(0) = v27 d3A} (20
= V27 274§ (2%) / (-A} (2V°a))
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from (2.5) and (2.6). On the left side of (2.7) we get

. R (|W.| <e) P(|W,|<e) dt

(2.10) lim, eote™ | IWids X —.
“’L 2 P(W. <o 2
V2at
Since the ratio
2.11) P(Wel<e) _,
2¢
V2mt

tends (boundedly) to 1 as ¢ | 0, we may pass to the limit in (2.10) to obtain, with (2.9)

" ‘ dt V2 272Ai(2Y%a)
2.12 “E|e ) "I* W, =0|—= .
( ) jo e E[e L | =0 JZ —Af(21/30l)

Now we (_)bserve that W,, 0 < s =< ¢, is the same as vt W, 0 < s < 1 for a fixed Wiener
process W;, 0 < ¢ < 1, so that for each ¢

(2'13) E[e—f‘)llws'dsl m = O:I = El:e_th; |W,|dsl W= 0] - Ee_tﬂ/zj;'IWst

using the definition of W, as W, conditioned by W; = 0. Setting £ = [5 | W| as in (1.4), and
¢t = 2135 u = 23a we obtain (1.5). Note in (1.5) the factor s ~"/? which appears because of
the conditioning or pinning procedure.

3. The case 8 = 2 in (1.9). For & = [} W? we give two methods of attack to
determine

. (3.1) ¢2(s) = Ee™%* = Ee” f Wids,
First we use the present technique (1.3) with V(x) = L2 The differential equation (2.1)
now becomes the parabolic cylinder equation,

(3.2) —Su) + (a g x2>u(x) - f®)

which has the unique bounded solution (2.3) with
(3.3) ¢ (x) =doD,(x), . Y(x) = doD,(—x)

where D, is the parabolic cylinder function [4, page 91-94], and
1

1
(3.4) v= —5 - 2a, d() =m.

Taking x = 0 as in (2.7) and f as in (2.8) and using the argument in (2.9)-(2.13), we easily
obtain [5], for a = 0,
1
P(a + Z)

(o)

from which ¢» can (at least in principle) be determined. Note that the analogue of the
moment recurrence (1.7)-(1.8) fails for E£} because there is apparently no simple asymp-
totic expansion for the right hand side of (3.5), I'(a + 1)/ T (a + %), corresponding to that
in [2, page 448] for the right side of (1.5), Ai(u)/A(w).

RS BAY: 2 D,(0) _
(3.5) foe (gt)—ﬁ-«/fwm(o)—«/;
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The second approach, based on L? expansions, shows that the implicit equation (3.5)
may actually be explicitly solved for ¢2, namely

A sinh VA 7*
(3.6) @(_) = Ee~ 2% = ( ) )
2 X

It is in fact easily checked that if (3.6) is substituted into (3.5) then an identity is obtained.
To derive (3.6) from the L?-expansion, note that

3.7 do(t) =1, ¢u(t)=v2cosnmt, O0=<t=1ln=12, -
is a complete orthonormal family in L[0, 1]. Thus from [5, page 324], if 1o, 1, -+ is a
standard normal sequence,
t
(3.8) W, = 2:=0 Nn f bn, O0=st=1
()
is a standard Wiener process. Note that W; = o so that

t
(3.9) W, AW, —tW, =Y, nnf én
0

is a pinned Wiener process [5, page 330], where the last sum omits n = 0. We have chosen
the family ¢, so that not only are the ¢, orthonormal but also [§ ¢. is an orthogonal family
in L0, 1] (this is the only such family with this property). Thus by the Bessel-Parseval
identity,

1 1 t 2 1
(3-10) f VV2 = 25=1 1]3 j (j ¢n) = 2:=1 11?»—2'§~
0 0 0 nmw
Since 71, 12, - - - are standard normal,
}\ —- ‘Uire 2 22
@(5) - Ee wmiw = 2o, Ee Ve
- 1
(3.11) =IIn=1

1+
(1527

by the well-known product formula for the sinh function, which proves (3.6). Of course,
the moments of £; can now be obtained by repeated differentiation at zero of ¢.. Further,
a somewhat complicated quadratic recurrence for E ¢5 may be obtained from (3.11) by, for
example, using the fact that

=1

(x)z sinh VA
(3.12) o2

2) A

since (sinh «/X) / VA has a simple power series.
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