ON THE INTEGRAL OF THE ABSOLUTE VALUE OF THE PINNED WIENER PROCESS

By L. A. SHEPP

Bell Laboratories, Murray Hill

Let $\widetilde{W} = \widetilde{W}_t$, $0 \le t \le 1$, be the pinned Wiener process and let $\xi = \int_0^1 |\widetilde{W}|$. We show that the Laplace transform of ξ , $\phi(s) = Ee^{-\xi s}$ satisfies

(*)
$$\int_0^\infty e^{-us} \phi(\sqrt{2} s^{3/2}) s^{-1/2} ds = -\sqrt{\pi} Ai(u)/Ai'(u)$$

where Ai is Airy's function. Using (*), we find a simple recurrence for the moments, $E\xi^n$ (which seem to be difficult to calculate by direct or by other

techniques) namely $E\xi^n=e_n\sqrt{\pi}(36\sqrt{2})^{-n}/\Gamma\left(\frac{3n+1}{2}\right)$ where $e_0=1,\ g_k=\Gamma(3k+\frac{1}{2})/\Gamma(k+\frac{1}{2})$ and for $n\geq 1$,

$$e_n = g_n + \sum_{k=1}^n e_{n-k} \binom{n}{k} \frac{6k+1}{6k-1} g_k.$$

1. Introduction. The pinned Wiener process \tilde{W}_t , $0 \le t \le 1$, is obtained by conditioning a standard Wiener process W_t , $0 \le t \le 1$, to pass through zero at t = 1. It is clear from the fact that \tilde{W} is Gaussian with mean zero and covariance

(1.1)
$$E \widetilde{W}_s \widetilde{W}_t = \min(s, t) - st, \qquad 0 \le s, t \le 1$$

that $E \int_0^1 |\widetilde{W}_t| dt = \int_0^1 E|\widetilde{W}_s| ds = \sqrt{\pi}/(4\sqrt{2})$, but higher moments of

(1.2)
$$\xi \triangleq \int_0^1 |\widetilde{W}_t| dt$$

are awkward and unwieldy to obtain directly, and are of some interest in certain problems in random walk arising in empirical distribution theory.

Kac's formula for

$$(1.3) u(x) = Ex \int_0^\infty e^{-\alpha t - \int_0^t V(X_s) ds} f(X_t) dt,$$

where X_s is a time-homogeneous Markov process starting at x at s=0, is a natural tool to find the distribution of random variables of the form (1.2). However, there is difficulty with a direct use of (1.3) in this case, because although $X=\tilde{W}$ is a Markov process, it is not time-homogeneous. Although Kac's formula has an extension to non-time-homogeneous processes X, the formula involves partial rather than ordinary differential equations and so is awkward. Here we use Kac's technique in a novel way, starting with a time-homogeneous process (namely the Wiener process) and introducing conditioning by allowing f(x) to be a δ -function at x=0, to obtain a formula for \tilde{W} in place of W.

Using the above technique described in detail in Section 2 and solving the resulting ordinary differential equation, we obtain, implicitly,

$$\phi(s) = Ee^{-s\xi}$$

vìa

Received October 1980.

AMS 1980 subject classifications. Primary 60G99, secondary 60E05.

Key words and phrases. Airy, moments, Kac's method, Karhunen-Loeve.

(1.5)
$$\int_0^\infty e^{-us} \phi(\sqrt{2}s^{3/2}) s^{-1/2} ds = \sqrt{\pi} Ai(u) / Ai'(u)$$

where Ai is the usual Airy function [2]. Further, inverting the Laplace transform on u in (1.5), we can obtain $\phi(\sqrt{2}s^{3/2})s^{-1/2}$. Hence, in principle at least, we know $\phi(s)$, which is the Laplace transform of the density f_{ξ} of ξ , and which could then be used (in principle) to determine f_{ξ} by a second inverse Laplace transform. A remarkably similar (but note the ratio on the right is inverted) implicit double Laplace transform, viz.,

(1.6)
$$\int_{0}^{\infty} e^{-us} \, \tilde{\phi}(s^{1/2}) \, ds = \psi'(u)/\psi(u),$$

(with ψ a parabolic cylinder function) was indeed *numerically* inverted in [3] but the present case with $s^{3/2}$ in (1.5) appears to be more difficult to treat numerically. (The next paper in this issue, by S. O. Rice "The integral of the absolute value of the pinned Wiener process - calculation of its probability density by numerical integration" performs this numerical inversion of (1.5).)

The moments $E\xi^n$ can be read off from (1.5). Define

(1.7)
$$e_n = E \xi^n \Gamma\left(\frac{3n+1}{2}\right) (36\sqrt{2})^n / \Gamma\left(\frac{1}{2}\right).$$

By comparing asymptotic expansions of both sides of (1.5) as $u \to \infty$, using [1, page 448], we obtain that for $n \ge 1$,

(1.8)
$$e_{n} = \frac{\Gamma\left(3n + \frac{1}{2}\right)}{\Gamma\left(n + \frac{1}{2}\right)} + \sum_{k=1}^{n} e_{n-k} \binom{n}{k} \frac{6k+1}{6k-1} \frac{\Gamma\left(3k + \frac{1}{2}\right)}{\Gamma\left(k + \frac{1}{2}\right)}.$$

This gives the results in Table 1 for $n \leq 5$.

Of course for $n \to \infty$, $E\xi^n \to \infty$. Indeed,

$$E\xi^n \ge \frac{\Gamma\bigg(3n + \frac{1}{2}\bigg)\Gamma\bigg(\frac{1}{2}\bigg)(36\sqrt{2})^{-n}}{\Gamma\bigg(n + \frac{1}{2}\bigg)\Gamma\bigg(\frac{3n + 1}{2}\bigg)}$$

from (1.7) and the fact that the sum in (1.8) is nonnegative, so that $E\xi^n \geq n^{n/2}$ const.ⁿ,

Table 1				
ņ	$E\xi^n$	$E\xi^n$	$(E\xi^n)^{1/n}$	$e_n 9^{-n}$
0	1	1.0000	1.0000	1
1	$\frac{1}{4}\;\sqrt{\frac{\pi}{2}}$	0.3133	0.3133	•1
2	$\frac{7}{60}$	0.1167	0.3416	7
3	$\frac{21}{512} \sqrt{\frac{\pi}{2}}$	0.0514	0.3718	$7 \cdot 3^2 \cdot 2$
4	$\frac{19}{720}$	0.0264	0.4030	19.11.7.3
5	$\frac{101}{8192}\sqrt{\frac{\pi}{2}}$	0.0155	0.4343	$101 \cdot 7 \cdot 5 \cdot 3^2 \cdot 2^3$

which is of course not surprising since ξ is unbounded. The technique may also be applied to integrals

(1.9)
$$\xi_{\beta} = \int_0^1 |\tilde{W}_s|^{\beta} ds$$

for any $\beta \neq 1$, but except for $\beta = 2$, the function playing the role of the Airy function in (1.5) has apparently not been studied. The case $\beta = 2$ is interesting because of the comparison of the present technique with the Karhunen-Loeve series technique. Both techniques are discussed in detail in Section 3. It is remarkable that in this seemingly simpler case, no simple recurrence for the moments of ξ_{β} can apparently be obtained.

2. Proof of (1.5). We begin by using Kac's formula [2, page 54] for the Wiener process X starting at x. The expectation (1.3), for f bounded and of compact support and $V \ge 0$, is the unique bounded solution to

(2.1)
$$-\frac{1}{2}u''(x) + (\alpha + V(x))u(x) = f(x).$$

Taking V(x) = |x|, let $\phi(x)$, $\psi(x)$ be two solutions of the homogeneous equation corresponding to (2.1) with zero right-hand side, with ϕ bounded at $+\infty$, ψ bounded at $-\infty$ and

$$\phi \psi' - \phi' \psi \equiv 2.$$

Then the Green operator applied to f,

(2.3)
$$u(x) = \phi(x) \int_{-\infty}^{x} \psi(u) f(u) \ du + \psi(x) \int_{x}^{\infty} \phi(u) f(u) \ du$$

is the solution to (2.1). Since Airy's functions Ai and Bi [1, page 446] satisfy g'' = xg, and Ai(x) is bounded at $x = +\infty$, we have

(2.4)
$$\phi(x) = d_0 Ai(2^{1/3}(x+\alpha)); \qquad x \ge 0$$

$$\phi(x) = d_1 Ai(2^{1/3}(-x+\alpha)) + d_2 B_i(2^{1/3}(-x+\alpha)); \qquad x \le 0.$$

By symmetry,

$$(2.5) \psi(x) \equiv \phi(-x), -\infty < x < \infty.$$

Because of (2.2) and the fact that $\phi(0^+) = \phi(0^-)$, $\phi'(0^+) = \phi'(0^-)$, we easily determine d_0 , d_1 , and d_2 , and obtain

(2.6)
$$d_0^2 = -\frac{2^{-1/3}}{Ai(2^{1/3}\alpha)Ai'(2^{1/3}\alpha)}.$$

Setting x = 0 in (1.3) and (2.3) we obtain

(2.7)
$$E \int_0^\infty e^{-\alpha t - \int_0^t |W_s| ds} f(W_t) dt = \phi(0) \int_{-\infty}^0 \psi f + \psi(0) \int_0^\infty \phi f$$

since when x = 0, X_t becomes the ordinary standard Wiener process W starting at x = 0. In order to obtain the conditioned, or pinned, Wiener process \tilde{W} , we choose

(2.8)
$$f(x) = \frac{\sqrt{2\pi}}{2\varepsilon} \chi(|x| < \varepsilon)$$

where $\chi = \chi(|x| < \varepsilon)$ is either one or zero depending on whether $|x| < \varepsilon$ or not, and allow $\varepsilon \downarrow 0$ in (2.7). On the right side we get

(2.9)
$$\sqrt{2\pi} \,\phi(0)\psi(0) = \sqrt{2\pi} \,d_0^2 A_i^2(2^{1/3}\alpha)$$

$$= \sqrt{2\pi} \,2^{-1/3} Ai(2^{1/3}\alpha)/(-A_i'(2^{1/3}\alpha))$$

from (2.5) and (2.6). On the left side of (2.7) we get

(2.10)
$$\lim_{\varepsilon\downarrow 0} \int_{0}^{\infty} e^{-\alpha t} e^{-\int_{0}^{t} |W_{s}| ds} \frac{\chi(||W_{t}| < \varepsilon)}{P(||W_{t}| < \varepsilon)} \frac{P(||W_{t}| < \varepsilon)}{\frac{2\varepsilon}{\sqrt{2\pi}\sqrt{t}}} \frac{dt}{\sqrt{t}}.$$

Since the ratio

(2.11)
$$\frac{P(|W_t| < \varepsilon)}{\frac{2\varepsilon}{\sqrt{2\pi}\sqrt{t}}} \le 1$$

tends (boundedly) to 1 as $\varepsilon \downarrow 0$, we may pass to the limit in (2.10) to obtain, with (2.9)

(2.12)
$$\int_{0}^{\infty} e^{-\alpha t} E \left[e^{-\int_{0}^{t} |W_{s}| ds} | W_{t} = 0 \right] \frac{dt}{\sqrt{t}} = \frac{\sqrt{2\pi} \, 2^{-1/3} A i (2^{1/3} \alpha)}{-A'_{i}(2^{1/3} \alpha)} \, .$$

Now we observe that W_s , $0 \le s \le t$, is the same as \sqrt{t} \bar{W}_{st} , $0 \le s \le 1$ for a fixed Wiener process \bar{W}_t , $0 \le t \le 1$, so that for each t

$$(2.13) E\left[e^{-\int_{0}^{t}|W_{s}|ds} \mid W_{t} = 0\right] = E\left[e^{-t^{3/2}\int_{0}^{1}|\tilde{W}_{s}|ds} \mid \bar{W} = 0\right] = Ee^{-t^{3/2}\int_{0}^{1}|\tilde{W}_{s}|ds}$$

using the definition of \tilde{W}_s as \bar{W}_s conditioned by $\bar{W}_1 = 0$. Setting $\xi = \int_0^1 |\tilde{W}|$ as in (1.4), and $t = 2^{1/3}s$, $u = 2^{1/3}\alpha$ we obtain (1.5). Note in (1.5) the factor $s^{-1/2}$ which appears because of the conditioning or pinning procedure.

3. The case $\beta=2$ in (1.9). For $\xi_2=\int_0^1 \tilde{W}^2$ we give two methods of attack to determine

(3.1)
$$\phi_2(s) = Ee^{-\xi_2 s} = Ee^{-\int_0^1 W_s^2 ds}.$$

First we use the present technique (1.3) with $V(x) = \frac{1}{8}x^2$. The differential equation (2.1) now becomes the parabolic cylinder equation,

(3.2)
$$-\frac{1}{2}u''(x) + \left(\alpha + \frac{1}{8}x^2\right)u(x) = f(x)$$

which has the unique bounded solution (2.3) with

(3.3)
$$\phi(x) = d_0 D_{\nu}(x), \quad \psi(x) = d_0 D_{\nu}(-x)$$

where D_{ν} is the parabolic cylinder function [4, page 91-94], and

(3.4)
$$v = -\frac{1}{2} - 2\alpha, \qquad d_0 = \frac{1}{-D_{\alpha}(0)D_{\alpha}'(0)}.$$

Taking x = 0 as in (2.7) and f as in (2.8) and using the argument in (2.9)-(2.13), we easily obtain [5], for $\alpha \ge 0$,

(3.5)
$$\int_0^\infty e^{-\alpha t} \phi_2\left(\frac{1}{8}t^2\right) \frac{dt}{\sqrt{t}} = \sqrt{2\pi} \frac{D_\nu(0)}{D'_\nu(0)} = \sqrt{\pi} \frac{\Gamma\left(\alpha + \frac{1}{4}\right)}{\Gamma\left(\alpha + \frac{3}{4}\right)}$$

from which ϕ_2 can (at least in principle) be determined. Note that the analogue of the moment recurrence (1.7)–(1.8) fails for $E\xi_2^n$ because there is apparently no simple asymptotic expansion for the right hand side of (3.5), $\Gamma(\alpha + \frac{1}{4})/\Gamma(\alpha + \frac{3}{4})$, corresponding to that in [2, page 448] for the right side of (1.5), $Ai(u)/A_i'(u)$.

The second approach, based on L^2 expansions, shows that the implicit equation (3.5) may actually be explicitly solved for ϕ_2 , namely

(3.6)
$$\phi_2\left(\frac{\lambda}{2}\right) = Ee^{-(\lambda/2)\xi_2} = \left(\frac{\sinh\sqrt{\lambda}}{\sqrt{\lambda}}\right)^{-1/2}.$$

It is in fact easily checked that if (3.6) is substituted into (3.5) then an identity is obtained. To derive (3.6) from the L^2 -expansion, note that

(3.7)
$$\phi_0(t) \equiv 1, \quad \phi_n(t) = \sqrt{2} \cos n\pi t, \quad 0 \le t \le 1, n = 1, 2, \dots$$

is a complete orthonormal family in $L^2[0, 1]$. Thus from [5, page 324], if η_0, η_1, \cdots is a standard normal sequence,

(3.8)
$$W_{t} = \sum_{n=0}^{\infty} \eta_{n} \int_{0}^{t} \phi_{n}, \quad 0 \le t \le 1$$

is a standard Wiener process. Note that $W_1 = \eta_0$ so that

(3.9)
$$\widetilde{W}_t \triangleq W_t - tW_1 = \sum_{n=1}^{\infty} \eta_n \int_0^t \phi_n$$

is a pinned Wiener process [5, page 330], where the last sum omits n = 0. We have chosen the family ϕ_n so that not only are the ϕ_n orthonormal but also $\int_0^t \phi_n$ is an orthogonal family in $L^2[0, 1]$ (this is the only such family with this property). Thus by the Bessel-Parseval identity.

(3.10)
$$\int_0^1 \tilde{W}^2 = \sum_{n=1}^\infty \eta_n^2 \int_0^1 \left(\int_0^t \phi_n \right)^2 = \sum_{n=1}^\infty \eta_n^2 \frac{1}{n^2 \pi^2}.$$

Since η_1, η_2, \cdots are standard normal,

$$\phi_{2}\left(\frac{\lambda}{2}\right) = Ee^{-(\lambda/2)} \int_{0}^{t} \tilde{W}^{2} = \prod_{n=1}^{\infty} Ee^{-\eta_{n}^{2} \lambda/(2n^{2}\pi^{2})}$$

$$= \prod_{n=1}^{\infty} \frac{1}{\left(1 + \frac{\lambda}{n^{2}\pi^{2}}\right)^{1/2}}$$

$$= \left(\frac{\sinh \sqrt{\lambda}}{\sqrt{\lambda}}\right)^{-1/2}$$

by the well-known product formula for the sinh function, which proves (3.6). Of course, the moments of ξ_2 can now be obtained by repeated differentiation at zero of ϕ_2 . Further, a somewhat complicated quadratic recurrence for $E\xi_2^n$ may be obtained from (3.11) by, for example, using the fact that

(3.12)
$$\phi_2 \left(\frac{\lambda}{2}\right)^2 \frac{\sinh \sqrt{\lambda}}{\sqrt{\lambda}} \equiv 1$$

since $(\sinh \sqrt{\lambda})/\sqrt{\lambda}$ has a simple power series.

Acknowledgement. The problems solved here were posed to me by C. L. Mallows who also simplified a more complicated version of (1.8).

REFERENCES

- [1] ABRAMOWITZ, M. and STEGUN, I. A. (1964). Handbook of Mathematical Functions. Nat. Bur. Standards No. 55. Wash.
- [2] Ito, K., and McKean, H. P., Jr. (1965). Diffusion Processes and Their Sample Paths. Academic, New York.
- [3] LOGAN, F. B., MALLOWS, C. L., RICE, S. O. and SHEPP, L. A. (1973). Limit distributions of self-normalized sums. Ann. Probability 1 788-809.
- [4] Magnus, W. and Oberhettinger, F. (1954). Formulas and Theorems for the Functions of Mathematical Physics. Chelsea, New York.
- [5] Shepp, L. A. (1966). Radon-Nikodym derivatives of Gaussian measures. Ann. Probability 37 321–354.

BELL LABORATORIES 600 MOUNTAIN AVENUE MURRAY HILL, NJ 07974