# MULTIPLICATIVE DECOMPOSITION OF NON-SINGULAR MATRIX VALUED CONTINUOUS SEMIMARTINGALES

## By Rajeeva L. Karandikar

### Indian Statistical Institute

It is shown that a nonsingular matrix valued continuous semimartingale can be decomposed uniquely as a product of a continuous local martingale and a continuous process of locally bounded variation. An "integration by parts" formula for the multiplicative stochastic integral is also obtained.

1. Introduction. It is well known that a positive continuous semimartingale X admits a multiplicative decomposition

$$(1) X = MA$$

where M is a continuous local martingale and A is a continuous process of locally bounded variation. Further, under the additional condition that M(0) = 1, the decomposition is unique. (See Ito-Watanabe, 1965; Meyer, 1967; Jacod, 1979). In this paper, we obtain the decomposition (1) for a "non-singular" matrix valued continuous semimartingale X. We first obtain an "itegration by parts" formula for multiplicative stochastic integration. The multiplicative decomposition is a simple consequence of this "integration by parts" formula.

**2. Preliminaries.** Let  $(\Omega, \mathcal{F}, P)$  be a complete probability space with a filtration  $(\mathcal{F}_t)$  which satisfies the usual conditions. All the processes we consider are  $(\mathcal{F}_t)$  adapted. Let L(d) be the space of  $d \times d$  matrices and  $L_0(d)$  be its subset consisting of nonsingular matrices. Let X be a continuous L(d) valued semimartingale such that X(o) = 0. For a continuous L(d) valued process H, we denote by H.X as usual the stochastic integral  $\int H dX$ . Since L(d) is not commutative, we may consider the "right" stochastic integral  $\int (dX)H$  which we denote by X:H. Obviously (X:H) = (H'.X')', where ' is the transpose operation on L(d). The multiplicative stochastic integral

$$(2) Y(t) = \prod_{0}^{t} (I + dX)$$

can be defined as the only solution to the stochastic differential equation

$$(3) Y = I + Y.X$$

and has been extensively studied (see Emery (1978) in the right continuous case, Karandikar (1981)). The solution Y to (3) is also called the exponential of X and we denote it by  $\varepsilon(X)$ . We denote by  $\varepsilon^*(X)$ , the right exponential of X, i.e. the solution Y to the equation symmetric to (3)

$$(4) Y = I + X : Y.$$

By taking transpose in (4), it can be seen that

(5) 
$$\varepsilon^{\star}(X) = \varepsilon(X')'.$$

Given two continuous semimartingales U, V with values in L(d), we denote by  $\langle U, V \rangle$  the L(d) valued continuous process of locally bounded variation defined by

Received October 1981.

AMS 1970 subject classification. Primary 60G48; secondary 60H05, 60J57.

Key words and phrases. Semimartingales, multiplicative decomposition, multiplicative stochastic integration, integration by parts formula.

(6) 
$$\langle U, V \rangle_k^i = \sum_J \langle U_J^i, V_k^j \rangle.$$

For U, V as above and continuous L(d) valued processes H,  $H_1$ ,  $H_2$ ; the following identities are easily proved by looking at the entries

(7) 
$$d(UV) = U dV + (dU)V + d\langle U, V \rangle$$

(8) 
$$\langle H.U, V \rangle = H.\langle U, V \rangle; \quad \langle U, V:H \rangle = \langle U, V \rangle : H$$

(9) 
$$\langle U: H^{-1}, H. V \rangle = \langle U, V \rangle$$
 (if  $H$  is  $L_0(d)$  valued)

(10) 
$$H_1 \cdot (H_2 \cdot U) = H_1 H_2 \cdot U; \quad (U:H_1): H_2 = U:H_1 H_2$$

(11) 
$$H_1 \cdot (U : H_2) = (H_1 \cdot U) : H_2.$$

In view of (11) we will write

(12) 
$$H_1.U: H_2 \equiv (H_1.U): H_2 = H_1.(U: H_2)$$

with these notations.

LEMMA 1. (i) Let X be a L(d) valued continuous semimartingale such that X(o) = 0. Then  $\varepsilon(X)$  is  $L_0(d)$  valued and further

(13) 
$$[\varepsilon(X)]^{-1} = \varepsilon \cdot (-X + \langle X, X \rangle)$$

(ii) Let Y be a  $L_0(d)$  valued continuous semimartingale such that Y(o) = I. Then there exists a unique X as in (i) above such that  $Y = \varepsilon(X)$ .

PROOF. (i) follows from (7). See Karandikar (1981) for details. For (ii) put  $X = Y^{-1}$ . (Y - I). Then (10) implies that

(14) 
$$I + Y \cdot X = I + YY^{-1} \cdot (Y - I) = Y.$$

If  $Y = \varepsilon(X_1) = \varepsilon(X_2)$ , then

(15) 
$$Y^{-1}(Y-I) = Y^{-1}(YX_i) = X_i, \quad i = 1, 2$$

and hence  $X_1 = X_2$ .

Remark. The proof of part (ii) implies that X is a local martingale iff  $\varepsilon(X)$  is and X is a process of locally bounded variation iff  $\varepsilon(X)$  is so.

**3.** Integration by parts formula. The following theorem is a stochastic analogue of the "Integration by parts" formula for (deterministic) multiplicative integral (see Masani, 1981).

THEOREM. Let  $X_1$ ,  $X_2$  be L(d) valued continuous semimartingales such that  $X_1(o) = X_2(o) = 0$ . Let  $Y_2 = \varepsilon(X_2)$ . Then

(16) 
$$\varepsilon(X_1+X_2+\langle X_1,X_2\rangle)=\varepsilon(Y_2.X_1:Y_2^{-1})\varepsilon(X_2).$$

**PROOF.** Let  $Z = \varepsilon(Y_2, X_1; Y_2^{-1})$ . From (7), it follows that

(17) 
$$ZY_2 - I = (Z, Y_2 - I) + (Z; Y_2 - I) + \langle Z, Y_2 \rangle.$$

From the definitions of Z and  $Y_2$ , we have

$$Z = I + ZY_2 X_1 : Y_2^{-1}$$

(18) 
$$Y_2 = I + Y_2 X_2.$$

From (18), (8) and (9) we get

$$\langle Z, Y_2 \rangle = \langle Z - I, Y_2 - I \rangle = ZY_2, \langle X_1, X_2 \rangle.$$

In view of (18), (19), (10) and (11); (17) reduces to

(20) 
$$ZY_2 = I + ZY_2, X_2 + ZY_2, X_1 + ZY_2, \langle X_1, X_2 \rangle.$$

Hence

$$ZY_2 = \varepsilon(X_1 + X_2 + \langle X_1, X_2 \rangle).$$

REMARK. Remembering that if  $X_1 - \tilde{X}_1$  is a process of locally bounded variation, then  $\langle X_1, X_2 \rangle = \langle \tilde{X}_1, X_2 \rangle$ ; we can rewrite the integration by parts formula in the equivalent forms (21) and (22):

(21) 
$$\varepsilon(X_1 + X_2) = \varepsilon(Y_2, \widetilde{X}_1 : Y_2^{-1})\varepsilon(X_2)$$

where

$$\widetilde{X}_1 = X_1 - \langle X_1, X_2 \rangle$$
 and  $Y_2 = \varepsilon(X_2)$ 

(22) 
$$\varepsilon(X_1 + X_2) = \varepsilon(Y_2, X_1 : Y_2^{-1})\varepsilon(\widetilde{X}_2)$$

where

$$\widetilde{X}_2 = X_2 - \langle X_1, X_2 \rangle$$
 and  $Y_2 = \varepsilon(\widetilde{X}_2)$ .

## 4. Multiplicative decomposition

Theorem. Let Y be a  $L_0(d)$  valued continuous semimartingale such that Y(o) = I. Then there exists a unique decomposition

$$(23) Y = NB$$

where N is a continuous  $L_0(d)$  valued semimartingale such that N(o) = I, B is a continuous  $L_0(d)$  valued process of locally bounded variation. Further, if  $Y = \varepsilon(X)$  and X = M + A is the canonical (additive) decomposition of X, then

$$(24) B = \varepsilon(A)$$

and

$$(25) N = \varepsilon(B, M; B^{-1}).$$

PROOF. Since Y is  $L_0(d)$  valued, by Lemma 1 there exists X such that  $Y = \varepsilon(X)$ . Define B and N by (24) and (25). The integration by parts formula (16) and the fact that  $\langle M, A \rangle = 0$  now imply that (23) holds.

For the uniqueness part, let  $Y = N_1 B_1$  be any decomposition as in the statement of the theorem. By Lemma 1 get  $A_1$ ,  $M_2$  such that

$$(26) B_1 = \varepsilon(A_1)$$

$$(27) N_1 = \varepsilon(M_2)$$

and let

$$(28) M_1 = B_1^{-1} \cdot M_2 : B_1.$$

Then, (28), (10) and (11) imply that

$$(29) M_2 = B_1 M_1 : B_1^{-1}.$$

Now the integration by parts formula (16) implies that

(30) 
$$Y = N_1 B_1 = \varepsilon(B_1, M_1; B_1^{-1}) \ \varepsilon(A_1) = \varepsilon(M_1 + A_1 + \langle M_1, A_1 \rangle).$$

By the remark following Lemma 1, it follows that  $M_1$  is a local martingale,  $A_1$  is a process of locally bounded variation and hence  $\langle M_1, A_1 \rangle = 0$ . Thus in view of (30)

(31) 
$$M_1 + A_1 = Y^{-1} \cdot (Y - I) = X = M + A.$$

Now by uniqueness of "additive decomposition,"  $M = M_1$  and  $A = A_1$  and hence  $N = N_1$  and  $B = B_1$ .

REMARK 1. Let Y be a  $L_0(d)$  valued continuous semimartingale and let  $Y_1$  be defined by  $Y_1(t) = Y(t)[Y(o)]^{-1}$ . Now  $Y_1$  admits a decomposition (23) and hence Y also admits a unique decomposition (23) (the difference being that  $B(o) = Y(o) \neq I$  in general.)

**Acknowledgment.** The author thanks Professor B. V. Rao for many helpful discussions.

#### REFERENCES

- [1] EMERY, M. (1978). Stabilité des solution des équations différentielles stochastiques: application aux intégrales multiplicatives stochastiques. Z. Wahrsch. verw. Gebiete 41 241-262.
- [2] ITO, K. and WATANABE, S. (1965). Transformation of Markov processes by multiplicative functionals. Ann. Inst. Fourier, Grenoble 15 13-30.
- [3] JACOD, J. (1979). Calcul stochastique et problems de martingales. Lecture Notes in Math. 714. Springer-Verlag, Berlin.
- [4] KARANDIKAR, R. L. (1981). A.s. approximation results for multiplicative stochastic integration. Séminaire de Probabilities XVI. Lecture Notes in Math. 920 384-391. Springer, Berlin.
- [5] MASANI, P. (1981). Multiplicative partial integration and the Trotter product formula. Adv. in Math. 40 1-9.
- [6] MEYER, P. A. (1967). On the multiplicative decomposition of positive supermartingales. Markov Processes and Potential Theory, ed. by J. Chover, Wiley, New York. 103-116.

Division of Theoretical Statistics and Mathematics Indian Statistical Institute 203 Barrackpore Trunk Road Calcutta—700 035 India