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SOME LIMIT THEOREMS ON A SUPERCRITICAL
SIMPLE GALTON-WATSON PROCESS

By K. N. VENKATARAMAN AND K. NANTHI

University of Madras

Let X = (X,; n = 0; Xo = 1) be a supercritical Galton-Watson process
possessing an offspring mean 1 < m < , and variance 0 < 6% < . The limiting
distribution of {X;"*(Xy+r — m'X,); r =2, -+, T} where it = X,11/X,, is
obtained. As a consequence of this result a Quenouille-Bartlett type of
asymptotic goodness of fit test is also proposed for the process X.

1. Introduction. In this paper we are concerned with a supercritical Galton-Watson
process X = (X,; n = 0; X, = 1) defined on a Tree probability space (Harris, 1963). Let 1
< m < o, and 0 < ¢ < ® be the offspring mean and variance of X respectively. It is well
known (Athreya and Ney, 1972, page 19) that, as n — «, m "X, converges almost surely
to a nonnegative, non-degenerate random variable w, say, and P(w > 0) = 1 — P(extinction
of X).

The results on X, presented in this paper, are motivated by the following theorem stated
without proof. :

THEOREM A. (Jagers, 1975, page 38). Let us define that
Y.(r) = o "'m" XY (Xpsr — m'X,) when X,>0
=0 when X, =0.

Then, under P(- | w > 0), the following statements hold.
(a) (Yu(r);r=1, ..., T) converges in law, as n — o, to a normal random vector with
mean zero, and a non-singular covariance matrix [C,s], where, forr, s, =1,

Co=m""(m’*—1)(m-1)""% v = min(r, s).
b) (Yu(r+1) = Yur);r=1, ..., T) converges in law, as n — =, to a normal vector with

mean zero, and, the covariance matrix diag{m";r=1, ..., T}.

In place of Y,(r), we study here the sample functions

A~

Y.(r) = X;"*(X,4r — m'X,) when X,>0

(1.1)
=0 when X,=0
where
m=Xn1/Xn when X,>0
1.2)
=0 when X,=0

is recognized as the Lotka-Nagaev estimator (Nagaev, 1967) for m. As a basic result we
obtain the limiting distribution of Vo), r=2, --- , T') (Theorem 2.1), which leads to a
parameter-free result (Theorem 2.4). To highlight the relevance of Theorem 2.4, it is
observed that for a classical supercritical Galton-Watson process, no goodness of fit tests
have so far been proposed with/without specifying an alternative. Although a subcritical
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Galton-Watson process may be considered as an alternative, the standard likelihood ratio
type approach does not lend to any satisfactory treatment since under the alternative, the
unknown parameters defy estimation. In view of these difficulties it will be prudent to look
for a Quenouille-type of goodness of fit test, that is advocated by Bartlett (Bartlett, 1955)
in time series analysis, on the considerations that this type of test is formulated purely in
terms of the null hypothesis, making no reference to the alternative. In our opinion
Theorem 3.3 certainly provides such a goodness of fit test.

2. A Basic results on Y,,(r). The fundamental result of this paper is:

THEOREM 2.1. Under P(-|w > 0), (Yo(r); r = 2, ---, T') converges in law, as n —
®, to a normal random vector (Y (r);r=2, ... , T, say, having zero mean and covariance
matrix [h,], where, forr, s = 2,

@) hy=(m —1)7[(r — (s — D)(m — h)m"™™* 2 + m“{(m"™' — 1)]
(ii) u=max(r,s), and v = min(, s).

We split the proof of this theorem into a few lemmas.

Let, for r =2

@1 b, = (h —m) (" — m’) when Mm#£m

s r—1

=rm when m=m

and 6§, = rm""".

LEMMA 2.1.  Under P(- |w > 0), (a) 6, —p 0, and (b) XY — m)(6, — 6,) —p 0.

Notk. The simple proof of (a) is omitted. An appeal to Dion’s Theorem (Dion, 1974),
together with (a) yields (b).

Next we define that
(2.2) Ny =(ZY —m") —0.Z% —m);  r=1

where Z/), is interpreted as the size of the rth generation of offspring flowing from the ith
individual among the X,, individuals in the nth generation of X. These are random variables
since X is defined on the Harris tree probability space.

The routine manipulative proof of the following lemma concerning (2.2) is omitted.

LEMMA 2.2. E(n,,m,,) = Ay r,s=2.

Our next lemma relates to
(23) 8, = EZ=2 e, ry 1= ]-; crty Xn(> O)
where a, are real numbers, not all of them being zero, but otherwise arbitrary.

LeEmMA 2.3. Under P(- |w > 0), X;V2Y ¥ 8, converges in law, as n — , to a normal
random variable with mean zero and variance Y% .—; arahys.

Proor. Use Theorem 2 of the appendix in Jagers (1975) and properties of .
We are now settled to prove Theorem 2.1. By definition, on (» > 0),

(2.4) Yur) = Xl m, = X200 — m) (@, — 6); r=2

so that

(2.5) Yo=Y aYur) = Xa 2 3 8, — Yo o XY — m)(9, — 6)).
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Based on (2.5) the proof of Theorem 2.1 follows from application of Lemmas 2.1, 2.3, a
Slutsky type theorem (See Loeve, 1963, page 168), and Cramer-Wold device (See Billing-
sley, 1968, page 48). Details are omitted.

3. Applications of Theorem 2.1. The following application of Theorem 2.1, stated
without proof relates to
(3.1) Va(r) = Yolr + 2) — 2m ¥, (r + 1) + m?*%,(r);  r=2.

THEOREM 3.1. Under P(- |w > 0), (V,(r); r =2, .-+, T) converges in law, as n — o,

to a normal vector (U(r), r = 2, --., T), say, with mean zero, and a non-singular
covariance matrix implying that, for r, s = 2,

] EU*r) = o’ (m + I)m"™™!
(ii) E[UrU@s)]=0 for |r—s|=2.
_Nore. An easy way to arrive at Theorem 3.1 is to derive the limiting distribution of
(Yo(r+1) —mY,(r);r=2,...,T), and to note that
(3.2) Va(r) = (Yulr + 2) = mPu(r + 1)) = m(Tu(r + 1) — m¥.(r)).
Next, let us define that
(3.3) Var) = Vulr + 2) — 20 Y,(r + 1) + m200(r), r=2.

We r}ote that, under P(- | w > 0), Vn(r) — Vu(r) =p 0, as n — o on account of the fact that
(a) Y,(r) converges in law, and (b) (M — m) —p 0, as n — . This remark together with
Theorem 3.1, yields:

THEOREM 3.2. Under P(-|w > 0), (Vn(r); r=2,...,T) converges in law, as n — o,
to the normal random vector (U(r);r =2, ..., T'), defined in Theorem 3.1.

For computational purposes, it is relevant to observe that

(3.4) V(1) = X3 *(Xsrsz — 2mXpirer + 1°X,0r) when X, > 0.
Let 62 be the estimator proposed for o2 either by Heyde (1974), or Dion (1975), and,
(3.5) 0ir) =6%m + )m"™ r=2.

An application of Theorem 3.2 together with standard results in probability yields the
following parameter-free result on X.

THEOREM 3.3. Letry, ---, rr be fixed positive integers such that, fori,j=1, ..., T,
r.=2,and, |r,—r,| =2 when i # j. Then, under P(- |w > 0)
((Br)) 2 Va) + -+ + (B (rr)) 2 Vi(rr))
converges in law, as n — o, to a Chi squared variable with T degrees of freedom.
4. Concluding remarks. Making use of the facts that (a) (w > 0) C (X,, > 0), and (b)
as n— o, P(X, > 0) —» P(w > 0), it can be shown that as n — o, the statements
P =M w>0)—pdf FQ)
P& =AX,>0)—>pdf. FQ)

are equivalent. Thus Theorems 2.1, 3.1, 3.2, and 3.3 are valid under P(-| X, > 0) in place
of P(- |w > 0).

(4.1)
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