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FIRST HITTING TIME OF CURVILINEAR BOUNDARY
BY WIENER PROCESS

By M. I. TAKSAR!

Stanford University

A function f(¢) such that f(8) /vt + 1 1 a is considered. We define T =
inf {¢:| W(&)| = f(t)}, where W(¢) is the Wiener process starting from 0. A
sufficient condition for E {T*} to be finite is given.

Let w(¢) be the Wiener process starting from zero and f(¢) be a positive increasing
function of ¢. Put

Ty=inf{t: | w(®)| = f ().

Given p > 0, we are interested in sufficient conditions on f which ensure the finiteness
of

m! = E(T%).
If
Q) fO=cVt+1,

then the problem is completely investigated. By the results of Shepp [2]
(2) mi<ow iff c¢<alp),

where a(u) is the first zero of the confluent hypergeometric function (here (2m)! corrects
an error in [2])

_ N e (28)u—1) - (p—m+ 1)
Fu(x) = M<_IJ-) § ’ ?) = Zm=0 (2m)! .

It is easy to see that a(u) is a continuous decreasing function of u and therefore there
exists the inverse function p(a). The result of Shepp (relation (2)) may be reformulated in
the following way. For f given by (1),

mi<ow, iff »<p(c).
Suppose now that
(3) f@o/~ve+11e.

It is obvious that m/ < « if v < w(c) and m/, = w0 if » > p(c). The question is whether it is
possible that m/y < ? The answer is positive and a sufficient condition for that is given
by the following theorem:

THEOREM. For f, satisfying (3),
m,{L(C) <o

if
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(4) f t,u(c)—,u(r(t))—l dt < 00,
0

where
r@®) =f@)/vt+ 1.
Proor. 1°. For f(f) = cvt + 1 denote Tyby T.. Consider the process Y (u) = w(e?)/e".

Let 7. be the first exist time of Y (u) from the boundaries #c. By the results of Breiman
[1] the Laplace transform of . is

o(A) = J e dP{r.> x}
(5) ’
= exp(02/4)[D(—>\, 0) + D(—=A, 0)]/[D(=A, ¢) + D(—A, —¢)],

where D (A, z2) = Dy(2) is the parabolic cylinder function.

In Section 2 of [1] it was shown that ®(A) has only real simple poles on the negative
axis.

Let —28(c) be the position of the largest pole and —28(c) be the positive of the second
largest pole of ¢(A) (certainly 8(c) > B(c)). Then )

(6) P{r. > x} = a exp(—2B(c)x) + O(exp(—28(c)x)),

(see (2.4) of [1]). For the Wiener process, formula (6) becomes
P(T.>t} = at ™ + O™,

(see (2.5) of [1]). From the above relation we see in particular that

(M B(c) = (o).

Since B(c) and §(c) are continuous functions of ¢ and
d -1
a=alc)=2D(\, O)exp(02/4) (EX DA, c) + D@, —C))I)\=2,3(c)) s

then «(c) is a continuous function of ¢ and a(c) is bounded on any segment which does not
contain zero. Similarly, using (5) and standard techniques related to the Laplace transform,
we can show

[P{T.>t} — a(c)t 91/t = 0(1)

uniformly in ¢, ¢ € [a, b], a, b > 0. In particular there exists a constant d = d(a, b) such
that for any ¢ € [a, b], a, b >0

®) P(T.>t} < dt*0,

2°. Now let f(¢) satisfy (3). We try to estimate P{T; > x}. Consider the parabola g (¢)
= ¢’ vt + 1 where ¢’ = r(x). By virtue of (3), we have

9) gW)=f(@® for t=u,
gW)=f@) for t=x.
Formulae (9) show that {Ty> x} C {T.- > x} and
(10) P(T;> x} < P(T. > x).
Put d = d(f(0), ¢); then, by virtue of (8) and (10),

11) P{T;> x} = dxPr®,
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Compute

0

(12) mh= f x" dP{T;> x} = vf x"7'P{Ts> x} dx.
0

0

Now let » = u(c). By virtue of (11), the right hand side of (12) is finite if

(13) f xu(c)—ﬁ(r(x))—l dx < .
0

By (7), formula (13) is equivalent to (4).

COROLLARY. Ifd > 0 and for some t,,
f@)=cvt+1(1 —d/loglogt), for t>t,

then m/ ) < o.

ProoF. Let —2e be the derivative of u(-) at the point c. Then for ¢ big enough

p(r(@) —pu(c) > e(c — r(t)) = edc/log log ¢.
Put a = ecd. For sufficiently large ¢
trrO=1) > exn(a log t/log log t) = exp((a log t)/2) = t*2.

Therefore the integrand in (4) is less than ¢~'7%2

finiteness of (4).
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