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LIMIT THEOREMS FOR ESTIMATORS BASED ON INVERSES OF
SPACINGS OF ORDER STATISTICS

By PETER HALL

Australian National University

Let X1 < X2 < . - - < X,,» denote the order statistics of an n-sample from
the distribution with density /. We prove the strong consistency and asymp-
totic normality of estimators based on the series

(1/2) Z?Ak (Xn,r+k + an)/(Xn,r+k - an)p and ET_k (Xn,r+k - an)—p’

where & > 2p > 0 are fixed constants. These series may be used to estimate
functionals of f. The ratio of the series was introduced by Grenander (1965) as
an estimator of a location parameter, and he established weak consistency. In
recent years several authors have examined such estimators using Monte
Carlo experiments, but the lack of an asymptotic theory has prevented a more
detailed discussion of their properties.

1. Introduction and summary. Let X;, X;, .- be independent random variables
with a common distribution function F and density f, and suppose X1 < X2 < + -+ < Xpn
are the order statistics of the sample X;, X;, - - -, X,.. Define ’

&n = n—(p+1) Z;:{e (Xn,r+k - an)_p, a= w J' fp+1(x) dx’

0

5n = n_(p+1) 27;{3 {an,r+k + (1 - p)an}(Xn,r+k - an)—p and b =u J’ xfp"'l(x) dx’

—o0

where 0 < p =<1 and p = I'(k — p)/T'(k) (which is finite if 2 > p). We shall prove that
under appropriate conditions on fthe quantities @, and b, are strongly consistent for a and
b, and derive central limit theorems for the errors in this estimation procedure.

The ratio of the parameters b and a,

6,=b/a= {j 2P (x) dx}/{f 7 (x) dx},

was introduced by Grenander (1965) as a measure of location. It represents a true
compromise between the mean and the mode. In the case p = 0, 6, coincides with the
population mean E (X;), and under mild regularity conditions on f, 6, converges to the
population mode as p — . Under the commonly made assumption that the distribution
is symmetric about its centre, 6, we have 8, = 0 for all p. Grenander showed that under
suitable conditions the ratio l;n/ d, converges weakly to 8, as n — . (Actually he considered
the special case p = %. The case of a more general p appears to have been introduced by
Andriano, Gentle and Sposito (1977b, 1978); see also Andriano, Gentle and Sposito
(1977a).)

The performance of Grenander’s estimate in small samples was complimented by
Ekblom (1972, p. 184). One method of describing the estimator’s performance in large
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samples would be to derive asymptotic expressions for its distribution, bias and variance.
However, there are no available results of this type. Indeed, the paucity of knowledge
about the large sample behaviour of Grenander’s estimator appears to have inhibited its
discussion in the literature. It has been studied largely from the point of view of Monte
Carlo trials; see Dalenius (1965), Ekblom (1972), and Andriano, Gentle and Sposito (1977b,
1978). One of our aims in the present paper is to remedy this situation.

Grenander confined attention to the case p > 1, and considered only the ratio b/
We assume that p > 0, and study the estimators @, and b,, as well as &, = b,/d,. These
quantities are of independent interest because they provide simple, direct estimates of
functionals of f. There is no difficulty in extending our techniques to estimators of the form

&n = n_(p+1) Zg{e w{PXn,r+k + (1 - p)an}(Xn,r+k - an)—p’

which estimates d = p [2. w(x)f"*'(x) dx, where w is a general weight function. However
it is simpler to discuss our conditions if we consider specific versions of w.

In order to obtain an intuitive understanding of the problems involved, let us consider
the special case of the exponential distribution. Here we may write X, =Yi-1 Z;/(n — i
+ 1), where for each n = 1 the variables Z; = Z;(n), 1 = i < n, are independent and
exponentially distributed (see David (1970, page 18)). In this case each k-spacing may be
written as

Xorih = Xor = Vit Zif(n— i+ 1) = (X250 Z) /(n — 1),

and the quantities d, and b, are sums of (2 — 1)-dependent random variables. A central
limit theorem is readily proved by adapting classical results for sums of m-dependent
variables—see for example Theorem 7.3.1, page 214 of Chung (1974). More generally,
Rényi’s representation of order statistics may be used to show that

(1.1) Xoror — Xor = (X2k1 Z) /Inf {F 7' (r/n)},

and this property may be employed to derive a central limit theorem. Grenander used
essentially this approximation to obtain a weak law of large numbers, and a conjecture he
made (page 138) concerning the asymptotic normality of his estimator appears to be based
on an estimate like (1.1). However, while this approximation is sufficiently accurate to give
a law of large numbers, it yields a central limit theorem which can be in error. The reason
is that the terms ignored in (1.1), while of a smaller order of magnitude than the primary
term, tend to be of the one sign for many values of r and combine together to give the
estimator a very different behaviour than would normally be expected. Paradoxically, the
approximation (1.1) is quite adequate for a central limit theorem in the case of the
exponential distribution, but inadequate in many other cases, such as the uniform. The
special case of the uniform distribution is examined in a different context in Holst (1979),
but Holst’s results do not extend to other distributions.

In this paper we consider the case where p and % are fixed, which is the interesting
situation if we are estimating a compromise between the mean and the mode, or if we are
estimating the centre of a symmetric distribution. The case where p and % tend to infinity
is examined in Hall (1981). The results obtained there are of a very different character—
they depend crucially on behaviour of F in the neighbourhood of the mode, whereas in the
present situation, behaviour in the tails is all-important. After stating our laws of large
numbers we shall present several central limit theorems for the estimators, and discuss the
conditions involved. These results are collected together in Section 2, and their proofs
deferred until Section 3.

2. Limit theorems. Let Z;, Z; - - - be independent exponential random variables, fix
k=1landp>0,and set Y, = (Zf;'fﬂ Z;)™? and p = E(Y,). We shall adopt the notation of
Section 1. The density fis said to be piecewise uniformly continuous if there exist numbers
Xo, X1, ++ +, Xn Satisfying —0 = xo < x; < - -+ < &, = 0, such that fis uniformly continuous
on (x;—1, x;) for 1 =i = m. Note that this implies fis essentially bounded.
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THEOREM 1. (Strong consistency.) Let k > 2p > 0. If f is piecewise uniformly
continuous then @, — a almost surely. If in addition | x | f*(x) is bounded, and f(x) and
f(—x) are ultimately monotone as x — o, then b, — b almost surely.

Weak consistency may be proved by similar methods under the weaker constraint % >
p >0, and the same conditions on f.

The second order behaviour of these estimators, in terms of a central limit theorem,
seems to depend crucially on the behaviour of fin the neighbourhood of points where f(x)
— 0. We shall shortly discuss the case of a density with unbounded support, but a density
such as the uniform with compact support may be handled so much more easily that it is
illuminating to consider it in isolation. Let us define

on= {j gulx)f*(x) dx}{ 21 cov(Yy, Yi) — pPu?)

o0 X 2
+pi(p + l)zj [gw(x)f”(x) — {F(x)}7! f (NP (y) dy] flx) dx

forw = a, b and ¢, where g.(x) = 1, g»(x) = x and g.(x) = x — b/a. Let ¢ = b/a and &, =
bn /@n.

THEOREM 2. (Central Limit Theorem.) Let k > 2p > 0 and —o <u < v < o, If f
vanishes outside (u, v) and is bounded away from zero on (u, v), and if f has two bounded
derivatives on (u, v), then n'’*(4, — a) —4 N(0, 62), n*(b, — b) =4 N(0, 03) and n2(é,
—¢) =>4 N(0, 62/a?).

Of considerable practical interest are those distributions like the normal which have
unbounded support and are not covered by Theorem 2. Our next result is tailored to just
this case. A similar argument may be applied to distributions for which the differentiation
conditions below hold only in a piecewise sense, and to distributions like the exponential
with support equal to a semi-infinite interval. Some distributions such as the gamma have
an extra complicating factor in that the density f(x) is nonzero for x > 0, but converges to
zero as x | 0. However this problem can be overcome by imposing versions of the conditions
below in a neighbourhood of the origin, rather than towards —.

In Theorem 38 we shall assume that f(x) > 0 for all x; that f has two bounded derivatives
on (—o, »); and that the six functions f(+x), f°(xx)/|f'(xx) |? and f*(xx)/|f” (£x)| are
ultimately nonincreasing as x — . (The =+ signs are to be taken respectively, and so for
example the monotonicity of f(+x) requires that of both f(x) and f(—x).) We call these the
“basic” conditions on f. We shall also ask that there exist positive constants a, B+, y= and
8+ with the properties

(As)  f(xx) = C{G=(x)}* forlarge «x;

(Bs) axr=p: and 1/f(xx) +|f’ (+x)|/f3(+x) = C{G+(x)}™#: for large «x;

(Cs) 2B+ — ax <7vy: and |f"( +x)|/f*(xx) + | £/ (xx)|%/f3(2x) = C{Gx( x)}7 for
large x;

(D) 2B+ —y==0. and |xx|=C{G«(x)}% forlarge x,

where G.(x) =1 — F(x), G_(x) = F(—x) and C denotes a positive generic constant. (The
+ signs are to be taken respectively, and so each of these conditions stands for two
conditions. For example, (A.) means (A.):f(x) = C{1 — F(x)}*, and (A_):f(—x) <
C{F(—x)}*, as x — .)

These conditions are considerably less restrictive than their formulation makes them
appear. The generality they confer is probably best described by considering several
examples. Let ¢, /> 0.

(i) Suppose F(x) = 1 — cx™* for large x. The conditions above for the positive tail all
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hold if we set a+ = (/+ 1)/4 B+ = a+ + 1, v+ = a; + 2 and §; = a; — 1. The conditions
Y+ — o+ < 2(ap + 1) and max(l,y+ — a+) < 2(asp + 1 — §;) in Theorem 3 below are
equivalent to the constraints p > 0 and p > 1/(¢+ 1), respectively. This example is readily
extended to distributions with more general regularly varying tails.

(ii) Suppose F(x) = 1 — ce™’* for large x. The conditions on the positive tail hold with
ar=1,8,=2,v.=3and §; = ¢ where 0 < ¢ < 1. The constraints v+ — ar < 2(asp + 1)
and max(l,y+ — as) < 2(asp + 1 — 8.) revert to the single condition, p > 0.

(iii) If Fis a normal distribution function, let0 <n<1landseta.=1—1, 8+ =2, v+
=3+ nand §; = ¢, where 0 < & <1 — 7. Again the conditions on p collapse to p > 0.

THEOREM 3. (Central limit theorem.) Assume f satisfies the basic conditions, and
(As), (B:) and (C+) hold. Suppose k > 2p > 0.

) If [Zo 77 () | f/(x) | dx < © and v+ — ax < 2(azp + 1) then n**(G, — a) =, N(O, ¢2)
as n — oo,

() If [Zo [P (%) + fP(x) + F(x){1 — F(x)} > (x)] dx < oo, | x| fP(x) is bounded, (D)
holds and max(ys — ax, 1) < 2(axp + 1 — 8+) then n?*(b, — b) —4 N(0, 63) and n'%(é,
—¢) =4 N0, 0%/a’®) as n — .

(The conditions of (ii) above imply that [Z f77'(x) | xf’(x) | dx < o.) .

The parameter p has no direct influence on the asymptotic normality of G,, b, and é,.
Therefore any benefit to be gained by a specific choice of p would most likely be apparent
only in small samples.

Note that [Z, [f?(x) — {F(x)} ™" [ fP*'(y) dy]*f(x) dx = 0 in the case of the uniform
distribution on (0,1). Substituting this into the formula for o> we deduce that x =

21" cov(Y;,Y,) > p°w’. The rough approximation (1.1) would suggest that the asymptotic
variance of n'/*(d, — a) in the uniform case equals x, which differs from the true value of
« — p*u®. The limiting variances also differ in the cases of n'/%(b, — b) and n2(é, — ¢).

3. Proofs. Let H(x) = F~'(e™™), x > 0. The following formulae are easily derived:

3.1) H'(x) = —e™/f{H(x)},
(3.2) H’(x) = e*/f{H(x)} — f'{H(x)}e */f*{H(x)}, and
3.3) H”(x) = —e™/f{H(x)} + f"{H(x)}e >/f*{H(x)}

+3f"{H(x)}e ™1 — f'(H(x)}e™/f*(H(x)} )/ f*{H(x)}.

Rényi’s representation of order statistics (see David (1970, page 18)) permits us to write
Xon—r+1=H(}=1 Z;/(n — i + 1)}, 1 =r < n, where for each n the variables Z; = Zi(n) are
independent and exponentially distributed with unit mean. The symbol C below denotes
a positive generic constant, while if {A,} is a sequence of positive constants, the identity
£, = Op(A,) for random variables £,, means that A\, 7%¢, is tight:

im, . lim inf, .o P(A, ) |£0|< ) = 1.

Furthermore, if A > 0, A,» > 0 and £, 1 = r < nA, are random variables, we use the phrase
“&nr = Op(Anr) uniformly in 1 < r < nA” to mean that

SUP1<r=na }\;rl | &or | = Op(1)~
ProOF oF THEOREM 1. Let V,, ,.1 = —log F(X,), 1 = r < n, denote the order
statistics from an exponential sample, and observe that

(34) Xn,n—(r—l—k)+l - Xn,n—r+1‘= (Vn,r+k - Vnr)H/{Vnr + ¢( Vn,r+k - Vnr)}
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where 0 < ¢(n, r) < 1. Suppose 0 < 7; < 72 < 1, and that if m # 0, F7}(1 — =) is a
continuity point of f. Write [n;] for the integer part of na;, with [nm] = 1 if ; = 0. Since
Vn,[mv,] —as. _log(l - 77i) then

lim Supnawsup[nwl]srs[nwz]l Vnr + ¢( Vn,r+k - Vnr) + log(l - 771) | = lOg{(l - 771)/(1 — T2 )}
with probability one. From this result, (3.1) and the uniform continuity of f we see that
(35) lim SUPn—s0 SUP[nm, J<r<[nm,] | [HI { Vir + ¢( Vn,r+k_Vnr) } ]_l + f(x)/(]- - 771) |S €1m (772)

with probability one, where x = F~'(1 — m;) and &;,(v) stands for a function satisfying
(36) 0=<¢u(@w) — 0 uniformlyin v€[0,1—-A] as v} u, for each A > 0.
The next step is to prove that

(3.7) lim Sl.lpn,_,gol n_(’”l) Z[’"’z] {Xn,n—r+1 - Xn,n—(r+k)+1}_p

r={nm]
— pfP (@) (72 — m) | = (m2 — ™) 2 (m2)

with probability one, where &, (v) satisfies (3.6). This implies that whenever 0 < 7 < 1,
n_(p+1) ZE‘Z‘;] {Xn,n—r+l - Xn,n—(r+k)+1}_p —>as U f fp{F_l (]- - x)} dx
4]

=p f 7 (%) dx,

F-1(1-7)
and by symmetry it must also be true that

F1(1-7)

n—(p+1) Zz;[mr]+1 {Xn,n—r+l - n,n—(r+k)+1}_p —as. U j fp+1 (x) dx-
0

Therefore G, —as. a.
The inequality (3.7) will follow from (3.4) and (3.5) if we show that

(38) [PV YT (V, = V)P — p{(1 = )P — (1 — m)"}/(p+1) | —as. O.

r=[ nxl]

Using Rényi’s representation, V,, = Yi-1 Z;(n)/(n — i + 1), 1 < r < n. Therefore the series
in (3.8) is a sum of (2 — 1)-dependent variables, and may be broken up into % sums of
independent variables, each sum similar to

Snj = ZE.’:[’%:]/;;] (Vn,rk+j+k - Vn,rk+j)_p, 1 Sj = k~
For each ¢ and A > 0 we may obtain the following bound using Rosenthal’s (1970)
inequality:
Zn P(|Snj — ES,,j| > n"’“e) < g2 2'1 n—(PrLEHA) E| Sy — ES"j|2+A
<= CE{(Z{Ll Zi)—(2+A)p} Zﬂ n—(1+A).

Since k& > 2p we may choose A > 0 such that E{(Y%; Z;)"®**”} < oo, and then it follows by
the Borel-Cantelli lemma that n="*V (S,; — ES,,;) —... 0. It is readily proved that the
mean of the quantity within modulus signs in (3.8) converges to zero as n — o, and so (3.8)
must be true.

Similar arguments may be used to prove that

n—(p+1) ZE‘:‘[?,],”] {PXn,n—r+1 + (1 - P)Xn,n—(r+k)+1} {Xn,n—r+1 - Xn,n—(r+k)+1}_p

F-1(1-m)
—>as. U j X, ”“(x) dx

F-Y(1-m)
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whenever 0 < 7; < 73 < 1. It is readily seen that the proof that bn—>as b may be completed
by showing that with probability one the quantity

(3~9) hm Supn—>oo n—(p+1) 2;’—1%] Xn,n—(r+k)+1 {Xn,n—r+1 - Xn,n—(r+k)+l} e

can be made arbitrarily small by choosing A small. Since f(x) is ultimately nonincreasing
then if A is small, and for all sufficiently large n with probability one,

|H/{Vnr + ¢( Vn,r+k - Vnr)} |_1 = eXp( Vn,r+k) f{H( Vn,r+k)} = Cf(Xn,n—(r+k)+1)

uniformly in 1 < r < [nA]. It now follows from (3.4) that the argument of (3.9) is dominated
by a constant multiple of

n‘“’m Z[r:%] |Xn,n—(r+k)+l |fp(Xn,n—(r+k)+1)(Vn,r+k - Vnr)_p = Cn_(pﬂ) Z['—ZAI] (Vn,r+k _Vnr)_p’

and we already know that lim sup,.. n= """ Y1241 (V, .., — V,,,) ™ converges to zero as A
— 0. This completes the proof.
The proof of Theorem 2 is very much like that of Theorem 3, and so is not given here.

Proor oF THEOREM 3. We proceed via a sequence of lemmas.
LEMMA 1. Let /=0 or 1. Assume condition (A.), and also (D.) and 8, < arp + 1 if
¢= 1. Then for each ¢ satisying 0 <e < 1,
o [0Xnn—r+1 + (1 = p)Xnnramy+1| {Xnn-rt1 — Xnpereny1} 7 = O, {nPH1-0eap¥i=s.on
Proor. (Here and below we shall drop the subscripts = whenever no ambiguity
arises.) From Rényi’s representation, the Taylor expansion
Xon—t+ryel — Xnnersr = { X250 Z:/(n — i + 1)}
HA{YinZi/(n—i+1) + ¢ Y2k Zi/(n — i + 1)},
and the result (3.1) we may write
{Xnn—re1 = Xpn—ramr1} ' < (n = 1) (T2 Z:) 'exp T2 Zi/(n — i + 1)}
X fIH(Y =1 Zi/(n — i+ 1) + ¢ N2k Zi/(n — i + 1)}],

where 0 < ¢ < 1. In view of the monotonicity of f, with probability tending to one as n —
o the last factor is dominated by

fIH(ZEE Z/(n = i+ D}] = [Xop-ramr) < C{1 = F(Xnn-amr+1)}* = C Uspran

uniformly in 1 < r < n‘, where the U,’s are order statistics from a sample uniform on (0,1).
Also,

(3.10) Yici(n—i+ 1) —log{n/(n—r)} =0 and

Y1 (Zi— 1)/ (n—i+1) = 0p(n?)
uniformly in 1 < r < nA for any 0 < A < 1, and it may also be shown that
(3.11) exp(Yirt Zi/(n — i+ 1)} = 0,(1) and U, = O,(r/n)
uniformly in 1 < r < nA. Observe that by Theorem 0 of Wellner (1978),

SUPlogn<rr | Unr/(r/n) — 1| =, 0.

Rényi’s representation may be used to show that

SUP1<r=iogn Unr/(r/n) = Op(1).
This proves the latter part of (3.11).) Combining these estimates we obtain,

(312) {Xn,n—r+l - AXn,n—(r-Hz)+1}_l = p(l)n(r/n)a (Z:-——frl‘:-l Zz)_l-
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It follows from work of Daniels (1945) and Robbins (1954) that the variable
infi<,<, Un-(r/n) is uniform on (0,1), and so

(3.13) Ut = Oyln/r)
uniformly in 1 < r < nA. Therefore with probability tending to 1 as n — o,
len,n—r-H + (1 - P)Xn,n—(r+k)+1| = Xn,n—r+1 =C {]- - F(Xn,n—r+£)}_5 = Op{(n/r)8}~

Lemma 1 follows from this estimate and (3.12); note that Y-, r*=% (¥itkh, Z)™® =
O, (n=*17%)) 'by Markov’s inequality.

LEMMA 2. Under conditions (A.) and (B+) there exists A > 0 such that
Xn,n—(r+k)+l - Xn,n—r+l
=Yk Zi/(n— i+ DYH'(Xie1 Zi/(n — i + 1)} X [1 + Op{n""(r/n)*~*+log n}]

uniformlyin 1 <= r <nl, asn — .

ProoF. Observe first that
Xn,n—(r+k)+1 — Apn—r+1 = {Z;‘:r":-l Zi/(n - l + 1)}Hl{2;=1 Zl/(n - l + 1)}(1+ Rlnr)
where

Ripw = %Y1t Zi/(n — i+ 1)YH" (N1 Zif/(n — i + 1)
F o YIEL Z/(n— i+ 1)}/ H (S Zi/ (n — i + 1)},

and 0 < ¢ < 1. From (3.2) and the nondecreasing nature of 1/f and | f’ |/f® we see that if 0
= ¢ < x and x is sufficiently small,

|H" (@) = 1/f(F e} + | fF e/ (F ™).
Setting e = ¢ Y121 Zi/(n — i+ 1), y = Y71 Zi/tn— i + 1) and x = y + ¢ we deduce that
| H"(x)| = C[1 — F{F(e”)}]™* = CUF = O,{(n/r)F}
uniformly in 1 < r < nA, and using techniques from the proof of Lemma 1 we obtain
| H{Y=1 Z:/(n — i + 1)} = 0,{(r/n)*}
uniformly in 1 < r < n. Finally observe that
R Z/(n— i+ 1) < k(maxi<i<nZ)/(n — nA — k) = Oy(n""log n)

uniformly in 1 < r < nA. Lemma 2 follows on combining these estimates.

LEMMA 3. Under conditions (A,) and (C.) there exists A > 0 such that
H(YimZ/(n—i+ 1)) =H'{Tia(n—i+1D7)
(314) X[+ (Pim Zi—D/(n =i+ D}H"{Tie (= i+ )7}/H T (n =i+ 1)7)
+ Op{n!(n/r)"™}]

uniformly in 1 <r < nl, asn — .

Proor. Observe first that a precise form for the relation (3.14) is given by a Taylor
expansion in which the remainder O,{n~"(n/r)*™*} is replaced by

Rowr = %{(Yic1 Zi = 1)/(n—i+ DYH" (T~ (n —i+ 17"

(3.15)
+¢ X1 (Zi—1)/(n—i+ 1)}/H Yz (n — i+ 171}
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The function ¢ = 3{1/f(H) + | f"(H)|/f*(H) + | f"(H)|>/f*(H) + | f"(H)|/f*(H)} is nonin-
creasing for small values of x, and dominates | H” | (see (3.3)). Let

n=|H"{Jia(n—i+ )" +¢ X (Z -1)/(n—i+1)}

and { = Y (Z; — 1)/(n — i + 1), and suppose A is small. If { = 0 then with probability
tending to one as n — =, 7 is dominated by ¢(x) withx =Y/, (n — i + 1), forall 1 = r
=< nA. Moreover,

(x)=C1—-F{Hx)}]"=C[l —exp{— Y= (n — i + )™} = O{(n/r)"}.
A similar argument shows that if { <0,
n=C[1—-F{H(Zi-1Z:/(n— i+ 1))} = CU = O, {(n/r)1},

by (3.13). Therefore n = O, {(n/r)"}. It is easily proved that |H' {Yi-, (n — i + 1)"} |1 =
O{(r/n)*} uniformly in 1 < r < nA, and substituting these two estimates and (3.10) into
(3.15) we obtain (3.14). The next result is proved almost identically.

LEMMA 4. Under conditions (A.) and (B.) there exists A > 0 such that
D= (Zi=1)/(n—i+1)}H"{Yimi(n—i+ D) YH {Jm(n—i+1)7Y
= 0, {(n7"*(n/r)f++)}

uniformlyinl <r=nl, as n — «.

LEMMA 5. Suppose 0 <e<1and (y+ — a:)(1 — ¢) < 1. Under conditions (A.), (B.)
and (C.) there exists A > 0 such that

{(Xnn—rs1 = Xnn-rem1} © = nP (X251 Z,) PfP{F (1 — r/n)}
X (1 =p{¥i1 (Z. = 1)/(n - i+ 1)} H"[log{n/(n — r)}]/H'[log{n/(n — r)}]

+ Op{n7'(n/r)*"*+log n})
uniformly inn*<r=<nl, asn— o,

Proor. Under the condition (y — &)(1 — ¢) < 1 the remainder in the expansion (3.14)
equals 0,(1) uniformly in n* < r = nA, and since 2(8 — @) < y — a then the term preceding
the remainder also equals 0,(1) (see Lemma 4). Lemmas 2 and 3 may now be combined to
give

{Xnn—r+1 = Xpn—remys1} *
= (3 Zi/(n— i+ 1)} Pexp{pYi (n — i + )Y P[H(Y I (n — i + 1)71}]
X[1=-pZa(Z=-1)/(n—i+INH' 3 (n—i+ 1) YH{Y (n—i+1)7)
+ O,{n ' (n/r)*#log n + n"'(n/r)"log n}].

The proof of Lemma 5 may be completed using some routine computations based on the
estimates in (3.10).

LeEmMMA 6. Under condition (B.) there exists A > 0 such that
PXnn—r+1 + (1 = 0) X n—rany+1
=F'Q—-r/n)+ {3 (Z - 1)/(n— i+ 1)}HTlog{n/(n — r)}] + O, {n"Y(n/r)*+log n}
uniformly in1 =r <nl, asn— oo,

PrOOF. Since fis ultimately nonincreasing then with probability tending to one as n
— oo, and for some 0 < ¢ < 1,
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Xon-rt1 — Xnn—amyer = { X720 Zif(n — i + VY fIH{Y =1 Z:/(n—i+ 1)
+ ¢ T Z/(n =i+ 1D)]
= O0p(n""10g n)/f(X,n-r+1) = Op{n""(n/r)"log n},
using (3.13). Therefore
0Xnn—r+1 + (1 = p) X n—tir+1 + Op{n"'(n/r)Plog n} = Xpn_r1
=H{Y(n—i+ 1)+ (T (Z - 1)/(n—i+ DYH{Y} (n—i+ 1)1}
+ %Y (Z =) /(n =i+ DYH"(Ti (n =i+ 1) + 430 (Zi— 1)/ (n — i + 1)}

where 0 < ¢ < 1. The last term in this expansion may be shown to equal O,{n!(n/r)?}
using an argument like that in the proof of Lemma 4, and simplified expressions for the
first two terms may be derived using (3.10). This ultimately leads to Lemma 6.

We are now in a position to prove Theorem 3. We shall only derive the limit theorem
for b,,, since the other results may be obtained in a like manner. Given 0 < ¢, A < 1, we
break the series expression for b, into four parts:

nP by = (1 + s + TrG + Y naesr e} {0 X noret
+ (1 = p) Xon—+ty+1} X {Xnn—rt1 = Xnnimre}
=8 +8:+ Ss+ Sy,
say. (Here ¥74°4’ denotes Y{ni7:1", etc.) If g is a differentiable function satisfying [5] g’ (x)|
dx < o then Y1 g(1 —r/n) = [§ g(1 — x/n) dx + O(1) as n — o, and so
n?*la = nu Jm F7'(1—x/n)fP{F'(1 — x/n)} dx
0

=n ,u{z 1+ Y+ TR, + ¥ r—n-a)+1}
F7'(1 = r/n)fP{F'(1 - r/n)} + O(n®)
=A1+ A2+ A3+ A+ O(n?),

say. It is readily proved using the techniques we shall use below that the variable
nP72(S1 + S; — A1 — Ay) is asymptotically normally distributed with zero mean and a
variance which converges to zero as A — 0. From considerations of symmetry we see that
the same must be true of n™""*(S, — A4). Therefore it will suffice to prove that for all
sufficiently small A > 0, n?"V*(S; + Sz + S — A1 — A2 — Ay) is asymptotically normally
distributed with zero mean, and its variance converges to o3 as A — 0. We shall consider
the series S;, S; and S; individually.

(i) Series S;: If & < ap + 1 then in view of Lemma 1, S; = O, {n"”“l (=e)ap+1=8)3
Moreover, Ay < Cn? 37" [1 — F{F'(1 — r/n)}]7® X [1 = F{(F™'(A0 - r/n)}]* =
Cn? Y% (r/n)**~%, and combining these estimates we deduce that

(3.16) P81 — A1) =0,(n'A if (ap+1-08)(1—¢) >%.
(i) Series Sz: If (y — @) (1 — ¢) < 1 then in view of Lemmas 5 and 6, and the expressions
(3.1) and (3.2),
{0 X, n-r+1 + (1 = 0) Xpn—ire } { X nr1 = X nerair1} 7
=n?Y,fP{F'A - r/n)}(F'(1 - r/n)
+SulpF™'A — r/n) {1 = f(F'(1 = r/n))(1 = r/n)/f*(F~'(1 — r/n))}
- A =r/n)/f{F7'(1 = r/n)}] + R,
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where Y, = (Y7251 Z) 7, Spr = 2121 (Z,— 1)/(n — i + 1) and
Rsnr = O,()PY, fP{F (1 — r/n)}{n""(n/r)"log n + n~(n/r)"**®log n + SZ,(n/r)?# =)
= 0,()n?'Y, fP{F (1 — r/n)}(n/r)** “log n.
(Note that (B) implies 28 — a = B, while (D) entails 28 — a = y — a + 8.) Therefore
=n? Yo Yo fP{F'(1 = r/n)}(F (1 — r/n)
(317 + Su[pF7'(1 = r/n){1 = f(F'(1 - r/n))(1 — r/n)/fAF'Q - r/n)))
- A =r/n)/f{F'(1 = r/n)}]) + Ry,

where R, = Y51 Rasnr = Op(1)n?'(log n) $iesi (r/n)°P**728Y, . Using Markov’s
inequality the series in this expression is easily shown to equal O,(n log n) if ap + o — 28
= — 1, while the series equals

Op ()R> B2 sy PP 72 = Qp{p !+ Phmamap=D}
if ap + & — 28 < —1. Consequently
(3.18) R, = 0,(n”*"?) if (2B—a—ap—1)(1 — &) < %.

Combining (3.16) and (3.18) we see that &« must satisfy the inequalities (ap + 1 — 8)(1 —
€) > % 28 —a—ap —1)(1 —¢) < % (and also (y — a)(1 — &) < 1). These can all be
satisfied if and only if 2(ap + 1 — §) > 1 and max{2(28 — a — ap — 1), y—a} <2 ap+1
— 8). When 28 — y = 8 (see (D)) this last condition is equivalent to Yy—a<2ap+1-
), and so they are jointly equivalent to

(3.19) max(y — a, 1) < 2(ap + 1 — 8).
Note that this implies that § < ap + 1, which was assumed in (i) above.
(iii) Series Ss: The density f is bounded away from zero on the interval [F ~(A), F (1
— A)] whenever 0 < A < %, and so a simpler version of the argument in the earlier lemmas
may be used to prove an analogue of (3.17) in which S, is replaced by Ss, Yné1 by
ni2) and R, by 0,(n'?).
Combining this result with (3.16) and (3.18) we deduce that whenever (3.19) holds,
nPEUS = A) =Y (Y, = p)F7' (A = r/n) fP{F (1 - r/n))
+ RIS SufP(F UL = r/n))[pF (L~ r/n)
AL=f(F' (1 = r/n)(1 = r/n)/f(F' Q1 - r/n))}
(3.20) — (I =r/n)/f{F7Q -r/n)}]
+ XY, — w) S fP{F (1 — r/n)}
{pF7'1 = r/n){(1 = f(F'(1 - r/n))
“(L=r/n)/fHF7'QA = r/n)} = (1 = r/n)/Ff{F (1 = r/n)}] + 0,(n"2).
Any two summands in the last series distance % or more apart may be shown to be
uncorrelated, and so the series can be written as a sum of % series each containing only
uncorrelated terms. The variance (or in this case, mean square error) of the last series is

therefore dominated by a constant multiple of the sum of the variances, which in turn is
dominated by
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Cin ™' 3250 (r/n) fPP{F (1 — r/n)}{F (1 — r/n) {1 + | f/(F7Y(1 — r/n))|?/
fHF A = r/n)} + 1/f{F'(1 - r/n)}]
F"(l—l/n)
=C J {1 = F(x)} 2P (x) + 22| f/(x) |23 (x) + 2271 (x)} dx.
F-1(a)

The infinite integrals of the first and last terms converge, while for y > — oo,

F~'(1-1/n) F=1(1-1/n)
f | f1(x) P x) dx < C J {1 = F(x)}*®P*72f(x) dx
Y Y

F~'(1-1/n)
= J (1 - F(x)}™"f(x) dx,
¥

where n > 0 under (3.19). Combining these estimates we deduce that the third series in
(3.20) equals o0,(n'/?). The sum of the first two series may be written as S =Y {(Y,
—wew+u(Z —)(n—r+ 1) Y d,}, where

err=F (1 =r/n)fP{F'(1—-r/n)}

and

dw = fP{F'(1 = r/n)}[PF 7' — r/n){1 = f(F7'Q = r/n))(1 = r/n)/f(F7(1 = r/n)))
- @ =r/n)/f{F'(1-r/n)}]

The series S is a sum of k-dependent random variables, and the classical central limit

theorem for bounded, m-dependent variables (see Chung (1974, page 214)) may be used to

prove that S is asymptotically normally distributed. The argument involves two trunca-

tions, the first of the series (summing from r = nn to n(1 — A), where n > 0 is arbitrarily

small) and the second of the random variables themselves. The asymptotic variance is
that of S:

var(S)
= (308 ¢2,) Y2 cov(Yy, Ya) + 2Ru {325 cp(n — r + 1)) d) Yeov( Yy, Zy)
+ MY (n—r + DAY da)® + o(n).

Routine calculations yield

00

n(l-A)
S J {(F7'(1 = x/n)Y*f**{F (1 — x/n)} dx = nj x*f*P+ (x) dx
[}

F-1(a)
and

F-'(1-r/n) F-Y(1-r/n)
YR dy ~ n[pj xf*"(x) dx —f {pxf'(x) "' (x) + F(x)f*(x)} dxj|

F-1(a) F-1(a)

F~'(1-r/n)
= n[ (p+1) J 2P x) dx — F7' (1 — r/n) fP{F~'(1 — r/n)}(1 — r/n)
F

“1(a)

+ F“‘(A)f"{F_I(A)}A]-

From these estimates we may obtain a formula for the limit of n~'var(S), which leads in
turn to the result
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lima_,o {lim, . n”'var(S)} = 7> (say) = {f x*f?PH(x) dx} o leov(Yi, Yi)

+ 2ku[ p+ I)J 2P (x) (F(x)) ! de ¥ (y) dy — f 2P (x) dxj|cov(Y1,Z1)

X

00 2
+ M2J [(p +D{F )" | ¥y dy - xf"(x)jl f(x) dx.

—o0

It may be proved that cov(Y, Z1) = — pu/k, and then it is a simple matter to show that
72 = 0%, completing the proof of Theorem 3.

Acknowledgment. The referee’s comments have enabled me to clarify my notation
and improve my presentation.
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