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Let Xo, Xi .- - be a Markov process with transition function p(x, dy). Let
Ln(w, -) be its average occupation time measure, ie., L.(w, A)= 1/n
- 2 xalxdw)). A powerful theorem concerning the lower bound of the
asymptotic behavior of L.(w, -) was proved by Donsker and Varadhan when
p(x, dy) satisfies a homogeneity condition. This paper tries to extend their
results to some cases where such a homogeneity condition is not satisfied.
This particularly includes symmetric random walks and Harris’ chains.

1. Introduction. Before stating the results, a brief description of the problem and
some answers to the problem will be reviewed.

Let Xo, X1, X5, -+ be a sequence of random variables taking values in a complete
separable metric space X. Each realization w of the process is a sequence xo, X1, Xz, - - -
where x; € X. If we denote £ the space of all such sequences, then for each w € , positive
integer n and set A C X, let L,(w, A) = (1/n) Y2 xalx:) be the proportien of time the
process spends in A during first n-steps. We note that L.(w, -) maps € into .#, the space
of all probability measures on X. The large deviations problem is to find a functional I (u)
from . to [0, ] such that:

(I.1) Iislower semi-continuous
(I.2) For any closed set C C ./,

limsup, .« rlz log p(Ln(w, -) € C) = —inf,ecl ().
(I.3) For any open set G C .4,
hmmfn_m - log p(Ln(w, ) € G) = —inf,ccl ().

Here we endow .# with the weak topology.

The problem of studying the asymptotic behavior of L,(w, -) was proposed by Sanov
[6] when Xo, X1, X; - - - is an ii.d. sequence. His work has been extended by Hoadley [5],
Bahadur and Zabell [1] and many others. Donsker and Varadhan generalized this problem
assuming the Markovian property of the process. Let Xy, X1, Xz --- be a Markov process
with a Feller transition function p(x, dy) and initial distribution §,. They define the I-
functional as follows:

For any p € 4,
(L4) I(p) = suprep«x) j lOg(—g;;c—()xTH(dx)

where (pf)(x) = [ f(y)p(x, dy) and B°(x) is the set of all positive functions for each of
which there exist a, b such that 0 < a < f(x) < b < o for all x € X. It has been proved that
the I-functional defined by (1.4) is appropriate in many cases. For instance I (u) is always
lower semi-continuous and (1.2) is always true if we require the state space X to be a
separable compact metric space (see [2]). (For the case that X is not compact, readers are
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referred to [3] for another condition). The authors of [2] also proved in [3] that (I.3) is true
(for general state space) if the following condition (called Hypothesis (H) in [3]) is satisfied.

Hypothesis H. For arbitrary two points x and x’, the resolvents ¥ 5_: (1/2")p"(x, dy)
and ¥ 71 (1/2")p"(x’, dy) are mutually absolutely continuous. Here p”(x, dy) denotes the
nth transition function.

We agree with the authors of [3] that the I-functional defined by (I.4) is appropriate.
Hypothesis (H), however, seems very stringent. Even when X is compact, it was used in a
crucial way to obtain (I.3) in [2]. There are many interesting transition functions which do
not satisfy (H). In fact, the random walks on the real line or unit circle do not always
satisfy (H). The purpose of this paper, therefore, is to find various other conditions under
which (I.3) is true. In Section 1, a condition which is weaker than (H) is considered. We
call that hypothesis (gH), (generalized H).

(gH): There exists a 2 = 1 such that }.5-, (1/2") p™(x, dy) andYn-. (1/2") p"(x’, dy) are
mutually absolutely continuous for every x and x’.

Note that (H) is the special case of (gH) when 2 = 1. Under hypothesis (gH), (I1.3) is
obtained in Theorem (1.7). We consider this generalization worthwhile because the proof
of (1.7) is not entirely trivial and a new method of approximation of P(L,(w,-) € G) has
to be used. One example which satisfies (gH) but not (H) is given in Section 1.

In Section 2, we consider two classes of transition functions which do not satisfy (gH).
One is the class of symmetric random walks and the other is that of Harris’ chains. In both
cases, however, we only get results which are weaker than (1.3). Theorems (2.5) and (2.7)
show that (I.3) is true when the infimum of the right-hand side of (1.3) is taken over .#"’
C 4 where ./’ is some suitable subset of ./, i.e.

1
(I.5) lim inf, ., - log px(Ln(w, -)G) = —infue.sna, I(p).

In the case of symmetric random walks on the real line or on the unit circle, .#’ is taken
to be the set all absolutely continuous probability measures. In the case that X, Xi,
Xs, - - - is a Harris’ chain, .#" is taken to be the set of all probability measures which are
absolutely continuous with respect to its invariant distribution. If #’ = .# then (1.5) is the
same as (I.3). One such example is given at the end of Section 2. For obvious reasons,
however, the technique used there can’t be generalized any further. Applications of (I1.2)
and (L.3) to Gaussian measures on Banach spaces can be found in [3]. Statistical applica-
tions can be found in [1].

Section 0. Notations and preliminary results. We first review and summarize some
results of [3]. Let X be a complete separable metric space and p (x, dy) a transition function
defined on X. We always assume p(x, dy) is a Feller transition function throughout this
paper. Let ./ be the space of all Borel probability measures on X and B(X) the space of
real-valued Borel functions f defined on X for each of which there exist a, b such that 0
<a=f(x) =b<owforall x € X. With pf(x) = [ f(y) p(x, dy), define, for each . € .,

f(x)
pf(x)

It is easy to see that I(-) is a convex functional. Let B°(X) be the subset of B (X) consisting
of functions f which are also continuous, then it is not hard to see that

f(x)
pf(x)

Let #xxx be the space of all Borel probability measures defined on X X X and .Z, the

I(p) = suprep(x) [ log pldx).

I(p) = suprepe(x) J log u(dx).



LARGE DEVIATIONS OF SOME MARKOV PROCESSES 957

set of A € #xxx with both the first and second marginals y. For A € ., define:

L, (x, dy) p(dx)™
= SUPfeB*(XxX) { f f log f(x, y)A(dx, dy)— log jj f(x, y)p(x, dy)u(dx)}

where B¢(XxX) is the set of all real-valued continuous functions f(x, y) on X X X and for
each of which there exist a, b such that 0 < a < f(x, y) < b < o for every (x, y) € XXX.
It is shown in [3] that

(0.0) I(,u) = inf)\EJ{,‘I_p(x,dy);L(dx)(A)~

The assumptions that p (x, dy) is a Feller transition function and X is a complete separable
metric space imply that I, (s, ay) u(ax)(+) is lower semi-continuous and .#, is compact respec-
tively. Hence infre. 4, L(x,ayuan (A) is actually attained at A E M, 1f () < oo, If we let
px, E)= Xdx X E) /u(dx); i.e., let p(x, E) be the Radon-Nikodym derivative of A(dx %
E ) with respect to u, for each E C X, p(x, E) is defined for almost every x relative to u(dx).
However, a version of p(x, E) can be chosen so that p (x, dy) is a transition function since
X is a complete separable metric space. We note that yu is invariant for p(x, dy) since both
the first and second marginals for X(dx, dy) are p. In [2], Lo ay wax)(A) was expressed in
terms of the Radon-Nikodym derivative of A(dx, dy) with respect to p(x, dy) u(dx), i.e.,

o if A </< p(x, dy)u(dx)

_ log f(x, y)A(dx, dy) where f(x, y) is the
(0.1) Ip(x,dy)u(dx)(}\) = j

Radon-Nikodym derivative of A(dx, dy) witk
respect to p(x, dy)u(dx).

Let’s summarize the above as the following lemma:

LEMMA (0.1). Let I, I, 4, be defined as above and p a Borel probability measure. If
I(p) < o, then there exists a transition function p(x, dy) << p(x, dy) for almost every x
relative to u(dx) such that p is an invariant measure for p (x, dy) and

p(x, dy) _
I(p) = I anuian (P (x, dy)p(dx)) = J’ IOgWP(x, dy) p(dx)
where 2 2 ; is the Radon-Nikodym derivative of p (x, dy) with respect to p(x, dy).

Let f, € B°(X) be a sequence of functions such that I(p) = lim,..[ log (fu(x)/
pl(x))u(dx). The following lemma (Lemma 2.4 in [3]) reveals important information
about p(x, dy)/p(x, dy).

LEMMA (0.2). Let f.(x) be as above and p. a Borel probability measure with I(p) <
o, Then (f.(y)/pf(x)) p(x, dy)u(dx) — p(x, dy) u(dx) in variational norm.

Let p, denote the Markov process with initial distribution p and transition function
P (x, dy). Since p is invariant with respect to p (x, dy), p, is a stationary process. Moreover,
if p(x, dy) and p(x’, dy) are mutually absolutely continuous for every x and x’, then it is
shown in [3] that p, is actually ergodic. We state this fact in the following lemma.

LEMMA (0.3). Let p(x, dy) be a transition function such that for every x and x’,
p(x, dy) and p(x’, dy) are mL_ttually absolutely continuous and p a Borel probability
measure with I(p) < . Then P, is ergodic.
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The following lemma was proved as Theorem (3.1) in [3]:

LeEmMMmA (0.4). Let p’(x, dy) < p(x, dy) for a.e. x — u(dx) be an arbitrary transition
function such that the Markov process p;, with initial distribution u and transition
function p’(x, dy), is ergodic. Then there exists a Borel set A with u(A) = 1 such that for
every open set G in 4 containing p,

- 1 p’(x, dy)
(0.2) lim inf, . — log P:(w: Lu(w, -) € G) = — f log—————p’(x, dy)u(dx
- log & otx, dy) P y)u(dx)
if p(x, A) > 0. In particular, if p(x, dy) is not singular with respect to u(dy), then (0.2)
holds.

For any transition function function p(x, dy) and any 0 < ¢ < 1, let’s define:
pe(x, dy) = (1 = £)(p(x, dy) + £p°(x, dy) + Ep°(x, dy) + --+)
P (x, dy) = (1 = §)(p*(x, dy) + £p* (%, dy) + £ (x, dy) + -+ )
for £=1,2,3,....

Here, p"(x, dy) is the nth transition function. It is easy to see that p:(x, dy) and
p¥(x, dy) are Feller transition functions if p(x, dy) is. Also, note that pe(x, dy) =
PP (x, dy). For transition functions ps(x, dy) andp{? (x, dy) we denote the corresponding
Ifunctionals and transition functions p(x, dy) in Lemma (0.1) by I,I{” and p;(x, dy)
respectively, i.e., for instance, I;(p) =supses<(x) [ log f(x)/p:f(x) u (dx) and etc.

SECTION 1. We first state the hypothesis (gH):

(gH): There is a fixed measure 8(dy) and some integer % such that Y-, p"(x, dy)/2" is
equivalent to B(dy) for every x. Here p"(x, dy) is the nth transition function. (Two
measures are equivalent if they are mutually absolutely continuous.)

Note that the hypothesis (H) in [3] is the special case of (gH) when k& = 1. It’s also easy to
see that p{¥ (x, dy) is equivalent to 8(dy) for every x if (gH) is satisfied.
In this section we will show (Theorem (1.7)) that for every open (weakly) set G

containing p and every point x € X,

(1.1) lim inf, . % log P.(Ln(w, -) € G) = — I(p).

Here, L.(w, -) denotes the average occupation time measure and P, the Markov process
with initial distribution 8. and transition function p(x, dy). Note that (1.1) is equivalent to
(I.3) when we take the supremum over all u’s which belong to G.

With p;(x, dy), p{?(x, dy), I; and I{? defined as in the preceding section, we first prove
some computational lemmas.

LemMa (1.1). Let g(x, y) be the density of p{ (x, dy) with respect to p(x, dy). Then
g(x,y) = (1/6*") ae. —pe(x, dy)u(dx) fork =1,2, -+ .
Proor. For almost every (x, y) — p:(x, dy) u(dx),
(1= &) (p*(x, dy) + &p" ' (x, dy + - -+))
1= 8(p(x,dy) + --- + £'p*(x, dy) + & p" (x, dy) + -+ +)
pi(x, dy) + &M (x, dy + -+ ) 1

T & (pR(x, dy) + EpMN(x, ay) + --0) 5D

g(x,y) = {
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LEMMmA (1.2). Let p be a Borel probability measure such that I(y) < . Then:
IP(W<wofor0O<t<landk=1,2,3 ...

Proor. By definition,

I (u) = supren) f log G)%))(T)“(dx)
= supren f o8 T
= SUPfeB(x) J log—(;fg%u(dx) + supseBx) f log(%ﬁ)%u(dx) + ...

(PE ()
(Pe(PE' ) (x)

f(x)
(pef)(x)

=k-I(p) —log(l = §) <.

+ supfeB) J log w(dx) —log(1 —£)

= k-supren f log pldx) — log(1 — £)

Hence I (u) < o if I(u) < oo. This completes the proof.

LemMa 1.3. Let p(x, dy) be a transition function which satisfies (gH). Then I(un) <
oo only if p < B.

ProoF. By Lemma (1.2), If? (1) < . Therefore there exists a transition function
Pe(R) @ ap<pe for a.e. x — p(dx) and p(dx) is an invariant distribution relative to p;(x, dy)
by Lemma (0.1). If A is a set such that 8(A) = 0, then p{? (x, dy) = 0 for every x. Thus
Pi(x, A) = 0 a.e. x — p(dx). Therefore, u(A) = [ p{¥ (x, A)u(dx) = 0. This completes the
proof.

Let p(x, dy) be a transition function which satisfies (gH) and u a Borel probability
measure with I(u) < co. Let

Pee(x, dy) = (1 — t)p;(x, dy) + tpf(x, dy) for 0<¢<1.
Since p;(, dy) < pg(x, dy) and p{* (x, dy) < p{ (x, dy) for a.e. x — u(dx), we have p; . (x,
dy) < p;(x, dy) a.e. x — u(dx) for every 0 < ¢t < 1.

LEMMA 14. Let p;.(x, dy)/p:(x, dy) be the Radon-Nikodym derivative of p;(x, dy)
with respect to p;(x, dy). Then:

Dee(x, dy) _
Jlo pe(x, dy) Dee(x, dy)u(dx) = L (p) as t— 0.

PROOF. p;.(x, dy)u(dx) € M, since both p;(x, dy)u(dx) and p¥ (x, dy)u(dx) are in
M. Therefore by (0.0) and (0.1), we have

ﬁ&t(x’ dy) —
J 10gmpg,t (%, dy)u(dx) = I (n).

Now,

Pee(x, dy) -
J lo P, dy) Dz (x, dy)pu(dx)
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(R dy | A dy)) g <(1—t)ﬁs(x, d)
- f -0 <pg<x, ) T nmay ) 8\ o, dy)

e (x, dy))
_— d
e, &) Pps(x, dy)u(dx)

_ pe(x, dy) . pi(x, dy)
= (1-9 J logpg(x’ ) log e, dy) Pz (x, dy)u(dx)

~(k) =(k)
vy J log P2 @ dy) | B (x, dy) e, dy) ().

0
Pex, ) ° Dl dy)
The last inequality is true because x- log x is a convex function on [0, ). Since:

P (x, dy) og P (x, dy)
pe(x, dy) p:(x, dy)

Pz (x, dy)p(dx)

~(k) —~(k)
P (x, dy) _, P (x, dy) _,
= —_ , d- dx) + | log————— x, d dx)
f logpék’(x, dy) * (5, dy)p(dx) 8 pe(w, dy) T . dy)n

=TI (u) + log —kl_—l by Lemmas (0.1) and (1.1).

3
Therefore
Deel(x, dy) _ J’ Pe(x, dy) . pe(x, dy)
log 245 B 5 (%, dy)u(dx) < (1 — ¢ lo
j 8 e, dy) et WD) = (=0 | 08 e a)

1
-pe(x, dy)u(dx) + t(Ig"’ (1) + log F)

=01 -8y + t(Ié")(u) + log %) by Lemma (0.1).

We then complete the proof by letting ¢ — 0.
We now prove that (1.1) holds for the process p;., the Markov process with initial
distribution §. and transition function p; (x, dy).

ProposITION (1.5). Let p(x, dy) be a Feller transition function which satisfies (gH)
and p a Borel probability measure with I(p) < ». Then for every x and open set G
containing p,

(1.2) lim inf,_,o, % log pex(w:Ln(w, ) € G) = I ().

Proor. By Lemma (1.2), I;(u) and If” (u) < oo. Let p;(x, dy) and 5 (x, dy) be the
transition functions in Lemma (0.1) corresponding to p (x, dy) and p{* (x, dy) respectively.
By (gH), p” (x, dy) is equivalent to 8(dy) for every x, therefore () , the Markov process
with initial distribution u and transition function p® (x, dy) is ergodic by Lemma (0.3). As
in Lemma (1.4), let p¢. (x, dy) = (1 — ¢) pe(x, dy) +tp® (x, dy), 0 < t < 1. Since a stationary
Markov process with initial distribution u and transition function = (x, dy) is ergodic if and
only if there does not exist a set A with 0 < u(A) < 1 such that [4 =(x, A)u(dx) =
Jac w(x, A)u(dx) = 0. Therefore, it is not hard to see that Dttu, the Markov process with
initial distribution y and transition function p;, (x, dy) is ergodic. By Lemma (0.4), therefore,

.. 1 D¢, (X, dy) _
lim inf, .. ~10g Pex(w:Ln(w, ) € G) = — J 1og‘;i’+:dyi)) Pesx, dy)p(dx)

if p¢(x, dy) is not singular to u(dy). But by Lemma (1.3) and (gH), we have u(dy) < 8(dy)
< pg(x, dy). We now use Lemma (1.4) and complete the proof by letting ¢ — 0.
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The following lemma was actually proved in Theorem (3.3) [3].

LEmMMA (1.6). Letp(x, dy) be a Feller transition function and j a probability measure
with I(p) < oo. Then, (1.1) holds if (1.2) holds for every ¢ € (0, 1).

Combining Proposition (1.5) and Lemma (1.6), we have:

THEOREM (1.7). Let p(x, dy) be a Feller transition function satisfying (gH). Then for
every Borel probability measure p. € 4 and x € X, we have

. 1
lim inf,_.o - log Pi(w:Lyp(w, -) € G) = —I(p),
where G is an open set in /M containing u.

For the rest of this section, we’ll consider an application of Theorem (1.7) and also
provide an example which satisfies (gH) but not (H). Let X,, X;, --- be a sequence of
independent random variables with common distribution 8(dy). Each realization of w of
this process is in a sequence x, x1, - - - where x; € R for all i. Recall that L, (w, A) is the
average occupation time of A when the sample is xo, x1, X2, + -+ X,—1. For a pair of sets A4,
B, we define the average of successive occupation time of A, B as follows:

(1.3) L.(w, AX B) = % Yo xa (o) x5 ().

Theorem (1.10) gives an estimate of the limiting distribution of L, (w, -). We begin with
two simple lemmas whose proof can be easily furnished by readers.

LEMmMA (1.8). Letp(x,dy) be a transition function. If there exists a reference measure
B(dy) such that p*(x, dy) is equivalent to 8(dy) for every x, then (gH) is satisfied with k
= 2.

LEMMA (1.9). For any two numbers x, y and Borel set E C R?, the function p (-, -)
defined by p((x,y), E) = B(E,) where E, = {z: (y, z) € E} is a Feller transition function.

For the transition function g (-, -) defined in Lemma (1.9), we define:

f(x,)
I(u) =s «r?y | log —————u(dx,
(n) = supren (R)j g Bh ) u(dx, y)
where u is a Borel probability measure on R? and
(1.4) Lo(w, A) = Y2 xa (%, x:41) where A C R

Note that (1.4) agrees with (1.3) if A is a rectangle.

THEOREM (1.10). Let Xo, X1, --- be~ a sequence of iid. random variables with a
common distribution B(dy). Let 5 (-, -), I(-) and L, (w, -) be defined as above. Then for
any probability measure p and open set G containing p,

1 o -
lim inf,_, ; log P(w: Lp(w, -) € G) = — I(p).

Proor. Define Y, = (X,,, Xss1) n =0, 1, ---. Then it is easy to see that Yy, Y3, --- is
a Markov process with transition function p(-, -). It is also easy to see that p2((x, y), -) is
equivalent to 8 X B for every (x, y) € R®. Therefore, p(-, -) satisfies (gH) when % = 2 by
Lemma (1.8). The conclusion now follows from Theorem (1.7).

REMARK. The process Yo, Y; --- defined in Theorem (1.10) is an example which
satisfies (gH) but not (H).

SEcCTION 2. Symmetric random walks and Harris' chains. In this section, we’ll
discuss some symmetric random walks and Harris’ chains which do not satisfy hypothesis
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(gH). In these cases, it is not always true that there exists a transition function p’(x, dy)
< p(x, dy) such that the Markov process with initial distribution u and transition function
D’(x, dy) is ergodic. In Lemma (2.1) we impose some conditions on p under which such an
ergodic Markov process can be obtained.

Let p(x, dy) be a transition function with state space X. We say p(x, dy) satisfies Harris’
recurrence condition if there exists a non-negative o-finite measure Q(dy) such that for
every point x and every set A with Q(A) > 0, we have:

(2.1) P, (Ui X.€A)=1

where X, Xy, - - - is the Markov process with initial distribution 8, and transition function
p(x, dy). It is shown in [4] that under this condition there exists a o-finite invariant measure
B(dy) which is unique up to a constant and @(dy) < B(dy). We’ll show in Theorem (2.7)
that (1.1) holds if u(dy) < 8(dy). A Markov process with state space R or the unit circle is
a random walk if the transition function p(x, dy) = p(dy — x). It is symmetric if p(dy — x)
= p(x — dy). In Theorem (2.5) we’ll show that with a necessary condition on p(x, dy), (1.1)
is true if p is absolutely continuous.

We begin with a few definitions. For a set £ C X X X, let E‘ denote the symmetric
image of E, ie., E* = {(y, x):(x, y) € E}. Also, let E, = {z:(x, 2) € E}. Define two
measures on X X X as follows: for every Borel set E contained in X X X,

(pp)1(E) = Jp(x, E.)u(dx)

(pp)2(E) = Jp(x, EY)p(dx).

Apparently, (pu)2(E) = (pp)1(E’). As in Section 1, let pe(x, dy) = (1 — &) (p(x, dy) + £p2(x,
dy) + --.) for 0 < ¢ < 1. It is not hard to see that p¥(x, dy) < pe(x, dy) for every x € X.

LEmMMA (2.1). Let p be a probability measure with I(p) < . If (i) for every set A with
0 <w(l) <1, fa pe(x, A)pu(dx) < 0 and (ii) for every pair of Borel sets E, F contained in
Xwith ENF = ¢ and w(E) + p(F) = 1, (pep)1, and (pgu)e are not mutually singular on
E X F. Then, P;, is ergodic for 0 < £ < 1.

Proor. By Lemmas (1.2) and (0.1), there exists a transition function p:(x, dy) < ps(x,
dy) a.e. x — p(dx) and p is an invariant measure relative to p(x, dy). Suppose P,, the
Markov process with initial distribution u and transition function p(x, dy), is not ergodic,
then there exists a set A such that 0 < u(4) < 1 and [ pe(x, A)u(dx) = Jae pe(x, A)u(dx)
= 0. Let f, be a sequence of functions as in Lemma (0.2) with respect to p(x, dy). Then:

f(y)  _ Pelx, dy)u(dx)
(Pef) (%) pilx, dy)u(dx)

Since p;(x, A°) = 0 a.e. x — u(dx) in A, we have

(2.2) lim,_,., a.e. pglx, dy)u(dx).

(2.3) lim, . G’% =0 ae. y—pidx,dy)inA° fora.e. x— p(dx)inA.
Similarly:
(24) lim,.. z{;}g—zx) =0 ae y-—pix,dy)inA forae x— u(dx)inA°.

Let By be the set of points which either (2.2), (2.3) or (2.4) is violated, i.e.,

fn() Pe(x, dy)

(pefa) (%) pilx, dy)
f2(y) Pe(x,dy)

N * e y-pdxdy) or BlxA) >0,
{ (pefu)(x) " pelx, dy) ae. y— pix, dy) Pi(x, A) }

B, = {x € A:lim, ae. y—pix,dy) or pe(x, A°) > 0}.
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Thus u(Bo) = 0 by (2.2), (2.3), and (2.4). Inductively, if B,_; has been defined and w(Br-1)
= 0, define: B, = {x:p;(x, B.—1) > 0}. Then u(B,) = 0 since p is an invariant measure
relative to pg(x, dy). Therefore if B = Ui‘;o Bi, w(B) = 0. If x & B, then x & B, for every n
=1,2 ---,50p(x, B.) =0forn=0,1,2, ---,ie., psx, B) =0. Let G = {x €A — B: pi(x,
A° — B) > 0}. By assumption (i), u(G) > 0 For each xo € G, let E(xo) = {y € A° —
B :lim .. fu( y)/ (D) (%0) = 0}. By (2.3) pi(Xo, (A° — B) — E(x0)) = 0. Let F(Xo) = {y € A°
— B:p(y, (A° — B) — E(x0)) = 0}. Since p#(xo, dy) < ps(xo, dy), s0 p3(x0, (A° — B) — E(x0))
=0, ie,

Pe(y, (A°— B) — E(x)) =0 ae. y— pixody).
ie.,
Pe(%o0, (A° = B) — F(x0)) = 0.
Let y € F(xo). Then lim,.«(f.(2)/(pef)n(y)) exists a.e. z — pi(y, dz) and pe(y, A° — B) = 1.

So, there exists a z € A° — B such that lim,_...( f,(z) /( p¢f.)(¥)) > 0. The fact that y € F(x,)
implies that such a z can be chosen from E(x,), so:

: (Pef) (Y _ (Pefn) () : )\ _
e XA <“m"*°° %) )" <“m"*°° (pffmxo)) o

If we define H(x, y) = lim,_..((p:f»)(x)/(pefn)(y)) whenever the limit exists, then H(x, y)
is well defined and equals 0 a.e. p¢(x, dy)u(dx) on (A — B) X (A° — B), i.e.,, H(x,y) = 0 a.e.
(pep)i(dx, dy) on (A — B) X (A° — B).

By a similar argument we have:

(2.5) H(x,y) =0 ae. (pp)i(dx,dy) on (A°— B) X (A — B).
Since H(x, y) = 1/H(y, x), so if H(x, y) = 0 a.e. (p:p)1(dx, dy) on (A — B) X (A° — B), then:
(2.6) H(x,y) =0 ae. (pgu)dx,dy) on (A°— B) X (A — B).

Now (2.6) contradicts (2.5) because of Assumption (ii). This proves that P;, is ergodic.

If p(x, dy) is a symmetric random walk on the real line, i.e., p(x, dy) = p(dy — x) = p(x
— dy), and p is absolutely continuous, then (ii) of the preceding lemma is always satisfied.
First, we have the following:

LeEMMA (2.2). Let X be the real line and m(dy) the Lebesgue measure and p(x, dy) a
symmetric random walk. Then (pm), = (pm)s.

Proor. It is clear that all we need to show is that (pm); (A; X As) = (pm)2(A; X As)
for every rectangle A; X A;. Let p(dy) = p(0, dy). Now:

(pm)1(A1 X Az) = f plx, As)m(dx)
f f Xa, (X)X &0 (dy)m(dx)
= j f X4,(X)xa,(x + y)p(dy)m(dx)
Fubini’s theorem)

(by symmetry and _ J’ f X, (@) xa,(x — Yym(dx)p(dy)

sty = | [t etaman
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= J' J XA, (%) Xa,-xp (dy)m(dx)

= j p(A; — x)m(dx)
Ay

= (pm)1(A2 X Ay)

= (pm)2(A1 X As).

This completes the proof.
We omit the proof of the following easy corollary:

COROLLARY (2.3). Let p be an absolutely continuous probability measure on R and
p(x, dy) a symmetric random walk. Then for every pair of sets E, F such that E\F = ¢
and p(E) + u(F) = 1, (pp): and (pp): are equivalent on E X F.

We say that a measure pu is indecomposable with respect to a transition function
p(x, dy) if there does not exist a set A with u(4), u(A°) > 0 such that [4 p(x, A)u(dx) =
Jac p(x, A)u(dx) = 0. With p(x, dy) = (1 —€)(p(x, dy) + ¢p°(x, dy) + - - -) and m(dx) the
Lebesgue measure, we have: .

LEMMA (2.4). Let p(x, dy) be a symmetric random walk with respect to which m(dx)
is indecomposable. Then for any set A with m(A) > 0, we have p¢(x, A) >0 a.e. x — m(dx).

Proor. Without loss of generality, we assume m(A°€) > 0. Let E, = {x € A°: p"(x, A)
>0} and E = U, E,. We claim that m(A° — E) = 0. For if not, let A = E U A. Then the
set E = {x € (E U A)°: p(x, A) > 0} has positive m-measure by the assumption x € £ =
p"(x, A) =0V n, but p(x, A) >0, s0 p(x, E™) > 0 for some n. Then: p"*'(x, A) = [e,p"(y,
A)p(x, dy) > 0 i.e., x € Ent1 C E. This contradicts the assumption x € £ C E*. Therefore,
m(A° — E) =0, so,

(2.7) pi(x, A) >0 ae. x—m(dx) in A°.

Similarly, (replace A by E in the above argument) we can prove Pe(x, E) > 0 a.e. x —
m(dx) in A. Therefore:

Dpi(x, A) = J’ pe(y, A)pe(x, dy) >0 ae. x—m(dx) in A.
E

Since p¥(x, dy) < pe(x, dy), we have:
(2.8) pe(x, A) >0 ae. x—m(dx) in A.

By (2.7), (2.8), we conclude p;(x, A) > 0 a.e. x — m(dx) if m(4) > 0.
We now state and prove the following theorem:

THEOREM (2.5). Let p(x,y) be a symmetric random walk on the real line with respect
to which m(dx) is indecomposable. Then for every probability measure u < m and x € R,
we have:
1
lim inf,, . o log Pi(Ln(w, ) € G) = —1(p)

where G is an open set in ./ containing .

Proor. By Corollary (2.3) and Lemma (2.4), Conditions (i) and (ii) of Lemma (2.1) are
satisfied: Therefore, P;, is ergodic for every 0 < ¢ < 1. By Lemma (0.4) there exists a set
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A with p(A) = 1 such that
1
lim inf,, .. - log Pyo(w: Ln(w, -) € G) = —I(p) if pe(x, A) > 0.

By Lemma (2.4), ps(x, A) > 0 a.e. x — m(dx). For any probability measure A, let A, be the
measure such that A.(A) = AM(A — x). For an arbitrary point x, let x, be a sequence of
points such that x, — x and p(x,, A) > 0 for every n. Let ¢ > 0 be chosen and G’ C G be
an open set containing p such that A € G’ implies A, € G if | x| < &. Then, P;.(L.(w, -) €
G) = P;x(Lp(w, -) € G') if | x — x"| < &. Therefore,

lim inf,, . 111 log Pyo(Lin(w, -) € G) = lim inf, e Psyy(Ln(w, -) € G') = —L(p)
when £ is large. Thus,
lim inf, % log P;x(Ln(w, -) € G) = I(p)
for every x. This completes the proof because of Lemma (1.6).

REMARK (1). The indecomposability of m(dx) with espect to p(x, dy) in Theorem (2.5)
is just to rule out the lattice case. The theorem would be false if we consider, for instance,
the transition function p(x, x + 1) = p(x, x — 1) = . One can easily get a counter-example
of (1.1) for this process.

REMARK (2). In general, Theorem (2.5) is true if p(x, dy) is a symmetric random walk
on a commutative locally compact group and p is absolutely continuous with respect to its
Harr measure.

REMARK (3). (Due to the referee). One can extend Theorem (2.5) to general measures
by convoluting it with smooth measures. To be precise, let u be any measure and let ¢, be
smooth measures such that y. — p weakly as ¢ — 0 where p. = p*¢.. Since the I-functional
is translation invariant (for random walks), convex and lower semi-continuous, I(u) —
I(p) as e — 0. This does it.

We next consider a transition function p(x, dy) with the following property. For some
fixed o-finite measure B(dy), the absolutely continuous part of p(x, dy) with respect to
B(dy) is actually equivalent to B(dy) for every x. Then as a simple application of Lemmas
(2.1), (0.4) and (1.6), we have: (Detail of the proof is omitted).

COROLLARY 2.6. Let p(x, dy) be Feller transition function and B(dy) a fixed o-finite
measure. Let pi(x, dy) = p%(x, dy) + pi(x, dy) be the Lebesgue decomposition of p:(x, dy)
with respect to B(dy). If pix, dy) is equivalent to B(dy) for every x, then for every p << f8
and x € X, we have:

lim inf, o, % log Po(Ln(w, -) € G) = —I(p)

where G is an open set in ./ containing p.

We say that a transition function p(x, dy) satisfies Harris’ recurrence condition if there
exists a o-finite measure @(dy) such that for every point x and every set A with @(4) >0
(2.9) P, (U1 X, Ea)=1.

It is shown in [4] that under this condition there exists a o-finite invariant measure 8(dy)
which is unique up to a constant and @(dy) < B(dy). Also (2.9) is true for every set with
B(A) > 0. It is easy to see that conditions of Corollary (2.6) are satisfied if p(x, dy) satisfies
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Harris’ recurrence condition and B is taken to be the invariant measure. Therefore, we
have the following:

THEOREM 2.7. Let p(x, dy) be a Feller transition function satisfying Harris’ recur-
rence conditions and B(dy) be the invariant measure relative to p(x, dy). If u < B, then
for every x and open set G in M containing p we have:

lim infn_,o% log Py(Ln(w, <) € G) = —I(p).

For the rest of this section, let’s consider a transition function p(x, dy) which satisfies
Corollary (2.6) and has the singular part p°(x, dy) = I(x, dy) where I(x, dy) is the
deterministic transition function that I(x, x) = 1. This is an interesting case because (1.1)
not only holds true for absolutely continuous measures but true for every probability
measure. We will illustrate the technique by proving the special case when X = R and p(x,
dy) = % p(x, dy) + % I(x, dy) where p(x, dy) is equivalent to Lebesgue measure m(dy) for
every x. It should not be hard to formulate the general case from this special one.

THEOREM (2.8). Let p(x, dy) = % p(x, dy) + % I(x, dy) where p(x, dy) is equivalent to
m(dy) for every x. Let p. be a probability measure. Then, for every x and open set Gin M
containing pu, we have:

(2.10) lim inf, . % log Pi(Ln(w, ) € G) = —I().

PROOF.

(x) (x)
I(p) = suprepx) j log

f f
(pf)(x) % f(x)

If p < A, then (2.10) is true by Corollory (2.6). On the other hand, if u & .#, we can write
p=p+ p° where u* < m and p° L m. Let p; = p9|pn®|| and ps = p°|| u°|| so that u, and ps
are probability measures. Let p(x, dy) be-the transition function in Lemma (0.1) so that

u(dx) =< supfepx) f log w(dx) = log 2.

I = f lo ”ﬁ S ;ﬁ(x, dy)u(dx)

and p is an invariant distribution r_elative to p(x, dy). Let A be a set in R such that m(A)
= 0 but pz(A) = 1. Let p(x, dy) = P%(x, dy) + p°(x, dy) be the Lebesgue decomposition of
P(x, dy) with respect to m(dy). Since u*(A) = 0, we have:

p(A) = p*(4) + u*(4) = W) = f Plx, A)u(dx)

= J Pe(x, A)pldx) + j pi(x, A)u(dx).
A Ac
But p°(x, dy) < I(x, dy), so [ p°(x, A)p(dx) = 0. Therefore, p°(A) = 4 p°(x, A)u(dx). This
implies p°(x, A) = 1 a.e. x — p(dx) in A. i.e, p(x, dy) = p°(x, dy) = I(x, dy) a.e. x — p(dx)
in A. Thus p; is an invariant distribution relative to p(x, dy). Hence p, is also an invariant
distribution relative to p(x, dy). So:

) = f f log 2% y) )z, dyu(d)

f f i y) 5 Pl ) + f J pzx, dy; B, dy)u(dx)
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J' J' p( ,dy)) p(x, dy)u(dx) +J' J'lo z: ’dy;ﬁ(x’ dy)u(dx)

= log 2-p(4) + [ u°| f J pl, dy;ﬁ(x, dy)ua (dx)

= log 2- [ w || + |l L)

The last inequality is true because I(p:) = infic g Doz ayuan(A) by (0.0). Let Ax(dy) be a
sequence of measures converging to u°(dy) weakly such that A\, < m and | A | = || u*|| for
every k. Thus, A, + p* << m for every k and A, + p* converges to u weakly.

Ak Ar
I(Ax + %) (IIMII The "+|Iu Il.ul)—llu III<|| s")+llu Il 2(pa)

= lw*llog 2 + || n® | I(p1) = I(p).

Hence: lim sup,.oI(Ax + p*) = I(p). But I is lower semi-continuous and Ay + p* — p
weakly, lim inf,.I(Ax + p®) = I(p). Therefore: limyo I(Az + p®) = I(u). Since A + u* €
G when £ is large, we have lim inf,_... 1/n log Py(L,(w, -) € G) = —I(A\: + p*) for large k.
We then complete the proof by letting £ — oo. :
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