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THE DOMAIN OF NORMAL ATTRACTION
OF AN OPERATOR-STABLE LAW

By WiLLiam N. HupsoN,' J. DaviD MasoN? AND JERRY ALAN VEEH?

The idea of the domain of normal attraction was earlier extended to
probabilities on a finite-dimensional inner-product space. We obtain a neces-
sary and sufficient condition that a probability be in the domain of normal
attraction of a given probability in terms of their covariance operators and of
a limit involving the Lévy measure. This condition appears to be the natural
generalization of the corresponding univariate condition. We also show that
the domains of normal attraction of two probabilities are either the same or
disjoint, with a condition that is necessary and sufficient for them to be the
same.

1. Introduction, notation, and summary. In this paper are three basic results
concerning the “domain of normal attraction” of an operator-stable law. A Borel probability
measure p. on a real finite-dimensional inner-product space ¥ is operator-stable if there
exist independent identically distributed random vectors {X,} in 7 linear operators {A,}
on 7; and vectors {a,} in ¥ such that {A, YT X; + a.} converges in law to pu as n — oo.
These distributions are the natural multivariate analogue of the familar univariate stable
laws. This work is limited to full measures, namely, those measures which are not
concentrated in some hyperplane. Full operator-stable measures were first investigated by
Sharpe. In his fundamental paper [10], he proved a number of basic results. In particular
he proved that full operator-stable measures are infinitely divisible. Thus if p is full and
operator-stable on 7, there exists a ¥-valued stochastic process {X(¢):¢ = 0} which is
continuous in probability, which has stationary independent increments, and is such that
X(1) is distributed acording to u. Sharpe showed that there is a nonsingular linear operator
B on ¥ such that X(¢) has the same distribution as does t2X (1) + b(¢) where t? = ™95
= Y70 (In £)*B*/k! and b is some function from {0, ®) to ¥. The linear operator B is called
. an exponent for u. The distribution of X(¢) is denoted by u’ and if A is a linear operator on
¥ the distribution of AX(1) is denoted by Au. Sharpe’s result may then be written p’ =
tPux8(b(t)), t > 0, where 8(x) denotes the probability measure concentrated at {x}. A
distribution A on ¥ belongs to the domain of normal attraction 2.4-(u) of a full operator-
stable measure p on 7 if there exist vectors {a.} in ¥ such that the sequence
{n A"+ 8(an)} 3=1 converges weakly to u where B is some exponent for p. As noted by
Jurek in [3], this domain does not depend on the choice of an exponent for u. The theorems
below give necessary and sufficient conditions for a distribution A to belong to 2.,-(u). We
also show that if u; and p» are two full operator-stable laws on 7] then their domains of
normal attraction are either disjoint or identical.

Two basic facts concerning full operator-stable measures will be needed below and it is
convenient to simultaneously establish some notation.

AsSUMPTION. u is a full operator-stable measure on 7. All measures are Borel.
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The Levy measure of p will be denoted throughout by M so the characteristic function
() of p is given by

i(y) = exp{i(a, y) — %(y, Cy) + J ¥ (x, y)M (dx)}

v

where y, a € 7] (a, y) is the inner product of a and y, C is the covariance operator for
the Gaussian component of p, ¥(x, y) = exp[i(x, y)] — 1 — i(x, )/ + |x|)? and | x| =
(x, x)'/* is the norm determined by the inner product of ¥. In particular M({0}) = 0,
Jisi<1 | 2|*M (dx) < oo, and for all € > 0, fjx>. M (dx) < ®. Sharpe showed that M is a
mixture of operator-stable Lévy measures concentrated on single orbits of {¢Z:¢> 0}. This
result was extended by Kucharczak [7], Jurek [6], and Hudson and Mason [2]. We will use
the following version.

THEOREM A. Let B be an exponent for p. Define L = {x:|x| =1 and for all t > 1,
| t2x| > 1}. If A is a Borel subset of ¥; then there exists a unique finite Borel measure v

on L such that
M(A) =f (f Ly (tBx)t72 dt) v(dx).
L 0

If D is a Borel subset of L, then
v(D) =M{t®x:t>1 and x€ D}).

The second fact is a refinement of a theorem of Sharpe and may be found in [2]. Let B
be an exponent for u and let f = gh denote the minimal polynomial of B (i.e. the polynomial
of smallest degree which annihilates B) where the roots of g are simple and have real parts
equal to % and the roots of 4 have real parts greater than %. Put ¥, = kernel g(B) and
¥p = kernel A(B); then v'= ¥, ® 7,.

THEOREM B. There exist Borel probability measures pg and p, on ¥ such that
(@) p=pp*pg

(b) pg is Gaussian and concentrated in ¥y,

(¢) pp has no Gaussian component and is concentrated-in ;.

(d) pel| ¥z is full and operator-stable onv, and B| ¥, is an exponent for p,| 7.
(e) wp| ¥5 is full and operator-stable on ¥, and B| ¥, is an exponent for u,| ¥;.

This decomposition, ¥"= ¥, ® ¥, determines a pair of projections, F, and F,. The
projection F, maps ¥ onto ¥, and has kernel ¥,. Similarly, the projection F, = I — F,
maps ¥ onto ¥, along 7. Although the last theorem puts ¥, and ¥; in terms of an
exponent, they do not depend on the choice of exponent. In fact, ¥ is the range of the
covariance operator of y and 7} is the subspace generated by the support of the Lévy
measure of u. Since F, and F, are determined by 7, and 7%, they, too, do not depend on
the particular choice of an exponent.

Our first result is

THEOREM 1. A probability distribution A\ € 2.4(u) if and only if
(@) Fe\ € D4(1e) and -
(b) FoA € Du(pp).

Our second theorem will use the notation 8’A which denotes the boundary of A N ¥}, as
a subset of L N ¥,. The symbol dA will denote the boundary of A in ¥7

THEOREM 2. A probability distribution \ on V" is in 9 ,(p) if there is an exponent
B such that .
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(a) for every Borel subset A of L N ¥}, such that v(3’A) =0,
lim,..tA{s%x:x €E A, s >t} = v(A)

and
(b) F,\ has a covariance operator which is also the covariance operator of .
Conversely, if \ € 2.4(p), then (a) and (b) hold for every exponent B of p.

The proof of this theorem follows immediately from our Theorem 1 and a theorem of
Jurek stated below, so the details are omitted.

To state our last theorem, we denote by (A, a) the affine transformation ox = Ax + a
taking ¥ onto ¥ where A is a linear operator on 7 and a € 7. Let % (u) be the set of all
affine transformations (A4, b) such that u = Ap+*8(b). Theorem 2 of Urbanik [11] says that
() is a compact group of affine transformations if and only if y is full. (The topology of
pointwise convergence is used for the space of affine transformations on ¥ This topology
is the same as the topology determined by the norm, |(4, a)| = |A| + | a| where |A|
denotes the operator norm of A.)

THEOREM 3. Let v be full and operator-stable on ¥ and let B be any exponent for
p. Then either D4(n) = D4 (y) or Du(u) N D4 (y) = ¢. Furthermore, D (n) = D..4y) if and
only if there is a nonsingular linear operator A taking ¥ onto ¥ such that
(i) for some a in ¥, p = Ay+*8(a),
(ii) for some sequence {v,} in ¥, the sequence {(n"2An>, v,)} is relatively compact in
Aff ¥; the space of affine transformations on ¥, and
(iii) every limit point of {(n"2An®, v,)} is contained in %, (u).

To illustrate Theorem 3 suppose p is full and operator-stable on R? with exponent B
- (1 0) LetA= (““ “‘2) and let = Ay+8(a). Then

- 0 2 a1 QA2
ain nax
n"BAn® = 1
— Q21 A2
n

an 0
s0 D4(p) = D4(y) if and only if a2 = 0 and ( 0 azz) € ). Eg., if L) =

{I, -1, <(1) _01) , (‘01 ‘1’)} ,then 9, (4) = D.,(y) if and only if azz = 0 and au, ax €
-1, 1).

2. Related work. Domains of normal attraction were also considered by Jurek and
by Salter. In [3] and [4], Jurek investigated the domain of normal attraction of full
operator-stable laws in two important special cases, namely for purely Gaussian distribu-
tions and for operator-stable distributions without a Gaussian component. He combined
these cases (see [4]) in the following.

THEOREM (Jurek). Let A = A, * A, be a Borel probability measure on ¥ where \g is
concentrated on ¥4 and X, is concentrated on ¥,. Then A € 24 (p) if and only if

(i) Ag on ¥, has the same covariance operator as g, and
(ii) if A is a Borel subset of L N ¥, and if v(3’A) = 0, then lim,.tA,(s®x:x EA, s =
t) = v(A).

This theorem is basically a combination of the two special cases mentioned above and
is extended by our Theorems 1 and 2 above. It is easy using Theorem 1 to give an example
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of an operator-stable distribution p and a A € Z,(p) such that A is not a convolution of the
form A\, Indeed, put ¥'= R? and define p by ji(x, y) = exp{—y%/2 — | x|} so ¥ is the
y-axis, ¥, is the x-axis, y, is the standard normal distribution and p, is the symmetric
Cauchy distribution. Then p has the exponent B = (1) 10/2 ) and p‘ = tBufor t >0, so p is
clearly operator-stable. Let A; be any symmetric probability distribution with variance 2
concentrated on 7; and let A; be the symmetric probability distribution concentrated on
¥, defined by

2(mt) if t=d4n
Az{(x,O):x>t}={1/2(W) ;f(t)s4t7r<4ﬂ_1.

The mixing measure v for y, is given by »{(1, 0)} = »v{(=1, 0)} = 7" Put A = %A; + %A,.
Then the support of A is contained in ¥, U ¥; so A cannot be the convolution of two
measures concentrated on ¥, and 7, respectively. Also F,A = %A, + %8(0), and F A = %\,
+ %8(0). It follows that F,A has mean zero and variance 1 so F,A € 94(u,). Since for ¢ >
4n tF,A{(x,0) :x > t} = »{(1, 0)}, FyA € D4(up). So by Theorem 1, A € Du(u).

Salter in an unpublished part of his thesis [8] also characterized the domain of normal
attraction for the same two cases. (Actually he defined a slightly more general domain of
attraction and characterized it.) Salter attempted the general case. However, he assumed
that the Gaussian component pg and the Poisson component u, were concentrated on
orthogonal subspaces. This is not true in general; a counterexample is given in [2]. Also,
one of his conditions for A € 2,(p) is that

2
liIne—»OIimn—)oon<J‘ (& n7y)°A(dy) — <J (9 y)Mdy)) ) = (%, %)
K(ne) K(ne)

where C is the covariance operator of u, and K(ne) = {t®x:x € L\, t < ne}. The
corresponding condition of Theorems 1 and 2 is the natural extension of the univariate
domain of normal attraction to a Gaussian law, in which A is required to have the same
variance as p.

Domains of normal attraction have also been defined for G-stable probability measures
(see Schmidt [9] for the definition of G-stable). These domains have been characterized
for the same special cases (i.e. Gaussian case and Poisson case) as have the domains for
full operator-stable laws. But any G-stable distribution may be centered to be full and
operator-stable on the space spanned by the support of its symmetrization. Furthermore,
such a distribution is stable with respect to some one-parameter group and the infinitesimal
generator of any such group is a scalar multiple of some operator-stable exponent of the
distribution. The domain of normal attraction for a G-stable distribution as defined in [5]
is the same as the domain of normal attraction for an operator-stable distribution and so
is covered by the results above.

3. Proof of Theorem 1. For the proof of Theorem 1, two lemmas will be needed.
LEMMA 1. Let B be an exponent for p. Then B commutes with F, and F,.
, Proor. Since 7} and 7, are invariant under B and since ¥"= ¥, ® ¥, Bx = BFpx +
BFyx = F,BX + F,Bx where BF,x € ¥, and BF,x € ¥;. Hence BF,x = F,Bx and BF,x
= FgBx.0O

COROLLARY. ~ For all t > 0, t®F, = F,t® and t°F, = F,t".

Proor. Since ¢? is a power series in B, this is immediate from Lemma 1.0
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In [3], Jurek shows that the domain of normal attraction of u does not depend on the
choice of exponent. For the convenience of the reader and for the sake of completeness we
provide a proof here.

Let S(p) be the set of all linear operators A on ¥ such that for some a € 7; u = Ap *
8(a). Then S(p) is a compact group of linear operators in the operator-norm topology (see
for example Billingsley [1] or Urbanik [11]).

ProposITION 1. If for a sequence {A,} in S(p) and for a sequence {a,} in ¥, A,,u,, *
8(a,) — p where {u.} is a sequence of Borel probability measures on ¥, then there exists
a sequence {c,} of vectors in V" such that

Mn * S(Cn) - U

ProoF. Since {A4,} C S(u), there exist vectors b, such that u = A.p * 8(b,). For x €
¥, define an affine transformation o, by 0,.x = A,x + b,. Then o,pu = A,p * §(b,) = p so0 o,
€ Sa(p). Let A, = Anpn * 8(a,) so that A, — p. We will show that every subsequence of
{6'A.} contains a further subsequence which converges to u. Indeed, let {o,'A.-} be any
subsequence. Since S,(p) is a compact group, the sequence {o.'} contains a convergent
subsequence {0x-}. Let o denote the limit of {o,, }; then ¢ € S,(u). Since Ay —> p, 67 Apr
= o7 p = p. It follows that o6,'A, — u. But 6,'A, = p, * §(C,) for a suitable C, in ¥.0

COROLLARY. (Jurek). The domain of normal attraction of u does not depend on the
choice of exponent. That is, if B, and B; are any two exponents for p and if n 2\ \" = 8(a,)
— u for some {a.} C ¥ and Borel probability measure A on ¥, then there exist {a.} in
v such that n™2:\" « 8(a}) — p.

ProoF. Since p" = n®y * 8(b,) = n®u * 8(b}), it follows that {(n~2n?}5, C S(u).
Now n B\ « 8(a,) = (n"%n")(n"5:A)" « §(a,) — pu so by Proposition 1, there exist {a}
C ¥ such that n™5:A" x 8(a}) — u.O

LEMMA 2. Let a be an infinitely divisible probability measure on ¥ and let p. be as
above. If Fya = pp and Fga = g, then o = p.

ProoF. The measure « is uniquely determined by the triple (a., C., M,) where a, is
in 7; C, is the covariance operator of the Gaussian component a, of a, and M, is the Lévy
measure of a. Since F,a = p, and p, has no Gaussian component, the covariance operator
of F,a must be zero. Also, the Lévy measure of F,a is the same as that of y,. Thus

1) F,C,F}=0 and F,M,=M.
Similarly, since Fya = g,
(2) F,C.,Ff=C and FgM,=0.

From (2) we see that the support of M, is contained in ¥;, hence, F, M, = M,. Thus, M,
=M.
Since C, is nonnegative definite and self-adjoint, it has a self-adjoint square root C¥2
From (1) we obtain (F,C¥?)(F,C%?)* = 0, which implies that F,CY* = 0, so F,C, = 0.
But, C, = (F, + Fg)C(F, + Fg)* = F,C,F} = C, by (2). Therefore, C, = C.

Finally, the centering terms, Fra and Fga, of y, and p,, respectively, must equal the
corresponding centering terms, F,a, and Fga,, of Fya and Fya. It easily follows that a =
a..0

Now for the proof of Theorem 1, first we assume that F,A € Z4(p,) and F,A €
2+(pg) and we show that A € 2,-(p). Let {X,.} be a sequence of i.i.d. random vectors with
common probability distribution A and set S, = Y1 X;. Let B be any exponent for u. Then
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A € 9,(p) if and only if there exist a sequence {b,} of vectors in ¥ such that n™5S, + b,
— p in law as n — . The triangular system {(n™2X;: j =1, ..., n;n=1,2, -.-} is
infinitesimal since lim n™® = 0. Since F,A € %2.(u,) and F,A € 2,(p,), there exist
sequences {p.} and {g.} of vectors in ¥, and ¥}, respectively, such that n 2F,S, + p.
— pp and n"BF, S, + g, — . in law. Since n~% commutes with F, and F,, F,(n"5S, + p.)
— pp and Fg(n™28, + g,) = y, in law. Since F, + F, = I, it follows that the sequence of
distributions of {n"2S, + p. + g} is tight. Let a be any limiting distribution. of this
sequence and assume that n”S,, + pn, + g», — a in law as k£ — . Then F,(n;®S,, + pa,
+ &n,) = ni®F,S,, + pn, — Fpa in law, so Fya = p,. Similarly, Fya = pg. By Lemma 2, a
= p. Thus, n™3S,, + pn + g, — p in law, so A € D (p).

We now assume that A € 2,(u). Then there is a sequence {a,} of vectors in ¥” such
that

(3) lilnn—won_B'An * a(an) = W.
The Corollary of Lemma 1 shows that (1) implies n 2(F,u)" * 8§(F,a,) — Fop, so F,A €
Dv(pp). Similarly, FoA € D4 (ug)-

4. The Proof of Theorem 3. First, assume that 2,-(u) N 24(y) is not empty. Let A
€ 2+(w) N 24(y) and let B and D be any exponents for p and y respectively. Then there
exist vectors {a.} and {a} in ¥ such that asn — o«

(1) n7EN « 8(a,) — p, and

2) n P\ « 8(al) — v.

Rewrite (1) to get

3) n2nP(n"P\" +8 (a},)) * 8(an — n"n"al) > p.

By a theorem on convergence of types, (e.g. [12], Theorem 2.3) the set {(n ®n”, a, —

n~5n"a;)} 5., is relatively compact, and if (A, @) is any limit point, then
(4) p=Ay*da)

so (i) of Theorem 3 holds. Note that A is nonsingular since g is full. From (4) and the fact
that B is an exponent for , it follows that A™'BA is an exponent for y. Thus, for a suitable
choice of vectors {a;}, (2) holds with D = A™'BA and it may be written in the form

(5) n—A‘lBAan—B}\n * 8((1;;) - 7.
Apply the affine transformation (A4, a) to both sides of (5) and use (4) to see that
(6) (n"BAn®)(n"B\" « 8(a,)) * 8(Aas, + a — n"BAn%a,) — p.

Put v, = Aa;, + a — n"3An%a,. By (1), (6), and the theorem on convergence of types,
{(n"BAn®, v,)} 21 is relatively compact, and if (L, ¢) is any limit point, then

(7) p= Ly = 8(¢)

so (L, £) belongs to S,(r), and conditions (ii) and (iii) of Theorem 3 follow.

Next, assume (i), (ii), and (iii) hold. It suffices to show that 2,(p) = 24(y). Let A €
2+(p). Then (1) holds for a suitable choice of vectors in ¥. It follows from (ii) and (1) that
(n"BARB(n7B\" * 8(a,)) * 6(v,))ioi is tight. From (1) and (iii) it follows that every
convergent subsequence converges to pu and hence

8) nBAN « 8(v, + n%An%a,) — p.

Apply (A™!, —A™'a) to both sides of (8) to see that

9) nATBAN « §(A 7, + A'n"BAn"a, — A7a) > 7.

Since A 'BA is an exponent of y, this proves that A € 2,-(y). Finally assume A € 2,(y).
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Then for suitable vectors {a,},

(10) n=ATBAN « §(an) — .

Apply (A4, a) to both sides of (10) to obtain

(11) n~BAN « 8(Aa), + a) — p;

that is,

(12) (n7BAnB)(n BN\ « §(nBA'nB(Aa, + a — v,))) * 8(vy) — p.

Since {(n2An®, v,)} is relatively compact and since every limit point of {(n 2An>%, v,)}
is in (), a group, the set of inverse transformations {(n 247 'n%, —n"2A'n"v,)} is
relatively compact and every limit point lies in %(u). Apply (n ™A n%, —n"24"'n5,) to
the left side of (12). The resulting sequence is tight and every convergent subsequence
converges to u so

(13) . n7EN x 8(d,) —>
for a suitable sequence of vectors d, in . Thus A € 2,(p) so D (u) = D4(y).O
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