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DOMAINS OF ATTRACTION OF MULTIVARIATE EXTREME
VALUE DISTRIBUTIONS

By ALBERT W. MARSHALL' AND INGRAM OLKIN®

University of British Columbia and Stanford University

The univariate conditions of Gnedenko characterizing domains of attrac-
tion for univariate extreme value distributions are generalized to higher
dimensions. In addition, it is shown that random variables with a multivariate
extreme value distribution are associated. Applications are given to a number
of parametric families of joint distributions with given marginal distributions.

1. Introduction. Since their introduction by Fisher and Tippett (1928), univariate
extreme value distributions have been extensively studied, perhaps most notably by
Gnedenko (1943). Results for the multivariate case, obtained by a number of authors, have
recently been summarized by Galambos (1978). The purpose of this paper is to obtain
some multivariate analogs of Gnedenko’s characterizations of domains of attractions. In
addition, some results concerning the nature of the limiting distributions are obtained.

For a, b, x € #*, write ax + b to denote the vector

(a1x1 + by, « -+, arxp + bi).

Let X?, X@ ... be a sequence of independent %-dimensional random vectors with
common distribution F' and let

ZJW = maX1sisan(i); Wj(n) = minlsisnXJ(i), J=1 -k

If there exist sequences a, a?, ... and b®, b?, ... in %* such that a®Z™ + b™
converges in distribution to a random vector U with nondegenerate distribution G, then
is said to be in the max domain of attraction of G and G is said to be a max extreme value
distribution. The convergence in distribution is equivalent to the condition

1) lim,,.F*(a™x + b™) = G(x) forall x

because the fundamental representation of Pickands (1980) [see Galambos (1978), page
265] shows that extreme value distributions are continuous (but not always absolutely
continuous).

Similar definitions of min extreme value distributions and their domains of attraction
are made. For minima, (1) is replaced by

(2) lim,.Fa®x + b™) = G(x) forall x,
where for any distribution H of random variables Y., ., Y,
H(y) =P{Yi>y1, ++, V> Yr}

is called the survival function of Y1, « - -, Yz. When & =1, H(y) = 1 — H(y), but in general,
this simple relation fails to hold. )

Notice that if a™Z™ + b™ (or a” W™ + b™) converges in distribution to U, then the
ith component of a™Z"™ + b™ (or a” W™ + b™) must converge to the ith component

Received October 1981; revised April 1982.

! Supported in part by the National Science Foundation at Stanford University, and in part by the
National Sciences and Engineering Research Council of Canada.

% Supported by the National Science Foundation.

AMS 1980 subject classification numbers. 60F99, 62H05.

Key words and phrases. Extreme value distributions, association of random variables, domains of
attraction.

168

S

U2 (I
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to Q%JSGQ
The Annals of Probability.
www.jstor.org

®



MULTIVARIATE EXTREME VALUE DISTRIBUTIONS 169

of U and thus appropriate sequences {a{”}, {6{”} can be determined from well-known
univariate considerations, i = 1, - --, k. Once that is done the limiting distribution can in
principle be obtained from (1) or (2). But usually this is not easy to do directly.

Sibuya (1960) obtains a representation of bivariate max extreme value distributions G
that asymmetrically involve the marginal distributions, and Berman (1961/1962) obtains
necessary and sufficient conditions for F to be in the domain of attraction of such a G. The
lack of symmetry between the marginals is not entirely satisfying when one thinks of
generalizing these results to £ > 2. For another approach to this problem, see de Haan and
Resnick (1977); they make use of the theory of max infinite divisible distributions as
developed by Balkema and Resnick (1977). Sibuya (1960) introduces the notion of a
“dependence function” which is also used by Deheuvels (1978, 1980) and by Galambos
(1978) to study multivariate extreme value distributions and their domains of attraction.
The approach of this paper, which avoids the use of dependence functions, is to generalize
to higher dimensions the results of Gnedenko (1943).

1.1 LEmMMA. Egquation (1) is equivalent to
3) lim,.n[1 — F(a™x + b™)] = —log G(x) for all x such that G(x) > 0,
and (2) is equivalent to
(4) lim,_.n[1 — F(a®”x + b™)] = —log G(x) for all x such that G(x) > 0.

This lemma is essentially Lemma 4 of Gnedenko (1943, page 438) because the dimen-
sionality of x is not critical to the proof. For an alternate proof that easily carries over to
the multivariate case, see Barlow and Proschan (1975, page 241).

2. Summary of univariate results. The univariate max(min) extreme value distri-
butions are of the same type as ®,, ¥, or A(Df, ¥¥ or A*), where

Dy(x) = e x>0 ix)=1—e"", x<0 (a > 0),
P x) =, x=0; Pix)=1—e*, x=0 (a>0),
Alx) =e™, —o<x<o A*(x)=1-—e, —0 < x < 00,

Write F € Dyax(G) to mean F is the max domain of attraction of the extreme value
distribution G, and analogously define F' € Dy,in(G). Also when & = 1, let

FYp)=inf{x:Fx—) = p<F(x)}, Fp)=inf{x:F(x—)=p=F(x)},
x°=sup{x:F(x) <1} <o and x = inf{x:F(x) >0} = —co,

The following summarizes some univariate results.

2.1 (Gnedenko, 1943).
F € Dpox(®,) © lim,_ F(tx) /F(t) = x7%, x>0,
F € Dpin(®F) © lim,,_F(tx)/F(t) = x7*, "= x>0.
2.2 (Gnedenko, 1943).
‘Fe Doax(¥,) © x°< o0 and  lim,oF(x° + tx)/F(x° — t) = (—x)*, x<0,

F € Duin(¥}) ® 9> — and limyoF(xo + tx)/F(x0 + t) = x°, x> 0.

2.3 (von Mises, 1936).

=0=Fe€e Dmax(A)’

i 0 d 1
0= g (6
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where r(t) = F’(t)/F(t) is the hazard rate of F,

. d 1
limy, A0 =0=F € Duin(A*),
where r*(t) = F'(t)/F(t).
Necessary and sufficient conditions for F € Dy,ax(A) similar to the one dimensional
version of Propositions 3.3 is given by de Haan (1971). Other conditions not particularly
convenient to verify are obtained by Marcus and Pinsky (1969).

3. Max domains of attraction. If H is the joint distribution of Y7, ..., Y%, then H;
denotes the marginal distribution of Y;, i =1, ..+, &.
The following result is a A-dimensional version of 2.1.

3.1 PROPOSITION Let G be a k- dimensional max extreme value distribution such
that G; = ®,, i = ok, and let ¢;(t) = F7'Fi(t)i=2, -+, kb, —0 <t < . Fis in the
max domam of attractwn of G if and only zf

1 — F(txy, do(t)x2, -+, dr(t)xr) _
1—Fi(2)

(5) lim,.. —log G(x) forall x

such that G(x) > 0.

ProoF. Suppose that F € Duax(G). It is known (Gnedenko 1943) that one can take
b =0 for all i, a{” = F1'(1/n) and o = F7'(1/n) = F7'Fi(a{”) = ¢i(al®), i =2, ---,
k,n=1,2, ....Use of this in (3) of Lemma 1 1 leads to the condition

limywn[l — F(ax1, pa(ai)xa, -, pr(ai®)xr)]
[1 — F(a{"x1, p2(al”)x2, - -+, dpr(al?)xz)]

= llmn.,oo 1— F (a{”))
L= Fltr, a0, -, dn(0)3)
= limyoe 1-—Fi(t)

= —log G(x) for all x such that G(x)> 0.

The above equality of limitsonn and tisa straightforward consequence of the monotonicity
of F and the relation [1 — Fi(a{”)]/[1 — Fi(a{"*")] = (n + 1)/n

Conversely suppose that (5) holds, where G=0,,i=1,---,k Leta " and b be as
defined above. Then by reversing the steps of the above argument it follows from (5) that

lim,_n[1 — F(a®x + b™)] = —log G(x) for all x such that G(x) >0,
and hence by Lemma 1.1, F € D (G). 0

3.2 PROPOSITION. Let G be a k-dimensional max extreme value distribution such
that Gi=Y,,i=1, ---, k. Then F € Dunu(G) if and only if (6a) there exists x° € #* such
that Fx°) =land Fx) <1lifx#x, x,=<x%,i=1,---, &,

1 — F((tx1, p2 ()22, -+ -, prlt)an) + X° )

AT ) ~log G(x)

(6b) lim,o
for all x such that G(x) > 0, where
oilt) =x? — F\(Fi(x8—1¢t), i=2 -,k

PROOF. Suppose that F € Dua(G). Then by 2.2, x? = sup{x: Fi(x) < 1} < o; take x°
= (x?, ---, x3) to obtain (6a). Gnedenko (1943) shows that one can take a{” to satisfy
Fi(x} - a‘”)) =1/n, af” = ¢;i(ai™), i= ., k, and b™ = x°. Then from Lemma 1.1 and
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lim,_.a{® = 0, it follows that
lim,_.n[1 — F(a®™x + b™)]

1 — F((a{x1, p2(af)xz, « - -, ¢pp(af”)xz) + b™)
1- Fl(xl - a(n))

1 — F((txr, ¢2(8)xz, - - -, de(t)xx) + D) _

1- F1(x1 —t)

= lim,_,»

= limt 10

—log G(x)

for all x such that G(x) > 0.

Next, suppose that (6a) and (6b) are satisfied. Then by reversing the steps of the
previous argument, one obtains lim n[1 — F(a®™x + b™)] = —log G(x) for all x such that
G(x) > 0. Thus by Lemma 1.1, F € Dpnax(G). O

3.3 PROPOSITION. Let G be a k-dimensional max extreme value distribution such
that Gi= A, i =1, --+, k. Then F € Du.x(G) if and only if
1 - Fa(t)x + b(t))
1—Fi(¢)

where x¢ = sup{t: Fi(t) < 1}, ai(t) = F7lYe 'Fi(t)) — F7'Fi(t), bi(t) = F7'Fu(t), i = 1,
3

7 limyy.9 —log G(x) for all x such that G(x)> 0,

ProoF. The proof of this result is similar to the proof of the preceeding propositions.
Gnedenko (1943) shows that in (3) one can take

= — .1
b = Fi'Fi(b”) = F*(;) s =Lk

and
— 1 =
al” = Ff(;t;) — F7'F(b1”) = Fi' (e 'F1(b{")) — F'F1(b17).
This expresses all normalizing constants in terms of 5{®. Since hm,,_,mb‘l") = x? and b is
an increasing sequence, one can write ¢ in place of b{” and take the limit as ¢ 1 x9.0

In the following, each F;is assumed to have a density f; and r; = f;/F;is the corresponding
hazard rate.
In case

1
—_ =0 1 =1, ¢
dtr,(t) ’ l ’ 7k’

liInth?
where x? = sup{x: Fi(x) < 1}, a{® can be replaced by the simpler norming constant
1/nF{(b{") = F:(b)/Fi(b{") = 1/r.(b{™).
This leads to the following proposition.
3.4 PROPOSITION. Let G be a k- dimensional max extreme value distribution such

that Gi= A, i=1, ..., k. Let ¢;(t) = F7'Fi(t),i =2, - -+, k, and let x? = sup{x: Fi(x) <
1}. Then F € Dmax(G) lf

X1 X2
o F<r_<t) Mo R U "”“’)

1 - Fi(t)

(8)  limgs = —log G(x)

for all x such that G(x) > 0.
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4. Min domains of attraction. The results of this section are all analogous to those
of Section 3, and are stated without proof.

4.1 PROPOSITION. Let G be a k-dimensional min extreme value distribution such that
Gi=®%,i=1, ..., k and let ¢:(t) = F{'Fi(t),i =2, - -+, k, —0 < t < . F is in the min
domain of attraction of G if and only if

1 — Fltxy, do(8)xz, -+, du()xe) _

9 lim, o 7.0 = —log G(x) for all x such that G(x) > 0.
1

4.2 PROPOSITION. Let G be a k-dimensional min extreme value distribution such that
Gi=VY%!,i=1, ..., k. Then F € Duin(G) if and only if

there exists Xo = (xo1, + -+, Xor) such that

(10a)

F(x0) =0 and F(x)>0 if Xx# Xo, Xi = Xoi i=1,---,k,
and
(10b) limo 1 — F((tx1, ¢p2(t)xz, -« -, dr(t)xr) + Xo) — —log G(x)

F((t + xo01)
for all x such that G(x) > 0, where
¢i(t) = F7'Fi(xo1 + t) — Xoi.
4.3 PROPOSITION. Let G be a k-dimensional min extreme value distribution such that
Gi=A*i=1, ...,k Then F € Dyin(G) if and only if

. 1 — F(a(t)x + b(t _
(11) llmdxm al(rl)(’ti) ©) = —log G(X)
for all x such that G(x) > 0, where xo = inf {¢: F\(t) > 0}, a;(t) = Fr(e 'Fy(t)) — FIFu(2),
bi(t) = F7'Fi(t),i=1, --+, k.

Now, assume that each F; has a density and let r} = fi/F;.

4.4 PROPOSITION. Let G be a k-dimensional min extreme value distribution such that
G=A*i=1,---,k Let $;(t) = F;'Fi(t), i = 2, -- -, k and let xo1 = inf{¢: F1(¢) > 0}.
Then F € Dyin(G) if

= X1 X2 Xk
1-F S8, e
<rm) bt Fmo T T )

Fi(®)

+ ¢k(t))

(12)  limyyx, = —log G(x)

for all x such that G(x) > 0.

5. Association and independence. As noted by Tiago de Oliveira (1962/63), all
multivariate extreme value distributions G of k variables X1, - - -, X, satisfy the condition

(13) G(x1, + -+, x) = [[1Gilx:),

a property called “positive quadrant dependence” by Lehmann (1966) in case k = 2.
Positive quadrant dependence implies that all covariances are nonnegative.

Random variables X;, ---, X; are said to be associated if for every pair 6, ¢ of
nondecreasing functions defined on %*,

Cov(0(X), ¥(X)) =0
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whenever the relevant expectations exist. This concept of positive dependence was intro-
duced by Esary, Proschan and Walkup (1967), who show that it is stronger than positive
quadrant dependence.

5.1 ProposITION. If Xy, ..., X have a multivariate extreme value distribution, then
Xi, - -+, X are associated.

Proor. Consider a distribution F with survival function
(14) F(x) = eXp[—f (maxi<i=rqiX;) d,u(q)] )
S

where y is a finite measure with support S = {q:¢;=0,i=1, .-+, k, Y% ¢, = 1}.
Let Zi, ---, Z,, be independent exponentially distributed random variables with unit
expectation and let

Y. = minlsjsmaijzj, 1= 1 ..., k,
where 0 < a; < « for all {, j. Then Y, ..., Y, has a joint survival function

P{Yi>y1, +++, Yo > yi} = P{mini<jenaiZ; > yi, i =1, -+, k}

Qa;

=P{Zj>maxls~éklf,j= 1, m}

= exp[—X7 0; maxi<i<£qiiy:l,

where 6, = Y%, 1/a; and q; = 1/(6;a;). If » is the measure on S which puts mass 6, at (qy;,
ce, Qi) j=1, -+, m, then

(15) P{(Yi>y, -, Yo >y} = exp[—] [maxi<;<xq;y:] dv(q)].
s

Because increasing functions of independent random variables are associated [Esary,
Proschan and Walkup, 1967], Y3, - -+, Y} are associated.

Now, any distribution of the form (14) is the weak limit of distributions of the form
(15), where » has finite support. Because limits in distribution of associated random
variables are associated, it follows that random variables with a distribution of the form
(14) are associated.

According to the representation of Pickands (1980), Xi, ---, X; have a min extreme
value distribution with marginals G, - - -, Gy, if and only if there exist random variables Y7,
.+, Y, with a distribution of the form (14) such that

Xi=—10g G_i(Yi)» i= 1, ”')k‘

Since increasing functions of associated random variables are associated, it follows that X,
««+, X}, are associated.

The proof for maxima is similar, or can be obtained from the fact that when X;, - .. , X,
are associated, then so are —Xi, ..., —X,;.0

The above theorem shows that random variables with a multivariate extreme value
distribution are always associated; in practice the stronger property of independence is
often encountered. The study of independence in multivariate extreme value distributions
is greatly simplified by the fact (Berman, 1961/1962), that pairwise independent random
variables X;, ..., X; having a multivariate extreme value distribution are mutually
independent; this fact follows from Proposition 5.1 and the fact (Newman and Wright,
1981) that uncorrelated associated random variables are jointly independent. This allows
studies of asymptotic independence to be confined to the bivariate case.
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Geffroy (1958/1959, Chapter VII) gives a necessary and sufficient condition for asymp-
totic independence of two maxima. Other conditions are obtained by Sibuya (1960),
Berman (1961); see also Galambos (1978).

Versions of the following proposition have been obtained by Mikhailov (1974) and by
Galambos (1975); it has a simple direct proof.

5.2 PROPOSITION. Suppose k = 2. Under the conditions accompanying the equations
(3), (5), (6b) or (7), asymptotic independence occurs if and only if the limit in the
respective equation is 0 when 1 - F is replaced by F. Under the conditions accompanying
the equations (4), (9), (10b) or (11), asymptotic independence occurs if and only if the
limit in the respective equation is 0 when 1 -F is replaced by F.

6. Examples. There are a number of parametric families of joint distributions with
arbitrary marginal distributions. Some of these are:
6.1 ExaMPLE. Farlie (1960), Gumbel (1958), Morgenstern (1956):
F(x1, x2) = F1(x1)Fa(x2)[1 + aFy(x1) Fa(x2)],
ie.,

F'(xl, xz) = F'l (xl)F_'z(xz)[l + O(Fl(X1)F2(x2)], -l=sa=s1.

6.2 ExaAMPLE. Ali, Mikhail, Haq (1978):

Fi(x1)F3 (x2)

F(xl, xg) = 1- aﬁl(xl)ﬁz(xz) ’

6.3 ExamMPLE. Plackett (1965):
F(xi, x2)F(x1, %2) = 0[F1(x1) - F(x1, %) ][Fe (%) - F(x1, %)], 0=<6=< o,

6.4 EXaMPLE. Fréchet (1951):
F(x1, x2) = OFL(x1, x2) + (1 - O)Fu(x1, x2), 0=6=<1,
where

Fy(x1, x2) = min[F; (x1), Fa(x2)], Fy (x1, x2) = max[0, Fi(x;:) + F2(x2) - 1].

6.5 ExamMPLE. Gumbel (1960):
[-log F(x1, x2)]™ = [-log Fi(x:)]™ + [-log Fa(x2)]™, mz=1.

All of these families can be used to obtain bivariate distributions with marginals that
are extreme value distributions, and it is natural to ask if the distributions so obtained are
in fact bivariate extreme value distributions.

By using Lemma 1.1 or Proposition 5.2, it is not difficult to show that for Examples 6.1
and 6.2, the limiting extreme value distributions both for maxima and minima are always
the case of independence. Since a bivariate extreme value distribution belongs to its own
domain of attraction, it follows that the bivariate distributions of Examples 6.1 and 6.2 are
bivariate extreme value distributions only in the case a = 0 of independence.

Similarly for Example 6.3, the limiting distribution for maxima and minima are the case
of independence except when 0 = . In case § = x, F'(x1, x2) = min[F;(x), F2(x)] and both
for maxima and minima, the limiting distribution is min[G1 (x1), G2 (x2)], - < x1, x2 < o,
whenever F; € D(G;),1 =1, 2.

Again using Lemma 1.1, it is easy to see that whenever F; € Dp.x(G:) [respectively,
Dynin(Gy)], @ = 1, 2, then the bivariate distributions of Example 6.4 are in Dm.(G)
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[respectively Dmin(G)] where
G(x1, %) = {min[G1 (x1), G2 (x2)}{G1 (%1) G (x2)}’, -0 < x1, 202 < 00,

Unless 8 = 1, this has a different form than the distributions of Example 6.4 so those
distributions are not extreme value distributions, § # 1.

As noted by Berman (1961/1962)[see also Tiago de Oliveira, 1975], distributions of
Example 6.5 are in Diax(G) where .

[-log G(x1, x2)1™ = [log G1(x1)]™ + [-log G2(x3)]™ and F; € Dmax(Gi),

i = 1, 2. Of course this means that if F; and F, are max extreme value distributions, then
so are the bivariate distributions F of Example 6.5. On the other hand, if F; € Duin(G:), i
= 1, 2, then such distributions F are in Dpin(G) where G (x1, x2) = G1(x1)G2(x2), -0 < x1,
xs < . With m = 1, this fact is easily verified using Lemma 1.1, but for m > 1 the
demonstration is somewhat more involved.

The dependency model

X =min(Uy, W), X = min(Uz, W)

has been studied in various contexts [see, e.g. Marshall and Olkin, 1967]. If U; has
distribution H;, i = 1, 2, and W has distribution H;, then it is easy to see that X, X, have
joint distribution F given by

(17) F(x) = H:(x1)H2(x2)Hs (max(x:1, x2)), -0 < X1, Xp < 0.

6.6 EXAMPLE. Suppose that F is given by (17) with
Hi(z)=Hy(z) =2° and H;(z)=2", 0=z=1

for some 6 > 0, » > 0. Here, the marginals Fi, F» € Dy (¥2), and it is not difficult to obtain
from Proposition 3.2 that F € Dax(G) where

G(x) = e—[(—x:)2+(—xz)2]’ X1, X2 < 0’

In this example, Fi, F> € Dyin(¥ *uine,») and from Proposition 4.2 it follows that F' €
Dpin(G), where for x;, x2 = 0,

G (x) = exp -[max(x1, x2)7, if v<é,
= exp - ¥[x{ + x§ + max(x{, x8)], if »v=4,

= exp -[x¢ + x3), if »>4.

6.7 EXAMPLE. Suppose that F is given by (17) with
Hl (2) = e—)\lza L_IZ(Z) = e-)\zz’ H3(Z) = e_)\azy
2=0 forsomeA;, Az, As=0, A1 + A3 >0, Az + A3 > 0.

Then F is a bivariate exponential distribution (Marshall and Olkin, 1967). Here F, F2 €
Dumas(AA). Using Proposition 3.4, it can be shown that F' € Duax(G) where

G (x1, x2) = exp[-e-*-e-*], max(A;, Az) >0
= exp[_e-xl_'e—xz + e—max(x,,xz)]’ >\1 = AZ = 0.

(cf. Galambos, 1978, Example 5.2.2). In this example, Fi, Fy € Dyin(¥*) and from
Proposition 4.2, it can be shown that F' € Duin(G) where

AL+
xz+>\3max<x1,—l—}\3 )], X1, x2 = 0.

AL+ As x
Az + As ?

Az + A3

G(xy, x2) = exp-[}uxl + A2
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6.8 ExaMPLE. Another bivariate exponential distribution, given by Mardia (1970) is
F(xy, %) = (em +ex-1)"",  x1,%=0.
Using Proposition 3.4, it is easy to verify that F' € D (G) where
G (x1, x2) = exp-[e-n + e~= —(ex + ex)”].

This result was also obtained by Galambos (1978, Example 5.2.2) using different methods.
From Proposition 4.1, it follows also that F' € Duin(G) where

G(x1, x2) = ex1-%, X1, X2 = 0.

6.9 ExaMPLE. Bivariate Logistic Distribution. The logistic distribution given by
Fi(x;))=(1+e=x)", —o<x<wm

belongs to Dyax(A) since the von Mises condition (7) is satisfied. Here it is easily verified
using Proposition 3.4 that the bivariate version

F(x1, x2) = (1 + e + e—=) 7 —00 < X1, Xp < 00
belongs t0 Diax(G) where
G(x1, x2) = exp[—e—x —e~%:], —00 < X1, Xp < ©

is the case of independence. Because F; has a symmetric density it is easy to see that F
€ Dnin(A*) and that F' € Dyin(G*) where

G*(x1, x2) = exp[-en—ex], —00 < x;, X< 0,
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