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REMAINDER TERM ESTIMATES OF THE RENEWAL FUNCTION

By Hasse CARLSSON

University of Goteborg

Let p be a probability measure and H(x) = Y,7-0 p"*(—0, x] its renewal
function. It is well-known that H(x) — x/u1 — pe/2uf — 0 as x — +oo if p; >
0 and p. is a nonlattice measure. (u is the 2Zth moment of u.) The rate of this
convergence is studied under further conditions on p.

1. Introduction. Let X;, X;, --- be independent random variables with a common
distribution p that has finite moments or order «, that is

J | 2] dp(x) < + .

(Unspecified integrations are always taken over the whole real line.) The renewal measure
v is defined by

v= Yoo
and the renewal function H by

H(x) = v(—, x].
Here p™* denotes n-fold convolution and u°* is the Dirac measure at 0. Let

e = J x* dy(x)

be the kth moment of u and
f(&) = J e " dp(x)

_ its characteristic function. The measure p is said to be nonlattice if
f)=1et=0,

otherwise p is called lattice.
The following theorems, stated in the nonlattice case, are well known.

THEOREM A. (Blackwell [1]) Assume that p is a nonlattice measure with a positive
first moment. Then

lim, 4ov(x, x+ h) = h/W.

THEOREM B. (Smith [14]) Assume that p. is a nonlattice measure with a positive first
and a finite second moment. Then
X U2

lim, , + (H(x) -2 ) =

Estimates of the rate of convergence to zero in these theorems, when further moments
exist, have been extensively studied, see for instance Stone [16], Stone-Wainger [18], Essén
[4] and Lindvall [9]. In these papers sharp estimates are given in either the lattice case or
in the nonlattice case under some further assumption on p. The weakest such assumption
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144 HASSE CARLSSON

is that p is strongly nonlattice, that is
lim infjs~.|1 — f(¢)| > 0.

However, this does not for instance cover the simple case where the measure p has
pointmass % at 1 and a, for some irrational « > 1. Moreover, for different types of
irrationalities |1 — f(£) | may have much different types of behavior at infinity. This
motivates defining classes of measures that satisfy .

lim infiyj—o | £°(1 — £(2)) | > 0

for some p > 0. We call such a measure nonlattice of type p.
Before stating our first result we need to introduce some more notation. Let F(x) =

(=, x] be the distribution function of X; and put

+oo

(1-F(y)dy, x=0
R(x) =

X

F(y) dy, x<0

—o0
and

—f R(y)dy, x=0
S(x) = *

X

R(y) dy, x<O0.

It is easily seen that S is well defined and that S(x) = 0(x*>™*), | x| — oo, if u has finite

moments of order a = 2. Also R * R exist and R * R(x) = o (x'™%), | x| > +.

THEOREM 1. Assume that p is nonlattice of type p with finite moments of integer
order m = 2 and p, > 0. Then

£+u_22 + S(ch) + R« If(x) Fo(x IRy L L
Mmoo 2u7 ni 51
H(x) =
S(.:) + R Ij(x) + O(x—m/l+p(m+1)), X — —o0,
[ M1

Consider again the example with supp p = {1, a}. In Section 5 we will show that for almost
all , and in particular if « is algebraic, p is nonlattice of type p for all p > 2. Thus Theorem
1 implies
Hx) =2+ 22 4 oi?),  x— +m,
w1 2u1

for all p < %. (It is not possible to have a better estimate than O(x~/%).) However, for
certain «, p is not nonlattice of type p for any p, and in fact a can be chosen so that the
decrease to zero in Theorem B is slower than any prescribed p with p(x) — 0, x — +o,
although p has finite moments of all orders.

The proof of Theorem 1 is by Fourier analysis. Earlier estimates of the renewal function
have been obtained by integrating estimates of the renewal measure. We will use a Bohr-
type inequality to estimate H directly and this technique will enable us to prove sharper
estimates of the renewal function in the strongly nonlattice case.

THEOREM 2. Assume that p is a strongly nonlattice measure with finite moments of



ESTIMATES OF THE RENEWAL FUNCTION 145

integer order m = 2 and p; > 0. Then
£+_'“L S(x) R=* R(x)

R + " +——_,u? + o(x™ log x), X — 400,

Hx) = S R+R
:f)+—¥x—)+o(x‘"’log|x|), x— —oo,

1 1

The term pi® R * R is new. Since R * R(x) = o(x'™®), | x| > o, we have the following
corollary.

COROLLARY 1. Under the conditions in Theorem 2 we have

g ”—22 + S(f) +o(x'™), x> 4,
Hx) M1 2p1 L3¢
x =
S(Z) +o(x'™™), x— —oo,
15t

In [16] Stone obtained the estimate o(x'~™log x), and in [17], assuming p to have a
small singular part he proved the estimate in Corollary 1. That p has a small singular part
means that p”* is not purely singular with respect to Lebesgue measure if r is sufficiently
large.

REMARK 1. In [10] Makarov gave an example of a singular continuous measure p. with
f(t) = 0, | ¢| > oo, such that p and p * p are absolutely continuous with respect to each
other. By induction we get p"* << p and in particular u"* is singular for all n. Thus the
condition that p has a small singular part is strictly stronger than the strongly nonlattice
condition. This confirms a conjecture by Smith [15].

If m = 3, we can simplify Theorem 2 somewhat, since then R * R(x) = p2R(x) + o (x™™),
| x| — oo.

COROLLARY 2. Let pu be a strongly nonlattice measure with finite moments of integer
order m = 3 and p; > 0. Then

i+‘u—22+i32c)+‘u—§R(x)+o(x""logx), x — oo,
Hx)=3" m

2[1,1
S(x)

I3

+%R(x)+o(x""log|x|), x— —oo,
1

Corollary 2 is close to an integrated version of Corollary 3 in Stone-Wainger [18] (given
in the lattice case). However, by integrating their result we only obtain the estimate
o(x'™™), | x| — o

REMARK 2. Theorems 1 and 2 are true also when p has finite moments of order a, «
not necessarily an integer. See the end of Section 4.

REMARK 3. There is a corresponding statement of Theorem 2 in the lattice case with
the remainder o (£™™), | k| — . Its proof is somewhat simpler as the dual group of Z is
compact.

2. A Bohr-type inequality. Our idea to prove estimates of the renewal function is
to form G(x) = H(x) — h(x), where A is chosen such that G and sufficiently many of its
derivatives are locally integrable. We then put

1 T
Gr(x) = G(x) — —J e G(t) dt
27 )_,
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(for large T') and estimate G with a Bohr-type inequality. In this section we prepare the
way by giving a suitable form of Bohr’s inequality.

Let g be the family of those nondecreasing functions m: R — [1, +«) that satisfy
m2x)=Qm(x)andm(x) =1ifx < 1.

LEMMA 1. Let g be a tempered function such that
Supxsysx+1/T(g(y) - g(x)) = K/MT(x), mr € Mﬂ
Also assume that g has its support outside [T, T]. Then
|g(x)| = MK/mr(x),
where M depends on Q but not T for T = 1.

This lemma is very close to Theorem 7.3 in Ganelius [5]. Ganelius requires g to be
bounded, but this is implied by the condition in Lemma 1; compare Hormander [7],
Theorem 2.6. We may also have different functions mr for different 7', but by checking the
proof by Ganelius, it is clear that M is only depending on 2. Note that we require mz(x)

= 1if x < 1, instead of x < 0 as in Ganelius [5], to ensure that there is a constant M;, only
depending on &, such that | A(x) | = Mi/mz(x), where h is a rapidly decreasing function.

3. Calculations of Fourier transforms. In this section we will compute the Fourier
transform of

S(x)

,ul

G(x)=H(x)—( )E( x) ——5—
p 2pi

where E is the Heaviside function,

1, =0
E(x)={0 fc<0

The Fourier transforms will be computed in the sense of distributions. For the theory
of distributions and its standard notation we refer to Schwartz [13] and Gelfand-Shilov

(6]
We have E’ = 8 and since § = 1, it E(t) = 1 and E (t) = 1/it + C8(t). As E — % is odd,
—w){t) = 1/it + (C— 7)8(¢) is also odd and we must have C = 7. (Compare Schwartz
[13, page 259].) Hence

(1) E@t)=1/it + 7n8(¢t) and itE(t) = 1.
Furthermore (xE (x))’ = E(x) and we get
) it(xE (x)) (¢) = 1/it + 78 (¢).

By an integration by parts we get

®) J'R(x)dx=%m and R (t) 2(f(t) 1+ itw).

)
Now S’ = R — Y, 6 since
(S 9)=—(S,¢) = f R(x)p(x)dx — ¢ (0) J’ R(x) dx = (R —Yu:8,¢p)

and thus
_ 1
(4) it S(t) = o (f(t) — L+t +5 ,,,ztz) )

If u is nonlattice with a positive first and a finite second moment, the Fourier transform



ESTIMATES OF THE RENEWAL FUNCTION 147

of v is given by the following assertion:

1 T

5 b=~ 47
(5) b 1—f(t)+,u1 8(¢).

Proor. Put
uv = YAZ0 p™*

Then vy is an increasing sequence of positive measures and

__ 4N
_ 1 1)\ e n
1—£(t) f(t)(l—f(t) iut) i (,ﬁ 30)) 3(t).

As p has a finite second moment,

f(t) = j e ™ du(x) =1 — ity + O£, t— 0.

Thus (1 — ()" — (u:2) " is locally bounded and by dominated convergence we get
1
Nt
o=
As fN(¢)(1/it + 78(¢t)) is the Fourier transform of
FY¥(x) = (WN**E)(x) =PX1 + ++- + Xn= %)

1
=P(N(X1+ ---XN)S%)

and p; > 0, the weak law of large numbers implies FV*(x) — 0, N — «. As 0 < FN*(x) <
1, this pointwise convergence implies FV* — 0, N — o, also in %’ and consequently

)—)0 in 92/, N — .

fN(t)< + W&(t)) in &/, N— o,

and
-~ 1 T
IN—>———+—8 in 9',N— .
YTI-f0  m

To see that this is true also in &’, we need an a priori estimate of ». To get this, fix a
nonnegative ¢ € 9 = {g; ¢ € 2} such that ¢(x) = 1if |x| = 1. Then

E  F™\\~, = 11 o
(‘P*(VN"ITI'F . )) (t)‘¢(t)<m m)(l ().

itx 1 _ §N < 1 1
’je ¢(t)( — 70 mlt)(l @) dt—2f ¢(t)< D) mlt)

and || ¢ * (—E + F"*)/p || is bounded uniformly in N, this implies || ¢ * »n]» < C <
+oc0. Hence

dt < +o

x+1

x+1
>f¢(x—y)dwv(y)ZJ ¢(x—y)dv~(y)ZI dvn ().

x—1 x—1
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From this uniform bound we see that vy — v in &', where v is a positive measure with

1 T
—_+Ts
T-70 " m

7

as desired.
If we put

Mo 2pi u?

where Ho(x) = [§ dv(y), Go is linearly bounded and (1), (2), (4) and (5) imply

A L1 p f(O) = 1+ it + %t
#eo® =T " 2t ()
_(f®) — 1+ itm)”

(1 = £(#)) (itpr)?

as p has a finite second moment. Hence

=g@)=0@), -0

Got) = ‘Elfti) + C8(¢)

for some constant C or, if we put G1 = Go — C/2m,

£t)
it

Gl(t) = € L]IOC(R).

We will now use Lemma 1 to show that G = G, and at the same time we obtain a simple
proof of Theorem B. Put
T

Gr(x) = Gi(x) — % f e“Gi(t) dt = Gi(x) — G#(x).

=T

Then Gr(t) = 0if | £| < T. Since
1
SUPxsy=c+1,7(S(x) — S(¥)) = S(x) — S(x + 7) <R(x)/T=K/T

and H, = H, — C/2x is nondecreasing, we have
SUPs<y=e+1/7(G1(x) — Gi(y)) = K/T if x=1

Furthermore, G% is bounded and G%(x) — 0, x — +o, by the Riemann-Lebesgue lemma.
Thus

Kr, X=<x
SUPs=y=x+1,7(G7(x) — Gr(y)) = {K;T, x> x;.

If we take x# large enough, there is an mr € 4, with mr(x) = TK7/K if x > x% and
SUPszret/r(Gr(®) — Gr(y) = Ka/ma(x),
Hepce Lemma 1 implies
| Gr(x) | = MKy /mzr(x).
By letting x — +o, we get
lim sup, .+ | G1(x) | = MK/T
and since T is arbitrary

lim, 10 Gi(x) = 0.
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In the same way we obtain lim, ., .G:(x) = 0 and since S(x) - 0, | x| — o, we have 0
= lim, ,_»G1(x) = lim._,_. H:(x). Hence H(x) = [*. dv(y) exists and lim,_,—.H(x) = 0. As
H and H; are both primitives of » and have the same limit at —o, they must be equal.
Thus G = G; and Theorem B follows as S(x) — 0, x — +o.

4. The proofs. To prove Theorems 1 and 2 we must have a better estimate of G%
than above. This will be obtained by integrations by parts. To be able to integrate by parts
sufficiently many times we have to subtract further terms from G.

We recall from Section 3 that

(f(t) = 1 + ity,)?

GO = b oy Y
Define T by
Ao (fO) = 1+ itw)?
T@) = MIT
and U by

(f(®) = 1 + itwy)?

06 ==

Then we obtain, withI'=G - T — U,

) -1+ it,u1>2 _ (@) =1+ i)

) L) =G(t>( it ~ M=)

We will prove the following estimate of T".
PrOPOSITION 1. Assume that p. has finite moments of integer order m = 2 and p; > 0.
(a). If p is strongly nonlattice then
I'(x) = o(x™ log| x|), | x| — oo,
(b). If p is nonlattice of type p then
T(x) = o(x~™/1+pim+D)) x| — oo.
From (3.3) we have 7' = p7®R? and thus T = p7®R*R. Theorems 1, 2 and the corollaries
will follow from this observation together with Proposition 1 and the following lemma.
LEmMA 2. (a). If p has finite moments of order a = 2, then
Ux) =o(x™), |x][—> .
(b). If u has finite moments of order a = 3, then
R+R(x) = pR(x) + o(x™), | x| — oo,

ProoF orF LEMMA 2a. We have

1 (F&) — 1+ itw\*(F(&) — 1 + itws

pi (it)® it )
Put@=F— E and @, = 118 + Q. By an integration by parts we obtain @(¢) = (f(¢) — 1)/
it and hence Qo(t) = (f(¢) — 1 + itu1) /it. Together with (3.3) this implies U = u7°R*R*Q,.
Put M = R+R. As R’ = @, we have M’ = R+R’ = R+@ = u1 R + R*Q and since [ Q(x) dx
= —u;, we get

U@ =

(2) M'(x) =f (R(x — y) — R(x))Q(y) dy =f +J (R(x — y) — R(x))Q(y) dy.
x/2 y>x/2

y=
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For definiteness we consider the case x — +o. Then R'(x) = Q(x) = o(x™*), x = +o, and
therefore

yQ(;) Q(y). dy

, f (R(x — y) — R(x))Q(Y) dy. SI
y<x/2 y=x/2

= [y I . Q(g) . =o(x™), x> oo,

since y@(y) € L'(R). Furthermore,

J R(x—9)Q(») dy] < , Q(f)
y>x/2 2
X

= , Q(E)

(5) J R(x)Q(y) dy = R(x)R(%) = o(x"™)o(x""*) = o(x7%), x — +00,
y>x/2

j R(x — y) dy
y>x/2

IR|:=o0(x"), x—+=,

(4)

and

as a = 2. (2)-(5) implies
(6) M'(x) = o(x™%), | x| — oo.
We also observe that M’ € L'(R) and M(x) = o(x'™), | x| = . Write

(7) Ux) = pr°M=Qo(x) = pi° f (M(x — y) — M(x))Q(y) dy.

In the same way as we obtained (6) from (2), we get from (7) that U(x) = o(x™), |x|—
oo, as desired.

ProoF oF LEMMA 2b. We recall (3.3), [ R(x) dx = %pz, and observe that xR(x) €
LY(R) if o = 3. Write

x/2 3x/2 +00
R*R(x) = f + J’ + f R(x — y)R(y) dy = A1 (%) + Az (x) + A;z(x).
—o0 x/2 3x/2

To estimate A, we observe that (again we only consider x — +)

x/2 +o0 +o00
J R(x)R(y) dy = R(x)( J’ - J’ R(y) dy>
. —o0 x/2

paR(x) — o(x'"*)o(x*™*)

== p2R(x) + o(x™), x — +o,

as a = 3. Thus

x/2
Ailx) = équ(x) +o(x™) + j (R(x —y) — Rx))R(y) dy, x— +.
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As
x/2 x/2 x
‘ f (R(x — y) — R(x))R(y) dy‘ SJ yQ<§>R(y)‘ dy
=Q(3) 1RO =06, 5 ten
we obtain
8) Ai(x) = $peR(x) + o(x™),  x— +oo,

To estimate A2, we observe that

3x/2 x/2 +00 —x/2 +00
J R(x — y)R(x) dx = R(x) R(y) dy = R(x)< J - j - J R(y) dy)
x —x/2 — — x/2

/2

p2R(x) + o(x™)o(x*™)

DO = DO =

e R(x) + o(x™%), X —> +o,

Hence

3x/2
1
Aqz(x) = E,ugR(x) + o(x™) +J (R(y) — R(x))R(x — y) dy, x — +o0,
x/2
For the integral we have

3x/2

3x/2
f (R(y) — R(x))R(x — ) dy’ SJ

/2 x/2

= y)Q@)R(x ) ‘ dy

= ’ Q(g—) ’ | YR(y) |1 = o(x™*), X — 400,

This renders
9) As(x) = e R(x) + 0o(x™), x— +o.
Finally,

(10) |As(x) | = R(— g) f R(y) dy = o(x"*)o(x*™*) = o(x™™), x — +o©
3.

x/2

as a = 3. Lemma 2b now follows from (8), (9) and (10).

PrOOF OF ProOPOSITION 1. The proof is patterned after the proof of Theorem B. Put

I'r(x) = T'(x) — %j e“T()Yr(t) dt = T'(x) — TH(x),

where Yr(t) = ¥(¢/T) for some ¥ € C*(R) with supp ¢ C [—2, 2] and ¥ = 1 on [—1, 1]. Then
I'(#) = 0 for | ¢| = T. From our estimates of S, T, U and the fact that H is nondecreasing,
it is easy to see that

Supxsysx+l/T(F(x) - I‘(y)) = K/T

Next we want an estimate of I'#. From the Taylor expansion of f(f) we get as t — 0, for
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details compare Stone [16, pages 333-334],

1 )
(;(f(ﬁ—l)) =0Q1) for k=sm-—-1,

(m)
G (f(0) 1)) - o(%)

*)
(% (f(t) =1+ it,ul)) =0(1) for k=m—2
and
1 ")
(? (ft) =1+ it,ul)) =o(t™ "% for k=m—1,m.
From (1) we have

(t% (F&) -1+ itul))
@) = ct?

7O -1

Thus the Leibnitz formula implies that the mth derivative of 'islocally integrable (in fact
even bounded). Hence we can integrate by parts m times in the integral defining I'} to
obtain

(1) I'#x) = % (i) J e (C(@OYr(H)™ dt.

If p is strongly nonlattice, the integrand above is bounded by a constant times 1/| ¢, | £|
— oo, Hence a uniform version of the Riemann-Lebesque lemma implies T'f(x) =
log To(x™™), x — +%. Consequently,

1
Supsx<y<e+1,7(Lr(®) —Tr(y)) = K (7, + log TO(x"")>, x — +oo,

and Lemma 1 implies
| Tr(x)| = MK(%1 + log To(x‘"‘)), x — +oo,

where M is independent of T'. If we put 7 = x™*" and use the estimate of I'}- once more, we
obtain

I'(x) = o(x™"og x), x—> +co.

The estimate at — is proved in the same way and the proposition is proved in the strongly

nonlattice case.
If p is nonlattice of type p the integrand in-(11) is bounded by a constant times

1 t -p(m+1)—1
| I < Cl tlp(m+1)—1’ | t I — oo,

[td =@y 1A —for

Thus
Ti(x) = T?™o(x™), x— +x

and

1
supz<y=z+yr(l'r(x) —T'r(y)) = K (-:;, + 717 ‘”‘“’O(x_”‘)), x —> +0.
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As above we get

| T'(x)| = MK(%1 + T”""“’o(x‘"‘)), x — +oo,

If we put T = 87 (x)x™***™*) where 8(x) — 0 slowly enough as x — +o, we get
I'(x) = o(x™™*P*) - x — oo,

and Proposition 1 is proved.

Proposition 1 and its consequences are true also when p has finite moments or order
a, a not necessarily an integer. We conclude this section by indicating a proof of this fact.
Put m = [a] and « = m + B. As (I'}#) = I'yr we have,

(*x"T%(x))(®) = i"D™(TYr) € LA(R).
We also want to assert that
(| x |*x™"T%(x)) € L'(R).

For this we need a generalization of the derivative to nonintegral numbers. From Gelfand-
Shilov [6, page 173], we have that the Fourier transform of | x| is Cz|¢|”"*# for some
constant Cz. Thus we want to examine

DFD™(Tyr) = | ¢ |"H«D™(Tyr).

Put A,g(t) = g(t — s) — g(¢t). Then, if g is a measurable function with compact support and

J

Ag(t)
SR

ds E L%OC(Rd)7

we have

L (L
- i

For a proof of this fact, we refer to Carlsson [2, Lemma 1].
From the moment condition imposed on g, it can be shown that

AD™(TYr) (¢
—ljlfT)—l ds € L'(R)
and that the behavior at infinity is such that
m Co [ uxpapyms o(1) log T
(11) | x |Ax"T%(x) = -2;"' e“*DED™(Yr) dt = {O(I)T"%"H), X —> +0o0,

if u is strongly nonlattice or nonlattice of type p, respectively. We omit the somewhat
tedious details and refer the reader to [2, Section 4] for a similar derivation. The proof now
follows from (11) as in the integer case.

5. Examples in the weakly nonlattice case. In this section we consider remainder
term estimates of the renewal function when p is not strongly nonlattice.

‘We first assume that p consists of pointmasses a; at a;, i =1, -+ ,n,n =2, @; > 0 and
Y1 a; = 1. Since p is assumed to be nonlattice, at least one of y; = a;/a, is irrational. We
observe that u*" has pointmass at least equal to (equal to if {«;} is independent over Z)

k! A N
—kl-, . kn!al e Ayt

at kiar + -+ + kyon, k1 + --+ + k, = k. In particular, if we take k; = a;N, we get by
Stirling’s approximation that u~ ", and consequently also H, has a discontinuity of order at
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least N®™/2 close to N(aia; + -+ + @,a,) and since the approximand is continuous for
x # 0, we can not have a better estimate than

H(x) == + 2—”2 + 0=, x4,

For certain choices of a;, the discontinuities that arise from the pointmasses of u"*" for
different n, may be so close together that the remainder is arbitrarily weak.

ExaMPLE 1. Let p be an arbitrary function with p(x) — 0, x — +o. Then there exists
a nonlattice measure y with compact support such that

X U2
lim sup.— -+« H(x) ———--—=]>0.
P ()( @ 2u%)

ProoF. Let u have pointmass % at 1 and a, where a is of the form
a = 1, 0001 00001 O- - . 0010--.0010-- -,
N . y .
n digits m digits

where m is a rapidly increasing function of n. If we put

a, =1, 0001 000010 ... 01

n digits
10"ay, is an integer and if &; + k2 = N,
| k110"a, -1 + k210" o — N10"a| = £10™(a — ) < 2k110"10° "™ < 2N10™,

Thus the points £:10"a,, - 1 + k210" a, k1 + k; = N, all belong to an interval Iy of length
4N10™™ centered at N10"a. In this interval » has mass at least equal to

1 (1on(k1an + k)

N - >
L= 910" (k1 an+ ) k110"a, ) = >0,

according to Lemma 3 below. We now choose m such that ¢, = 32 10™™ and take N such

that
Cn _ Cn
—=|1I 4N10T" = —,
3 [In| = 1

Since p; > 1, the variation in Ix of x1/p1 + p2/2u} is bounded by % c,. Thus the
approximation is not better than % ¢, at a point x, with

C C
= N10" — 4N10™ = 2 10m+m — &2 > ¢ 10m
%= N10" — 4N10™" = 2210 L =10

if n = 2. Hence if we choose m as a very rapidly increasing function of n, we see that we
can have arbitrarily weak remainders.
It remains to prove the lower estimate for the binomial coefficients used above.

LEMMA 3. Letl=<gqg<p. Then

1 k+q(N—k
Zfelom (p ‘;}k )) zc(p,g)>0

for all N.

ProOF. Put B(n, k) = 27"(}) and B,(N) = Y50 B(pk + g(N — k), pk + ¢). We first
observe that

1 Sio B(n, k) = Yo B(n + 1, k).
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If m < n/2 this is obvious, since then B(n, k) = B(n+ 1, k),0 <k <=m.
If m >n/2 then B(n, k) = B(n+ 1, k) form + 1 < k < n. Hence,

YicoB(n,k)=1—-Yi-ms1B(n,k)=1—-Y}i 1 B(n+ 1, k)
=1-YaBn+1Lk)=YFoB(n+1,k)
as desired. By repeated use of (1), we obtain
%4 BAN) = ¥3% B(pN, k) = 1,

which implies

(2) maxo<s<p-18:(N) = 1/p.
Let0</<p— 1. Then

3 Bo(N) = B, (N) — eN~'2,

To see this, we observe that if 2 < gN(p + ¢)7', then pk < %(pk + q(N — k)) and thus
B(pk + q(N — k), pk) = B(pk + q(N — k), pk — ¢). If k > qN(p + q)”*, we have B(pk +
q(N — k), pk) = B(pk + q(N — k), p(k + 1) — ¢). If furthermore 2 > (qN +p — q — 2)(p
+¢g), thenp(k + 1) — £< (1/2)(p(k + 1) + g(N — (k + 1)) and we get B(pk + q(N — k),
pk) = B(p(k + 1) + g(N — (k + 1)), p(k + 1) — ¢). Since there are only a finite number of
k: s that do not satisfy the above inequalities and since each term B(n, k) is smaller than
a constant times n /2, we obtain (3). Lemma 1 now follows from (2) and (3).

EXAMPLE 2. Letp =Y @:d,, @ >0, Y71 a; =1 and put y; = a;/a,. Then for almost
all (y1, -+, yn-1) (with respect to (n — 1)-dimensional Lebesgue measure) we have

4) H(x) = +0(x™), x> +o,

2 2

for all p < %(n — 1).
To prove this we will use Theorem 1 and the following result on simultaneous diophantine
approximation, contained in (the easy half of) a theorem by Khintchine [8].

LEMMA 4. For almost all (y1, «- -, yn—1) we have

Di 1 .
Yi_ITl'<pT/n—W»PiEZ, i=1.--,n—-1
n n

only for a finite number of p,,:s if 6 > 0.

We have f(t) = X%, a;e”**, which is close to 1 if a;¢/27 are close to some integers, i
=1, .--,n. Fort#0put a;t/27 = p; + &;, where p;, € Z and 0 < ¢; < 1. Then

ll_f(t)l_lz laz l—e mt)l_lz 1(1z 1—9’2"”‘:”
= aRe(l1—e ®™)zcef, i=1,+++,n.

Ife;<t™ ,i=1,---,n, then, since p; and ¢ are of the same order of magnitude,
1-0o
<cPr_- ¢

1+0

pitea pi -
P:  Dpn

— — "Pn€ — Pi€n
DPnt €&  Dn

Dnti 7 Ditn | i=1..,n—1.
pn(pn+£n)

By Lemma 4, for almost all (v, - - -, y»-1), this can only happen for a finite number of p,, : s
if 6 > (n — 1), Thus, for almost all (yi, -+ -, ys—1) and all 6 > (n — 1),

[t]*|1—f(t)|=c|t*|ef=c>0

if | ¢| is sufficiently large. Hence p is nonlattice of type p for all p > 2(n — 1) . Since u has
finite moments of all orders, (4) follows from Theorem 1 as desired.
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REMARK. If n = 2, the famous result of Roth [11] on approximation of algebraic
numbers by rational numbers implies that no p with a;/a; algebraic belongs to the
exceptional set in Lemma 4. Thus

H(x) =£+'u—22+o(x“’), X — +oo,
o 2pg
for all p < % if a1/« is algebraic. A similar remark is true also for arbitrary n, due to the
generalization of Roth’s theorem by Schmidt, see [12, pages 151-153].

We conclude with an example which shows that we can have a strong remainder term

even if lim infj;|_. |1 — f(¢)| = 0.

ExaMPLE 3. There exist weakly nonlattice measures with finite moments of order m
such that
x  pe Sx) +R*R(x)

(5) H(x)=—+-—+— — + o(x7?), X — +o,
wo 2u3 [ 1231

for all p < m.
In [3] Esseen gave the following example of a singular continuous measure that is
weakly nonlattice.
Let (A\,)T be an increasing sequence, A\; > 2, lim, A, = +o and [[7=: (1 — A;") = 0. Let
o, be the measure with pointmass 1 — A" atx =0and A;' at x = 27" and put 0 = 6, * 02 *
- *0,. Then o) — o, where o is a continuous singular probability measure with support
in [0, 1] and

§(8) = [lier (1= A7 (1 = e727)),

Let 7. be the measure with support in [&, 2 + 1] defined by 7,(E) = o(E — k). Take a; =
0, Y %-0 ax = 1 and put ¢ = ¥ 7-0 ax7+. We also choose a; such that u has finite moments of
order m, but not m + ¢ for any £ > 0.

As i(t) = Y5-0 are”"6(t), we have

m infi o | 1 — @) < limpeoo| 1 = f(272™)| = iMoo | Dm0 ar(l — 6(272™))| = 0

and hence p is weakly nonlattice.

Now Re(l — e™6(t)) =1 — |6(t)| =1 — |1 — A,'(1 — e™?7)| for all n. If |£| € [2™,
2™*1], we get with n =m + 1, since o < | £|27"*" < 1, that Re(1 — e "“*§(¢)) = cA,\; for
some ¢ > 0. If we choose A, such that a”\,' — +o, n — +oo, for all @ > 1 we get

[£2(1 — e ™G(t))| = ctPARh: = 27"\t — +oo, || = +oo,
for all p > 0. Hence
[¢7(1 — p())| = | ¢|"Re(1 — fi(t)) = Y50 ax | t|’Re(1 — e G (t)) — +oo, || = oo,

for any p > 0. Thus p is weakly nonlattice of type p for any p > 0 and Theorem 1 implies
(5) as desired.
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