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ATTRACTIVE NEAREST PARTICLE SYSTEMS

By TaoMas M. LicGeTT!

University of California, Los Angeles

We consider certain Markov processes with state space {0, 1}Z which
were introduced and first studied by Spitzer. In these systems, deaths occur at
rate one independently of the configuration, and births occur at rate (¢, r)
where Zand r are the distances to the nearest particles to the left and right,
respectively. In his paper, Spitzer gave a necessary and sufficient condition
for this process to have a reversible invariant measure, and showed that such
a measure must be a stationary renewal process. It was that fact which
motivated the study of these systems. Assuming that the process is attractive
in the sense of Holley, we give conditions under which (a) the pointmass on
the configuration “all zeros” is invariant, and (b) the reversible renewal process
is the only nontrivial invariant measure which is translation invariant. As an
application, these results allow us to determine exactly the values of A > 0 and
p > 0 for which the process with 8(¢, r) = X(1/¢+ 1/r)? is ergodic.

1. Introduction. In [13], Spitzer introduced and first studied an important and
interesting class of spin systems which are called nearest particle systems. A spin system
on Z, the set of integers, is a continuous time Markov process on = {0, 1}Z in which a
“flip” occurs at the coordinate x € Z at rate c(x, n), where c(x, n) is an appropriate
nonnegative function on Z X Q. For a more formal description of spin systems and a survey
of results and techniques, see [2] or [11]. In the nearest particle systems, the dependence
of the rates on the configuration 7 takes a particular form. Let B(¢4, r) and (¢, r) be
nonnegative functions defined for positive integers Zand r, and let

Q = {1 € Q: Yacon(x) = Yunon(x) = o}.
For x € Z and n € Q' put
Ze(n) = x — max{y <x:q(y) =1},
r:(n) =min{y > x:9(y) =1} — x.
Then c(x, n) is taken to be
c(x,m) = Bl4Mm), r«(m)] if n(x)=0
and
c(x,n) =8[4(n), r=(n)] if 7(x)=1

This defines c¢(x, n) for n € €', and as we shall see later, it can be defined in a natural way
for n € Q\Q’, at least in the context in which we will be working.

In addition to [13], papers which treat various aspects of nearest particle systems are
[1], [3] and [5]. The widely studied basic contact process which was introduced by Harris
in [6] and is the subject of a recent survey paper by Griffeath [4] is of course the special
case of a nearest particle system in which §(¢, r) =1for 4, r=1, 8(1,1) = 2X, and (1, 1)
,é,B(é’, 1)=Aand B(4,r) =0for ¢, r=2.
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ATTRACTIVE NEAREST PARTICLE SYSTEMS 17

Spitzer’s theorem [13], which is the starting point and motivation for much of the work
on nearest particle systems, gives a necessary and sufficient condition for the process to
have a nontrivial reversible invariant measure. Recall that an invariant measure for a
Markov process is said to be reversible if the stationary process obtained by using that
invariant measure as the initial distribution is symmetric in time.

THEOREM 1.1 (Spitzer). Suppose that B(4,r) >0 and 8(¢,r) >0 for £, r =1 and that
8 is uniformly bounded. Then the nearest particle system has a reversible invariant
measure v which concentrates on Q' if and only if

B4 1) FOf(r)

(12) 5 fZrn for 4r=1
where
(1.3) f()>0, Y.f(H)=1 and Y2 ¢f(£) < .

In this case, the unique reversible invariant measure which concentrates on Q' is the
stationary renewal measure vs which is determined by the density f.

REMARK. Note that if f(¢) satisfies (1.2), then so does f3(¢) = 8% (¢) for § > 0. Thus
the statement in (1.2) and (1.3) should be thought of as asserting the existence of a § > 0
so that f3(¢) satisfies (1.3).

An important question which is suggested by this theorem (and is raised in Spitzer’s
paper) in the case in which there is a reversible renewal measure is whether there are
other invariant measures concentrating on Q’. In this paper, this question will be resolved
under some additional assumptions. Most of what we will prove is either easy or well
known when inf, 8 (Z, r) > 0. Our interest centers on cases in which 8(Z, r) is not bounded
below.

From this point on, we will assume that

(@) 6(4,ry=1for 4, r=1.

(b) B4, r)=B(r, ¢) for £, r = 1.

(c) B(Z, r) is nonincreasing in Zand r.

Assumption (a) is made for simplicity only. There would be no essential difference in our
results or proofs if (a) were replaced by 0 < inf,,8(¢, r) < sup,,,6(¢, r) < . Assumption
(c) is important, and guarantees that the process is attractive in the sense of Holley [9].
For background on attractiveness and its implications, see [2] or [11]. Note that if 8 is of
the form (1.2), then assumption (c) is equivalent to the statement that f(n)/f(n + 1) is
nonincreasing, or equivalently that log f () is convex.

In [3], Gray constructed nearest particle systems on £’ under the assumption that
8(£,r) is uniformly bounded above by proving existence and uniqueness for an appropriate
martingale problem. For our purposes, it will be important to define the process on all of
Q. This is relatively easy to do in the attractive case, as will be seen in Section 2. In many
cases, the solution to the martingale problem is in fact not unique on Q\’. While we will
not formulate the construction in the context of the martingale problem, what we will do
has the effect of choosing the “largest” solution when the solution is not unique. The
attractiveness assumption makes it possible to compare various solutions so that one can
talk about the “largest” one. The use of the largest solution has the advantage of
guaranteeing that the resulting process has the Feller property on £, and in fact this is the
only choice which leads to the Feller property.

The following theorem is due to Holley, but no proof of it has appeared in print, so in
Section 2 we will show how to deduce it rather easily from Theorem 1.1. Recall that a spin
system is said to be ergodic if (a) it has a unique invariant measure » and (b) the
distribution of the process at time ¢ converges to » for any initial distribution. One of the
major problems in the area of interacting particle systems is to determine which spin
systems are ergodic. In the presence of the attractiveness assumption, (a) implies (b)
([9]). Let 1, denote the nearest particle system.
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THEOREM 1.4 (Holley). Suppose that

f(Of(r)
f(¢+r)

for some positive function f (£), but that for no 8 > 0 is it the case that f,(¢) satisfies (1.3).
Then

B(¢4r) =

lim, P [ne(x) = 1] =

for all x € Z and all 1 € Q. Therefore the process is ergodic with invariant measure &,
the pointmass on 1 = 0.

For our first result, suppose that 8(¢, r) is given by (1.2) where f satisfies (1.3). Recall
that by attractiveness, f(n)/f(n + 1) is nonincreasing, so
f(n)

(1.5) Y= limn_m m

exists. Since f(n) is a density, y = 1.

THEOREM 1.6. Ify>1,0rify=1and
f? (n) _
f @n) =

then v is the only invariant measure for the system which is translation invariant and
concentrates on Q.

(1.7) Yo

The proof of Theorem 1.6 is given in Section 3. The proof is based on the free energy
technique which was developed by Holley in [7] and [8] and by Holley and Stroock in
[10]. In our context, new difficulties arise from the fact that the interaction is long range,
and especially from the fact that in most cases of interest, 8(Z, r) is not bounded away
from zero. Assumption (1.7), which is only needed when y = 1, is almost always satisfied,
" as will be seen in the remarks at the end of Section 3.

The second major result of this paper (see Theorems 4.9 and 4.14) deals with the
following problem: when is it the case that &, is invariant? Of course, if 8 (¢, r) is bounded
away from zero, then §, is never invariant. In general, however, it may or may not be
invariant. Our result gives a type of “integral test” for these alternatives. Put a(n) =
Y ter=n+1(£ A\ ) B(£, 1), and let &(n) = maxz<,a(k). An interpretation of a(n) is that it
gives the rate at which the length of a maximal interval of zeros in 7, decreases. In the
following theorem, we do not assume that (¢, r) has the form (1.2).

THEOREM 1.8. (a) If Y, 1/a(n) < =, then 8, is not invariant. (b) If ¥, 1/&(n) = =, then
8o is invariant.

Our interest in Theorems 1.6 and 1.8 comes largely from the fact that they can often be
used together to prove that reversible attractive nearest particle systems are ergodic. In
particular, we obtain the following result.

COROLLARY 1.9. Suppose B(¢ r) is of the form (1.2) where f(¢) satisfies (1.3). Define
y as,in (1.5) and let g(n) = y"f (n), which then decreases at @ rate which is slower than
exponential.
(@) If Y %=1 [n’2(n)]™" < o, then the process is ergodic.
(b) If lim,.g(n)/g(2n) exists and Y51 [n’g(n)]"' = o, then the process is not
ergodic.

PRrooF. Sinece g(n) is nonincreasing,

_ge0)

B4 2t
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so
a(n) = Yicr=m B4R+ 1 =)= gn + 1) Yizr=mo)

Therefore [a(n)]™ is bounded above by a constant multiple of [n’g (n)]™". To complete the
proof of part (a), use (a) of Theorem 1.8 to conclude that & is not invariant. Then use
Theorem 1.6 and attractiveness as in 1.2.2 of [11] to show that starting from &, (or 8;) the
limit of the distribution of the process as ¢ —  is v, so the process is ergodic. In order to
verify (1.7) when y = 1, note that Y5 [n%f(n)]™" < » implies that n’f(n) = ¢ for some ¢
> 0, so that
2
n
f(@n)
since %1 nf(n) < o, by (1.3). To prove part (b), it suffices to show that & is invariant,

since »; is also invariant. Using Theorem 1.8, it is enough to show that ¥ % [&(n)]” 1= oo,
But since g is nonincreasing,

=47 Y n’fi(n) <

8(£)g(r)

27+ 7) =2¢ Yi<e=ty2) £&(£)

a(n) = 2&’+r=n+1 (f/\ r)
where ¢ is an upper bound for g(n)/g(2n). Since the right side above is increasing in n, it
follows that

aA(n) = 2¢ Yi=r=my2 8(L).

If lim,_..g (n)/g(2n) > 2, it is easy to check, using the monotonicity of g(n), that ng(n)
is bounded, so that &(n) is bounded above by a constant multiple of n. Therefore
Y51 [&()]" = o in this case. On the other hand, if lim,..g(n)/g(2n) < 4, one can
check that Y%_, 2g(¢) is bounded above by a constant multiple of n 2g(n), so that
©_1 [n%g(n)]™! = ® implies that ¥ 57— [&(n)]™ = c.
We conclude this section by indicating the results which Theorems 1.1 and 1.4 and
Corollary 1.9 give for the two parameter family of birth rates

1 1Y

which are mentioned in [13]. Note that this 8(4 r) is of the form (1.2) with f(¢) =A™,
Let .# be the set of extreme points of the class of invariant measures for the process which
are also translation invariant. For A > 0 and p > 0, v, , will be the stationary renewal
process with density fo(£) = Af ‘4P where 6 is chosen so that Y%-; fo(¢) = 1 and
N%_1 £fs(¢) < », when such a 0 exists.

CoROLLARY 1.10. (a) If p < 1, then the process is ergodic for all A > 0 and J =
{vr.p}. (b) If p = 1, then the process is not ergodic for all A > 0 and 9= {8, vr1}. (c) If 1
< p < 2, then the process is ergodic with $= {8} if \ = (X %=1 £7")” ~! and is nonergodic
with = {8, vrp} if A > (X% ¢77)7% (d) If p > 2, then the process is ergodic with ¥ =
(80} if A < (X%=1 ¢ 7P)"* and is nonergodic with = {8, vr,p} if A= (T%-1 7).

2. Preliminaries. We begin this section by giving a direct construction of the
attractive nearest particle system corresponding to 8(4 r) as a Feller process on all of (.
Form=n,let Zp,={m,m+1, .-, n} and Qnr = {0, 1}%m=, Let X, be the set of all
functions on ©,, .. Of course X, , is naturally embedded in C (), the set of all continuous
functions on §. Consider the continuous time Markov chain on £,, . in which flips occur on
Z.n.n according to the nearest particle mechanism with the convention that there are fixed
ones at m — 1 and n + 1 which are used in determining the nearest one to an x € Z,,, at
times when there are no ones on Z,, . to the right or left of x. Let Sy, () be the transition
semigroup for this Markov chain, and let %, » be its infinitesimal generator, both defined

on X, ». Let
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M= {8E Xmn:n={=>8(n) =g}

be the increasing functions in X, .. A simple and standard coupling argument using the
attractiveness of the rates implies that for g € 4, ¢, Sm»(t)g(n) is nonincreasing in n and
nondecreasinginm form <=k =<¢=<n,t>0andn € & Therefore we can define

(2.1) S(t)g () = limy—sem—s—Sm,~(£)g M)
for g € Up<s M, 2, t > 0 and n € Q. Finally, for g € U<, M. ¢, define

Lgm) =Y. c(x,n)gm:) —gMm)]

where 7.(y) = n(y) for y # x and n.(x) =1 — 1(x). Here c(x, n) is defined in terms of
B(4 1) (with 8(4 r) = 1) as in the introduction, with the convention that if 4(n) or rx(n) is
infinite, B (o, r), B(4 ») and B(w, ») are defined by continuity, which is possible by the
attractiveness assumption. Note that Zg-€ C(Q) and limreom—soLmn gln) = Lgh)
uniformly on € for g € Up= Xz, »

THEOREM 2.2 (3) S(¢)g € C(Q) for g € Ur=sllr,cand t > 0. (b) S(¢) can be extended
uniquely to all of C(Q), and then it maps C(&) to C(Q). (c) Sna(®)g(n) — S(t)gn)
uniformly in n € € as m — —w and n — +o for any g € C(Q). (d) S(¢) satisfies the
semigroup property on C(Q). () For g € Up=Xx,¢,

S(t)f'g_» zg

as t — 0 uniformly on .

Proor. (a) By the monotonicity of the convergence in (2.1),if 5, — 0,
S(t)g(n) = lim sup,»S(t)g(1x)
for g € Up=¢.Ms, .. In order to show that
(2.3) S(¢)g(n) = lim inf,.»S(¢)g ()

when 7, — 7, it suffices to consider the case in which 7. <17 for all n, since otherwise 7, can
be replaced by 7, A 7 since S(¢)g is a monotone function. By the nearest particle nature of
the interaction and the fact that the death rates are = 1, if g € Xi(, |[g| S, m=k=/{=
jand n = { on Z ., then

[ S/ (8)8M) — S (B)g(Q) | = (1 — )P + (1 —e)n

where

_ Z{c;fﬂ n(x) if
= [T

_ 3k m(x) if
L= [T

j*=max{x=j:n=¢{ on Z12)
m*=min{x=m:n=¢ on Z.1}.
Le;tting m— —o, j — ®, we see that if g € My, |g| =1andn= {on Zp, s, then
(2.4) [S(t)gtm) — SBE@) =1 —e )+ (1 -e™)F

where R = lim;,R; and L = limn .. L. Inequality (2.3) now follows quickly when 7, —
n and 71, < n by considering separately the four cases: Y. (%) < ®; Yo N(x) < o and
S0 (x) = 0 Yeco N(x) = 00 and Fieo 7(x) < 05 and Fe<o 7(x) = Fumo n(x) = . In the first
case, for example, 7, is eventually the same as 1, while in the last case, one can use (2.4)
with ¢ = 7, and note that the right side tends to zero as n — .
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(b) This is a consequence of the fact that linear combinations of elements in U<, A,
are dense in C(2) and that the norm of S(¢) is at most one.

(c) For g € U<, My, ,, this is a consequence of (a) and Dini’s theorem (page 162 of [12]).
Then use the argument in (b) above.

(d) This follows from (c) and the semigroup property for S, .(t).

(e)Form=k=¢{=nandge€ X,

t
Snalt)g —g= j Spin(U) Snn g du.
0

Since %n,ng — £g uniformly on & for g € X, ,, property (c) allows one to take limits to
obtain

t

S(t)g—g= f S(u)Zg du

0

for g € Up< X} .. Therefore lim,,0S(t)g = g uniformly on  for g € U,<.X},, and hence for
g € C(Q) since S(t) is a contraction. Hence lim,. (S(t)g — g)/¢ = lim,o(1/t) [§ S(v) Zg du
= #g uniformly on .

REMARKS. (a) Since the limit in (2.1) exists for each g € Up<, ., the process with
semigroup S(£) is invariant under translation on Z. (b) By (e) of Theorem 2.2, Up< X}, is
a subset of the domain of the generator of S(¢). However it is not in general a core for the
generator, since if it were, 8, would be invariant for the process whenever lim;,.o8(¢, r)
= 0. But by Theorem 1.8, this is often not the case.

ProOF OF THEOREM 1.4. The Markov chain on &, , with semigroup S, »(t) is a finite
state irreducible chain which is reversible with respect to the measure .. » defined by

Pr,n(M) = Cmon [1E22 Flo: — %i-1)

- where k = Y.ez  n(x) and the x/s are determined by {x1, -+, xx} = {x € Z»:0(x) = 1}
andm —1=x<x; < ..+ <x, < X+1 = 0 + 1. By the general theory of attractive spin
systems (see Section 1.2.2 of [11], for example), p = liMy—wns+wlim,n €Xists and p =
lim,,..8:S(¢), and it is easy to see that either u = & or u(Q') = 1. It therefore suffices to
show that the second alternative is ruled out by the assumptions of the theorem. So,
suppose that u(’') = 1. Since pin,» is reversible for S, .(¢),

J’ hSm,n(t)g d,U-m,n = J’ gsm,n(t)h df"m,n

for g, h € X, with m < k < ¢ < n. By (c) of Theorem 2.2,
j hS(t)g dp = J’ gS(t)h du

for g, h € U<,Xy ., so that p is reversible for S(). But then by Theorem 1.1, there is a ©
so that fo(¢) satisfies (1.3). That contradicts the assumption of Theorem 1.4.

3. Free energy computations. This section is devoted to the proof of Theorem 1.6.
The first and last stages of the argument follow Holley and Stroock [10]. The new
complications which arise in the present context involve the estimates which are needed
for the terms on the right of the identity in Lemma 3.2 below. If B(4 r) were bounded
below (it is automatically bounded above by attractiveness), the right side of that identity
would be trivially o(n) as n — o, and that is what is needed to carry out the final part of
the proof. Since B(¢4 r) is not bounded below in most cases of interest, more delicate
estimates are needed.
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Perhaps a few remarks on the ideas behind the use of free energy in Markov processes
would be helpful in interpreting the somewhat formal expressions and computations in
this section. If P, is the transition operator for a finite state Markov chain with stationary
distribution 7, one can define the “free energy” H(») for any probability measure » on the
state space by

v(x)
H(y) = D« v(x)log[w(x):l .

A simple application of the convexity of the function u log u shows that H(vP,) is
nondecreasing in £. In fact, the derivative of H(»P,) with respect to ¢ can be written as the
sum of nonnegative terms. Of course, if » happens to be stationary for the process, then
each of these terms must be zero, and under appropriate irreducibility conditions, this
implies that » = 7. In applying these ideas to processes with uncountable state spaces such
as £, one begins by looking at the process just on £, which is finite. As a result of the
interactions between sites inside and outside Z, ., the process on £, is not Markovian,
and the derivative of the corresponding free energy contains terms which are not necessarily
nonnegative. In the statement of Lemma 3.2 below, the terms which are automatically
nonnegative are written on the left, while the terms which arise from the interaction with
sites outside Z,, are on the right. The equality follows from the assumption that p is
invariant, so the time derivative is zero.

Throughout this section, we will assume that B(Z, r) is given by (1.2) (with (¢, r) = 1)
where f satisfies (1.3),

f(n)
f(n+1)

and f satisfies (1.7) if y = 1. Let » be the renewal measure corresponding to the density f,
and let u be any invariant measure which is translation invariant and concentrates on £'.

Forn=0,x€ Z,,, and n € Qo ., let

ly=1 as n—>

(3.1)

an(n, x) = f clx, Hudd), M) =p{{:{=nonZ,}
{$:$=nonZp,n}

N.(n) =v{{:{=nonZy,}.

LEMMA 3.2.

an(1z, X)

i€Z0n LA (M2, X) — an(n, x)]log ————

et nx€zon [An (1, X) (n, x)]log (. )
: an('ﬂx, x)Nn(nx)
=2 Xy . LAn(MNx, X) — Qp(n, X 10—-—'-———'
Yemes, [An(nz, X) (n, x)]log N, ()

where

B,={(x,m) € Zon X Qo,n:m(x) =1and n =0 on Zy .1 or on Z.,1,,}.

Proor. For a fixed n € Qo , let

_' 1 if (=m on Z,
g = {0 otherwise.

Apply part (e) of Theorem 2.2 to this function to obtain
0= f Zg d,ll = erZo',, [an("'lx, x) — an(n’ x)]

Multiplying this by log[M.,.(n)/N.(n)] and summing gives
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M,
0= Exezo,n,nEﬂo,n [an(nx, x) — an(n, x)]log N ((::)) .

By making the change of variable n — 7., we see that for x € Z»,

_ Nn('rlx) _ _ Nn(n)
Yneao, [an(nx, X) — an(n, x)]log M) = 27)590," [an (s, X) — an(n, x)]log M) .

Therefore, by the previous two identities,

Mn Nn x
0 = Yezynmenon [@n(0x, X) — an(n, x)]log M 2:7,))N(?11; ’

and hence

an(nx, x)

ZxEZO,n,nEQO,n [an(nx) x) - an(n, x)]log an(n’ x)

_ _ Mn(n)Nn(nx)an(nx, x)
= Zxczannetun [anle, 8) = anln, x)Jlog re oo O

Since replacing 7 by 7. in the summand on the right has no effect, we can replace the right
side by twice the same sum over just those n and x for which 5(x) = 1. The required
statement then follows from the observations that if n(x) = 1, then a.(n, x) = M,(n), while
if n(u) = n(x) = n(v) = 1 for some 0 < u < x < v <n, then

an(n, %) _ fx —w)f(o = %) _ Naln)
M, (n:) flo—w) Nalne)

The main work now is to show that the expression on the right of the identity in Lemma
3.2 is o(n) as n — oo, at least along a subsequence of n’s. We do this via the following

lemmas.

LEMMA 3.3. Yumes, @aln, x) < 2.

Proor. Since c(x, {) =1 when {(x) =1,
YmeBs @n(n, X) = Viemen, Ma(n) = 2 Yneqo, Maln) = 2.
Here we have used the fact that for each € ., there are at most 2 x’s for which (x, n)
€ B,.
LEMMA 34. For (x,7m) € B,,

No(nx) = [B(1, 1)]_1 and (1, X)

Nn) Mo = PO -

Proor. For (x,7) € B,,

Nn('ﬂx) = Eu<x<v V{{ €eQ: { = Nx ON ZO,n’ {(u) = 1) {(U) = 1, §= 0 on Zu+1,v—1}
and

No() = Nucrco V{EEQ:¢=mon Zon, $w) =1, {(v) =1, { =0 on Zys1,0-1} .
Therefore for an appropriate choice of coefficients c(u, v),
Nu(nx) = Yucz<o [0 — )y, v)
and
No(n) = Yucseo f(0 — 2) f(x — w)e(u, )
= Yucaco Blx — u, v — %) f(V — We(w, V) < B(1, 1) Yuzew f(v — Wel(u, V)
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by the monotonicity of B8(¢, r). This monotonicity also gives a,(nx, x) < B(1, 1)M,(n.) for
(x,m) € B,.
LEMMA 35. If4,m=1and k= ¢+ m, then
2u+v=k,uzi,vzm Bu, v) = f(/"' m)'Y{+m~

PROOF.  Sisomturvom Bt ) = (4, b — ¢) =f(—’1%1—4

Therefore it suffices to show that
() f(k —¢) _—
f(¢+ m)f(k) ’

which is a consequence of the fact that

f(n)
f(n+1)

=y forall n.

Now put F(k) = Y2 f(£),
gk)=p{$€Q:$0) =1, {(k) =1,and { =0 on Z; 1},
and G(k) = 2?;;, £(¢). Note that Y, F(k) < o by (1.3) and }» G(k) < o since p.is translation
invariant and concentrates on '
LeEMMA 3.6. For (x,7n) € B,,

an(ne, %) _ f(n + 2)y"2G(n + 2)
Mn(nx) - 2k2n+2 G(k)

Nn(nx) < Ekzn+2 F(k)
N.() = f(n+ 2)y""*F(n+2)°

s and

Proor. Suppose (x, 7) € B,. If n = 0 on Z,,\{x}, then since p is translation invariant
and concentrates on &',

(N2, %) = Yu<ovon Bx — u, v — x)8(v — u)
= Yzns2 (k) Tosrmhimxstimn—ss1 B4, 1) Z f(n + 2)y"*G(n + 2)
by Lemma 3.5. On the other hand,
M,(1:) = Yu<o.von 8V — U) = Tznr2 £(R) (B — N — 1) = Yoznsa G(K),

so the first claim holds for that n. Now suppose that (x, n) € B, but Y.ez,, n(¥) = 2. Then
we may assume without loss of generality that there is some y with x < y =< n so that n(y)
= 1and n(z) = 0 on Z,—1\{x}. Then

(%) = Yuco B — 1, y — %) p{$ € Q: §(u) =1, { == on Zy, and { = 0 on Z,110}

and
Mo(n:) = Tuco p{{ EQ: {(m) =1, { = nx on Zo,» and § = 0 on Zy410} .

Therefore the first claim follows frgm
Bx—uy—x)=fly—x)y"*=f(n +2y"*2

The proof of the second claim is similar.
LEMMA 3.7. lim, . (1/n) log f(n) = —log v.

PrOOF. f(n) = f(0) [[5=1 f(R)/f(k — 1), s0
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1 1 flk—
;logf(n)—;logf(O) Z“lg f(k) ,

which converges to —log vy by (3.1).

LEMMA 3.8. Suppose u(k) > 0.and Y, i-1 u(k) < «. Then

lim lnfn_m— g[Zk—n( u)(k):| 0.

Proor. Suppose not. Then there is an &€ > 0 so that
u(n) < e Yin u(k)

for all n. Summing for n = m gives

—em

Zn—m u(n) = Ek—m u(k) En—m e "= [Zok;m u(k)] 1

and hence
l—e*<e™

for all m. Letting m — o yields a contradiction.

LEMMA 3.9.

an (1, x)Nn(nx)} <o.

. . 1
hm mfn_,w{; Yxmes, [—an(n, x)]logm =

ProoF. By Lemmas 3.3, 3.4 and 3.6, the expression in braces is bounded above by

2 Ekzn+2 G(k)
- log B(1, 1) — log f(n + 2) — (n + 2)log v + log [—G(—n—_'_z-)—] ‘

The result now follows from Lemmas 3.7 and 3.8.
LEmMMA 3.10. (a) lim, ,w(1/R) e, @n(n:) = 0.
(b) If y = 1, then supn YxneB, @, X) < 0.
ProoF. By Lemma 3.4, it is enough to prove (a) with a.(nx, x) replaced by M,(1.). But
Semes, Ma(mz) = Yo Yn:emen, Ma(nx) = 2 Yoo p{§:§ =0 on Zo.}
=2 Yoo Yimxr2 G(B) =2 Y52 G(R)(n + D N (R — 1),

so (a) follows from ¥ G(k) < o and the dominated convergence theorem. For part (b),
assume y = 1. By assumption (1.7) and the attractiveness assumption,

2
Szt Bt 0) < 2 Tisimirsn Bk, ) = 2 - ;é:; =

Therefore

E(x,n)EB,, an(nx, x) = Zneno,,. Zx‘(x 1x)EBn an(n) x)
f*(k) (k) ) o
= 2':2 Zk=l f(2k)] Zﬂenﬁn n(n) = 4 Zk— f(2k)

LeEmMaA 3.11. Ify=1, then

an(TIx, x)Nn(nx)} -

. 1
lim supn_m{; N xmeBn @n(nx, x)l0g FTATRYATS)
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Proor. By Lemmas 3.4, 3.6 and 3.10 (b), the expression in braces is bounded above by
a constant multiple of

Yr=nte F(k)
fn+2)F(n + 2)

The result now follows from Lemma 3.7 since y = 1 and f(n) < F(n) < Yj=n F(k).

% log B(1, 1) + log

LEMMA 3.12. Suppose y > 1. Then

. Fn) v
(a) limy o T - 7=1 <o and
e FR _ (v Y
® S R (y = 1) =
Proor. F(n) f(k) f(k) —kl_—n for k = n, so that part (a) follows from (3.1)

= 2in iy AND gy =

and the dominated convergence theorem. Part (b) is similar.

LEMMA 3.13 Suppose y > 1. Then for some constant M independent of n, x and n, for
all (x,m) € B,

@ Na(n:) sM[Bx+1,n—x+ 1] ifng=0o0nZ,\{x}.
Na(m)

b) Nn(nx) 2 < M[B(x+ 1,0 —x)] ifx<v=nand
Na(m)

n =0 on Zo,—1\{x}.

Proor. For part (a), suppose n = 0 on Z,,\{x}. Then
Nu(n2) = Fu<owsn v{§:£00) = 1}f(v — u) = »{{:{(0) = 1} ¥F-ns2 F(k), and
N.(@) = Yucopsn {$:$(0) = 1}f(x —w)f(v — x) = v{{:{(0) = 1}F(n + 1 — x)F(x + 1).

Therefore

Nu(ns) _ Yi=n+2 F(R)  fln+1-x)f(x+1)

Nom)  fntd)  Fatl-mFarplretbLrox+ DI

so part (a) follows from Lemma 3.12. Part (b) is similar.
LEMMA 3.14. Ify>1, then

. 1 an(Nz, X)Np ()
n— 00 - X, n Xy l T ax 7 NAT 7 N —
lim sup, { Z Y xmeB, @n (N, X)log M, ) No () =

Proor. By Lemmas 3.4, 3.10, 3. 13 and by the monotonicity of B(¢, r), it suffices to
prove that the limits of

roBx+Ln—x+Du{{:{=00nZ,}|logBx+1,n—x+1)|

and
%2;‘;3 verri Blx+Lv—x)p{{:¢{=00n2%Z,, {(v) =1}|log B(x + 1,v — x) |

as n — o are both zero. Since the function ¢ log ¢ is bounded on compact subsets of
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[0, ) and B(Z, r) is uniformly bounded, these statements reduce to
lim, e p{¢:{=00nZ;,} =0
and
1
lim, e > Yo-1op{§:{=00nZ,, and {(v)=1}=0.

But these are both true because Y, G(k) < .
For x € Z,, let

Az (0, X)

D (x) = Zneson [an (12, x) = an(n, 2)]log Z-2 =

Note that D, (x) = 0 for all x and n.

COROLLARY 3.15.

lim inf,e % Yo Da(x) = 0.

Proor. This follows immediately from Lemmas 3.2, 3.9, 3.11 and 3.14.

ProoF oF THEOREM 1.6. As observed in [10],
Dy (x) = Dn(x)

for m < n and x € Z, ,, since the function
s
(s, t) = (s — t)log i

is homogeneous and convex. Therefore, using the translation invariance of yu, we see that
for x € Zom and n = m,

1 n—m+x
D,,(x) 5m2k= Dy (k).

So, by Corollary 3.15, D,,(x) = 0 for all m = 0 and all x € Z,,,. From this definition of
D, (x), we see that

An(Nx, X) = an (1, X)

for alln =0, x € Zy», and n € Q.. This easily implies that u = » = vy.

We conclude this section with two remarks which are intended to show that Assumption
(1.7) is almost always satisfied when y = 1. (Of course there is no additional assumption in
Theorem 1.6 when y > 1.) First note that (1.7) is immediate if sup, f(n)/f(2n) < o, so
in particular it holds whenever f(n) is regularly varying. More generally, (1.7) can only
fail if n% *(n)/f(2n) oscillates between 0 and © as n — . To see this, note that if
sup.[n%f%(n)/f(2n)] < , then (1.7) is certainly satisfied, while if inf,[n2f%(n)/f(2n)] > 0,
then

f(2n)

fin) =« 7

for all n and some & > 0. But then
log f(n) = % log € + % log f(2n) — log n,
which after iterating and passing to the limit gives
log f(n) =log e — 2 log n — 2 log 2.

Here we have used the assumption that y = 1 and Lemma 3.7 to show that the error term
tends to zero in the limit. Thus
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&
4n?’

fln) =
which contradicts the assumption in (1.3) that ¥, nf(n) < c.

4. Spontaneous entry into £’. This section is devoted to the proof of Theorem 1.8,
which appears here as Theorems 4.9 and 4.14. The proof proceeds via a series of lemmas.
Let E,, . denote the expectation operator for the process with semigroup S, » (£) which was
described at the beginning of Section 2, and let E,, . be the expectation for this process
which is modified by suspending the deaths (i.e., by taking 8(4, r) = 0). Put

T =min{¢ > 0:7,(0) = 1}.
The symbol o will be used to denote the configuration n = 0.

LEMMA 4.1. & is invariant for the nearest particle process if and only if

(4.2) limps—wnsreEma(e™") = 0.

Proor. Since the deaths occur independently of the rest of the process at rate one,
E3 [n0)|r<t]l=e"
By the definition of 7, when the initial configuration is o,
{n(0) =1} C {r=¢}.
Hence
e Phn(r1=t) < Po.(m(0) =1) < Phn(r<9).
Therefore P°[1,(0) = 1] = lim ., —wn—+w P,n [1:(0) = 1] = 0 if and only if

M s oo Pon[7 =< ] = 0,

which gives the required result.

LEMMA 4.3. lim, . —wnosto Emn(e™™) = 0if and only if

Hm;:;-»—w,n——)+ooE:)n,n(e_1) =0.

Proor. First note that both limits exist by attractiveness. Couple together in the
natural way copies of 1, 1. and W where 7, and 7, are processes with semigroup S, (£)
and S, , (t) respectively, o = fjo = 0, and W is an exponentially distributed random variable
with mean %, in such a way that n, < 7, for all ¢, 1,(0) = 7,(0) for all ¢ < W, and W is
independent of the process {7, £ > 0}. The role of W is to give the time of the first death
for the n, process at one of the two sites containing the nearest one to the right or left of
site 0. Note that in general the two sites in question vary with time, but this does not
create difficulties because the distribution is exponential. Put ¥ = min{¢ > 0:%,(0) = 1}.
ThenT<r7and {T< W} = {r< W}, so

Ete")<E(e™)
and for any M > 0,
[E€ )P <E(E¥)=PF<W)=P(r<W)
<P(r=M)+P(W>M) <e™E(e™) + e M

These inequalities imply the statement of the lemma.
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LEMMA 44. For m,n =1, put
h(m, n) = E®m-1yn-1(e™).
Then h(m, n) is a nonincreasing function of m and n and satisfies the recursion
h(m, n)[1 + Y ssr=m+n B(4, 1] = B(m,n) + Y7 B(m — k, n + R)h(k,n)

(45) i
+ Y22l B(m + k, n — k)h(m, k).

Proor. The monotonicity of (m, n) is a consequence of the attractiveness assumption,
as mentioned earlier in the proof of Lemma 4.3. The recursion follows from the fact
that the first birth in [-m + 1, n — 1] occurs at an exponential time with mean
[Y cr=n+m B(£, )] and at a site j with probability

Bm + j, n = T t+r=n+m B(£, 1]
Recall that there are no deaths in the tilde process.

LEMMA 4.6. For N = 1, put

h(N) = % S h(k, N+1—F).

(a) h(N) is nonincreasing in N.

(b) h(N) satisfies the recursion
1

AL+ Y err=n+1 B4 )] = N Y ter=n+1 B(4, 1)

4.7)

+ % SN kh(R)B(E + 1, N — E).
(¢) imy_wh(N) =limm,.nwh(m, n).

Proor. Part (a) is a consequence of the monotonicity of A (m, n), since

k
f— ] N —_— — — —_—
h(N) —h(N+1) 2k=1N(N+1)[h(k,N+1 k)—hk+1,N+1-F)]
N-k+1

N — — —
+ Zkzlm[h(k, N+1—Fk)—h(k,N+2-Fk)]

The recursion in (b) is obtained by summing (4.5) on those m, n = 1 for whichm + n=N
+ 1. Part (c) is immediate.
Now let a(n) = Y sir=n+1 (£ A\ 1)B(¢£, 1) for n = 1 as in the introduction.

a(n+1)<n+2
a(n) ~ n

LEMMA 4.8.

PROOF. (1 + 2) ¥ siran+1 (¢ATB(ST)
=V (DA R+ 1= )]+ (n+ 1= ) [(m+2—-OABB4Ln+1—2)
and ’
N Y cermns2 (CATBLT) S T (€= DIEA (R = £+ 2)]
+(n+1-[n+2-ONLNBU4n+2—¢)
=Yil[(6+ DA (= £+ 1DB(L+1,n+1—¢)
+Y i (m+1=O[n+2-AONCBn+2— ).
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The result then follows from the attractiveness assumption.
THEOREM 4.9. If Y, 1/a(n) <o, then
(4.10) limy_,o A(N) >0

and hence & is not invariant.

Proor. Use (4.7) for N = 2"*! together with A(k) = ~(2") if k < 2" and A(k) = R(2"*")
if £ < 2™*! to obtain

h(2n+1)[1 + 2;+r=2’”‘+1 B4, 1n)]

n n 2n+1 n+1
zh(;n) T RB(R+ 1,27 — k) +h(2 SR R + 1,27 — B
h 2n+1
(2n+1 ) Yesr=2miv1 B4, 7).
Since
@.11) Y virens1 B4, 1) = ! YLEB(R+1,N—F),
this gives

h(2")

R + —2 LRB(R + 1,27 — k)] = YL kB(k + 1,2 — k).

Tterating this and using the summation test for the convergence of infinite products, one
sees that lim,_,./A(2") > 0 provided that

(4.12) Yoo [1 + -2-1; Yo kB(R + 1,27 — k)]‘l< o0,
By the monotonicity of B(k, ¢),
%a(2"+1) =YL kB(R+ 1,2" — B)+ NPl Bk, 2" =k + 1)
=2"8(L, 1) + it kB(R + 1,2"* — E).
Therefore Yo 2" '[a(2""")]™" < « implies (4.12). But by Lemma 4.8,
3 Do o < Vo N = Tia .

Thus Y, 1/a(n) < « implies lim,_,, A (2") > O‘and hence (4.10) by (a) of Lemma 4.6. The
final statement now follows from Lemmas 4.1 and 4.3 and part (c) of Lemma 4.6.

LEMMA 4.13. Suppose ¥, 1/a(n) = . Then

. 1
lim, z Zt’+r=n+1 Blgr) =

Proor. By the attractiveness assumption, (1/n) Yir=n+1 B(4, r) is nonincreasing in n.
The proof of this is the same as that of part (a) of Lemma 4.6. Let

. 1
c=lim, ; 2(+r:n+l B4, ).

Then
2(’+r=n+l B(d r) = nc
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for all n. By attractiveness again, (¢, r) is bounded above by 8(1, 1), so for any £ > 0,
Yerr=n+1,er=en B4 1) = 2enf(1, 1),
and hence
N er=n+teren B4, 1) = nlc — 2e6(1, 1)].

Therefore
a(n) = en Yerrensi,s, roen B4, 1) = en’[c — 2¢B(1, 1)].

Therefore if ¢ > 0, inf,[a(n)n %] > 0, which contradicts the hypothesis.

THEOREM 4.14. Put a(n) = max<,a (k). Suppose

1
Zn i)
Then
(4.15) limy_oh(N) =0

and hence 8 is invariant.
Proor. Let A(k) = h(k — 1) — h(k), which is nonnegative by part (a) of Lemma 4.6.
Then for £ < N,
(4.16) h(k) = h(N) + Y ¥sr1 A(£).
Substitute for A (k) on the right side of (4.7) the expression in (4.16) and use (4.11) to

obtain

h(N)l:l + "Z]'\.?z{+r=N+l B(, r)] ="1]'\.‘,2{+r=N+1 ,3(/, r)
+ 2 3 A S RB( + 1, N — )

Now assume that limy_,. A(N) > 0, from which we will deduce a contradiction. By this
assumption and Lemma 4.13, we can deduce from the above identity that there isa ¢ >0
and an N, so that for N = N,,

1

(4.17) NZ}Lg AL RBE+ 1L, N—Fk)=c.
Let u(N) be a nonnegative function. Multiplying (4.17) by Nu(N) and summing the
resulting inequality for N = N, gives

Yx-n u(N) Yo A(2) ¥izi kB + 1, N — k) = ¢ Y R-n, Nu(N).
Since ¥, A(n) < o, we will reach a contradiction if we can choose #(N) = 0 in such a way
that
(4.18) Y~ Nu(N) = and
(4.1}3) SUPs=2 Yi=k<s=n U(N)EB(E + 1, N — k) < oo,

If a(%) is bounded, then it is easily seen that u(N) = N2 satisfied both (4.18) and (4.19).
Therefore, we can assume that (k) 1 . Now put

1 1

(N) aN+1)°

u(N) ==
o

Then
Tt Nu(N) = Nm1 (V) Tio1 1= Yoy Noor u(N) = 5oy ;(1,7)
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so (4.18) follows from the assumption of the theorem. To verify (4.19), consider separately
the sums over the following three ranges of summation: (a) N = 24, (b) /= N <2/and K
= N/2, and (c) /< N < 2¢and N/2 < k < £ By attractiveness, the sum over range (a) is
dominated by

Yisr<ckB(k + 1, 20— k) Yn=2ru(N) S—;gi; =1.

The sum over range (b) is dominated by
¥=} a(N)u(N)
which by Lemma 4.8 is bounded by
4a(¢) TH=} u(N),
which is at most 4. Finally, the sum over range (c) is dominated by
(4.20) £supsan<zs U(N) Yoen<zenp<r<eBR + 1, N — k).
By attractiveness, if [x] denotes the integer part of x,

Y i<n<zenp<h<e Bk + 1, N — k)
N-¢ N-¢

= 2/5N<2¢’,N/2<k</ﬁ<k +1-— [—2—] ,—k+ [—2—— ])
=a(f) = a(?).

(4.21)

For a given N, either a(N) = &(N + 1) or
alN) =a(N)< &N+ 1) =a(N+1),

so by Lemma 4.8,
a(N +1) - N+2
aN) — N
Therefore
uiN) = &(}V) [1 B &(?\;11)1) ] W+ z)&(lv) ’
SO
2

sups=n<2cU(N) = m .

The boundedness of (4.20) then follows from this and (4.21), thus completing the proof.
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