The Annals of Probability
1983, Vol. 11, No. 3, 809-813

STATIONARY STRONGLY MIXING SEQUENCES NOT SATISFYING
THE CENTRAL LIMIT THEOREM

By NORBERT HERRNDORF

Mathematisches Institut der Universitit Koln

For every sequence (ex)nen in (0, 1) there exists a strictly stationary
orthonormal sequence (X,).en of random variables with. |[P(A N B) —
P(A)P(B)| <enforall A € (X1, - -+, Xz), B € 6(Xptn, Xp4ns1, -+ ), REN,n
€ N, such that the distribution of /% ¥, X; is not weakly convergent to the
standard normal distribution.

1. Introduction and notations. Let (X;,).en be a sequence of random variables on
some probability space (2, «/, P) with EX, = 0 and EX}, < . Put 8, = -1 X forn € N.
In this paper we consider strictly stationary sequences which fulfill

(1.1) ES2/n—>o6? as n— » forsome o>0.

(X,) is said to satisfy the c.Lt., if S./(on"?) is weakly convergent to the standard normal
distribution. For o-fields % ¥ C & the coefficient of strong mixing is defined by

a(Z %) = sup{| P(A N B) — P(A)P(B)|:AE % B € %).

The mixing coefficient a(n) of the sequence (X,) related to the strong mixing condition of
Rosenblatt (1956) is defined by

a(n) =sup{a(c(X;:1<i<k),oXi:i=n+k):kEN}.

Ibragimov (1962) proved the c.Lt. under the following assumption on a(n) and the moments
of X.:

(12) Thereexists 8>0 suchthat E|Xi|** <o and Y.ew a(n)”®*?® <,

Sequences (X,) with E | X, [#*® = oo for every & > 0 were not covered by this theorem, but
on page 420 in [7] it was mentioned that the c.L.t. holds under the following less restrictive
assumption:

There exists 8= 0 suchthat E|X;|** <o and

(1.3)
Then a(n)um/(zﬁs) < oo,

This result is attributed to Gordin and has been stated again and proved by Hall and
Heyde (1980), Corollary 5.3 (ii). In the present paper the following theorem will be proved.

THEOREM. Lete,>0,n € N be given. Then there exists a strictly stationary sequence
(X nen with EX; = 0,0 < EX? < w and EX, X, = 0 for all n = 2 such that a(n) < e, for
all n € N, and the sequence (S»)en of partial sums has the following properties:

(A) inf.enP{S. =0} >0,
(B) the family of distributions of the partial sums S,, n € N, is tight,
(C) Su/bn— 0 in probability as n — o, for every sequence (ba)nen in (0, ®) with b, — .

Since (1.1) is trivially satisfied for every uncorrelated stationary sequence, the above
theorem shows that it is impossible to find any fixed numbers &, > 0 such that every
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strictly stationary sequence in L. which fulfills (1.1) and a(n) < &, satisfies the c.L.t. In
particular (1.1) and (1.3) for § = 0 are not sufficient for the c.l.t. The derivation of Corollary
5.3 from Theorem 5.4 in [5] is incorrect in that it was not shown that the quantity A in
Theorem 5.4 had to be positive. The proof of Theorem 5.4 in [5] contains another error: in
the argument for EY?% < o the authors choose no{U(A)} on page 138, but this index may
also depend on wu.

Counterexamples to the c.Lt. under strong mixing have been constructed in Davydov
(1973), and in a forthcoming paper of Bradley [2] there is a counterexample with an
arbitrarily fast mixing rate. The purpose of the present paper is the discussion of the c.l.t.
under the additional assumption (1.1), which is not fulfilled in the earlier examples.

2. Auxiliary results. The first lemma shows that a(% &) is small, if Zis a o-field
which contains a large atom.

2.1 LEMMA. If F is an atom of the o-field %, then a(%, #) =1 — P(F).

ProOF. LetA, BEZIfANF =@ or BN F =, then P(A N B) €[0, 1 — P(F)] and
P(A)P(B) €[0,1 — P(F)].If A D F and B D F, then P(A N B) — P(A)P(B) < P(A)(1 —
P(B)) =1— P(F) and P(A N B) — P(A)P(B) = P(F) — 1. In both cases follows | P(A N B)
— P(A)P(B)| =1 — P(F).

The following lemma is Lemma 8 of Bradley (1981).

2.2 LEMMA. If %, and %,, n € N, are o-fields and the o-fields (% \/ %.), n € N, are
independent, then a(\/n=1 Fn; \V7=1 %) < Y01 0(F, %,).

Using 2.1 and 2.2, one can easily estimate the mixing coefficient of some “moving
average sequences”’, which will play an important role in our example.

2.3 LEMMA. Let (£:)nez be anii.d. sequence with P{{, =0} =1 — ¢ for some e < 1. Let
(Xy)nen be defined by
(2.4) X, =YY _ncitiin for some NE NU {0}, c;E R.
[
Then a(n) < e max(2N — n + 1, 0).

ProoF. a(n) = afo(é:i=N),o(&:i=n— N))
=YX, nalo(&), a(£))
=< e¢max(2N — n + 1, 0).

A nonnegative integrable function f on [—%, %] is called spectral density of the stationary
sequence (X,)nen in Ly, if
1/2

EX. Xpsr = J’ e ™* A f(\)dA\, n€N, ke NU {0}.

-1/2

The following formula for the variance of the partial sums of a stationary sequence with
spectral density f is well known.

1/2 . 9o
@2.5) ESZ= f sinlmAn) cnydn, nen.
—1/2 SmL(WA)

The stationary sequences which are building blocks of our example have well known
spectral densities (see [4] page 499).
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2.6 LEMMA. If (&)nez is an orthonormal sequence in L; and (X,) is defined by (2.4),
then (X,) has the spectral density

fA) = X5~ cie®™ |, A € [, %]

2.7 LEMMA. Iff is the spectral density of 2.6 and ¥Y__n ¢; = 0, then

1/2 . 9o
sin®(7An)
Supren J:l/sz(A) dA < o,

ProoF. Elementary calculus shows that f(A)/sin*(7A) is bounded.

The X, in the example will be constructed in the following way: We choose an
independent sequence of appropriate moving average processes ((Xy,z)nen)ren, and put X,
= Yeen Xn,r for n € N. If (X, 1)nen has spectral density fi and Yren fr = 1, then we obtain
an orthonormal sequence (X;).en. The following lemma shows that the constant 1 can be
written as the sum of the spectral densities of special moving average processes.

2.8 LEMMA. There exist functions fx on [—%, %], & € N, with fiA) = | TY%w

c;xe? |2 for some N(k) € N U {0}, ¢;x € R with c—;x = ¢;x and Y )~"nw cjr = 0, such
that Swen fu(\) = 1 for all \ € [=%, %] — {0}.

ProoF. The f; will be defined by induction. Put fi = 0. Assume that fi, .-, f; have
already been defined and fulfill

@) Yi=1feA) =1-27", A E[-%, %]
(ii) Siafelh)=1-2" AE[-% %] -[-2727"].

We will define f;,+1 such that (i) and (ii) remain valid when n is replaced by n + 1. Put A(A)
- = min(1, |A|2**") and gA) = (1 — 27" + 272 — Y21 fu(A)A(N). (i) implies g(A) = 0.
&) is a continuous even function on [—%, %]. Hence for every ¢ > 0 there exist N € N
U {0} and a; € R such that |g(A\)* — Y2, a; cos(2mjA)| < ¢ for all A € [-%, %]. In
particular | Y a;| < ¢, since g(0) = 0. Take e = 27 ™% N(n + 1) = N, ¢jn+1 = aj/2 for j
€fl, -, N} U({-1 -+, =N}, con+1 = @ — 3% @, and define f,+1(A) with these
parameters. Then follows

gV = TNy Cjnri€® <2
, |18 = fra(A)| =4
Using (i), (ii) and the definition of g, one easily obtains
i) SEIAN =1-27  AE[-Y% %]
(i) iR =1-27  ANE[-% Y] - [-277, 277
Now it follows by induction that (fi)zen can be defined such that (i) and (ii) hold for every
n € N, and therefore Yren fr(A) = 1 for every A € [—%, 2] — {0}.

3. The example. Let e, >0, n € N, be given. W.1.g. assume €41 <&, < 1for NE N.
Let fu(A) = | XY *~w c;xe?™“*|? be the functions which have been defined in 2.8. Define

positive real numbers a; by
(3.1) a, = 21 (AN(k) + 2)/eanviey, kEN.

Let (£;4)jezken be independent random variables with P{¢;, = +ak?} = (2an)7,
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P{¢;r =0} =1 — ai". Define
Xok = Y00 Cirénijes, nNnEN, EkEN.
As a consequence of 2.6 and 2.8, we obtain

1/2

Yeen EXE i = Then feA) dA = 1.

-1/2

Since (X, x)ren is an independent sequence, it follows that Y.y X » converges a.s. and in
L,. Define

X, = Yren Xorforn € N.
Clearly (X,).en is strictly stationary, EX, = 0 and EX2 < . Using 2.6 and 2.8, one obtains

1/2

EX, X = Yren EXp 2 Xmr = Yren fe(A)e?mim—rIA gy

—-1/2
1/2
=j e27ri|m—n|)\ d\ = 8,",,,

172

ie. the sequence (X,).env is orthonormal. The mixing coefficient a(n) of (X,) can be
estimated with the help of 2.2 and 2.3. Let ax(n) denote the mixing coefficient of (X z)ren.
One can write:

a(n) = Yren ar(n) < Yronw=nor(n)
=< YroN(y=n Q% 9N (k)
= Yronwzn v ¥ 2 < 5.

Here (3.1) and the assumption that (e,) is non-increasing were used. For n, 2k € N let S, .
=¥%-1 Xj,. For each n and %

3.2) Snp = ijiﬁ)ﬁ%kHl diér + Eiyi’i’ﬁ'(mn dijn

where the coefficients d; depend on n and k. Here for n = 2N (k) + 2 we are using the fact
that ¥ *vu ¢;x = 0 from Lemma 2.8. It follows from (3.1), (3.2) and &, < 1 that for each
n and k&,

P{S, .+ 0} < AN(k) + 2)P{{1: * 0}
3.3)
= 4N(k) + 2) apl< 27*1

Since S, = Yren Sn. for all n, one has
P{S.% 0} =<Yien P{SnrF+ 0} =%

for all n, and (A) follows. To show that (B) holds, let ¢ > 0 be given. Choose a positive
integer M such that ¥ %-sr+1 27*7 < ¢/2. Then (3.3) implies

(3.4) SUPreNP{Y5-pm+1 Snr F 0} <e/2.

For eéch fixed k, ESZ ; is a bounded function of n by (2.5) and Lemma 2.7. Hence
SuprenE (T Spp)? < o

Hence there exists a > 0 such that

SuprenP{| X1 Snr| > a) = ¢/2.
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This and (3.4) together imply that sup,enP{|S.| > a} =< & Thus (B) holds. Clearly (B)
implies (C).
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the Theorem.
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