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ROTATIONAL REPRESENTATIONS OF STOCHASTIC MATRICES

BY STEVE ALPERN

London School of Economics

Let {S;}, i =1, ---, n, be a partition of the circle into sets S; each
consisting of a finite union of arcs. Let f be a rotation of the circle and let u
denote Lebesgue measure. Then the matrix P defined by p; = u(S: N f~'S;)/
u(S;) is stochastic. We prove (and improve) a conjecture of Joel E. Cohen
asserting that every irreducible stochastic matrix arises from a construction of
this type.

1. Introduction. In a recent note Cohen [2] has suggested the following geometric
_ construction as a means of representing stochastic matrices. (A matrix is stochastic if it is
square, nonnegative, and all its row sums are one.)

Let u denote Lebesgue measure on X = [0, 1). Let S = {S;}}-; be a partition of X into
nonnull sets S; which are each finite unions of intervals. Let f = f; be the u-preserving
transformation of X onto itself defined by f(x) = x + ¢ (mod 1). This construction defines
a stochastic matrix P = (py) by

(1) piy = u(S: N f74S))/u(S)).

In such a case we will say that the matrix P has a rotational representation, or that P is
represented by (¢, S). Cohen has shown that every 2 X 2 irreducible stochastic matrix has
a rotational representation. (A stochastic matrix P is irreducible if for any row i and
column j # i there is a positive integer 2, which may depend on i and j, such that the i, j
element of P* is not zero. If 2 doesn’t depend on i and j then P is called primitive.) Cohen
conjectured that every irreducible n X n stochastic matrix, n > 2, has a rotational
representation. In this paper we will prove (and improve) Cohen’s conjecture.

It is easy to see that not every matrix P with a rotational representation is irreducible.
The simplest counter example is the identity matrix, which is represented by (0, S) for any
partition S. However there is a simple property which P must have, namely recurrence.
We will say that P is recurrent if it is stochastic and has a (strictly) positive invariant
distribution, i.e., if there is a probability vector v > 0 satisfying vP = v. It is known that P
is recurrent if and only if it has no transient states (see Doob [3], page 183). If P is
represented by (¢, S) then (u(S,), - - -, u(S,)) is invariant by (1) and positive by assumption
on S, so P is recurrent. Our main result shows that the converse of this statement is also
true.

THEOREM 1. A stochastic matrix is recurrent if and only if it has a rotational
representation. Furthermore suppose that P is an n X n recurrent matrix and v is any
positive invariant distribution. Then P is represented by (t, S) where
@) @(Sy), ---, u(Sn)) = v and
(ii) ¢ = 1/n!

Theorem 1 complements the following special case of a previous result of the author
[1]: Every primitive stochastic matrix can be represented as in (1) for any given irrational
t and some partition S—not necessarily composed of unions of intervals.

The proof of Theorem 1 is based on a constructive finite algorithm for finding (¢, S)
given P and v. For expository reasons we will precede the proof by an illustration of the
algorithm, as applied to a specific 3 X 3 matrix. This example will be treated in Section
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two. Section three is devoted to proving a result (Lemma 1) which guarantees that a
crucial construction of the algorithm can always be carried out. This result is perhaps well
known but I know of no reference. In section four we complete the proof of Theorem 1. A
final section (five) is then devoted to an analysis of the complexity of rotational represen-
tations, in the following sense. Theorem 1 guarantees the existence of a least number b =
b(n) such that every n X n recurrent matrix can be represented by (¢, S) where each S; has
no more than b component intervals. In addition to the conjecture mentioned above,
Cohen [2] also conjectured that b(n) = n — 1. This conjecture is false. We cannot determine
any b(n) exactly, although we can establish (Theorem 2) that exp(an'/?) < b(n) < exp(f8n)
for some positive constants « and S.

I wish to thank my colleague Nick Logothetis for several useful discussions on these
matters.

2. An example of the algorithm. In this section we will compute a rotational
representation for the matrix
% % 0
P=|% 0 %

1 0 0

with invariant distribution v = (%, %, %). If P is represented by (¢, S) with (x(S1), u(S2),
u(Ss)) = v then the distribution of the partition {S;}, i,/ =1, ..., n defined by S;; = S; N
f71(S)) will be given by ry = u(S;) = p;u(S;) = pyv:. In our example this defines a matrix

R = (r;) by
‘ % % 0
R=|% 0 %/l

% 0 0

R induces the following directed graph on three vertices as shown in Figure 1.

Intuititively this graph is composed of three (not distinct) cycles, [1], [1, 2], and [1,
2, 3]. This intuition motivates the following decomposition of R as a convex combination
of three “cycle” matrices, corresponding to [1], [1, 2] and [1, 2, 3].

100 0 % 0 0 % 0
(2) R=%]|0 0 O[+%|% 0 O|+%|0 0 %/
000 0 0O % 0 O

The general existence of such a decomposition will be proved in the next section. Let M be
a common multiple of the cycle lengths and let £ = 1/M. In our example the cycle lengths
are 1, 2, 3 so we can take M = 6 and ¢ = %. Partition the interval [0, ) into three
subintervals A;, Az, As, with relative distribution given by the coefficients of (2). In our
example we have A, = [0, %2), A = [%s2, ¥%2) and A = [¥%2, %). Fork=1,...,3and [ =1,
..., 6 define intervals Az = Ay + (I — 1)/6 which partition [0, 1) as drawn below.

(A Agy) Agy Ay Ago) Agy) Arg) Agg Ags A1y Ay Asy A Ags Ass| Are Age) Azl

This partition (Az) is more easily grasped in “stacked” form, in which f(x) = x + %
(mod 1) lies immediately above x, except for the top level, which is mapped five levels
down to the bottom, as shown in Diagram 1.
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Diagram 1.

A32
An A Az

As can be seen from the diagram, the “columns” defined by U, = U%-; Ay, k=1, ---,
3 are invariant under f. We now define the partition S = (S, Sz, Ss) by assigning one of the
labels 1, 2, 3 to each interval A;. and letting S; be the union of all intervals with label i. We
do the labeling separately on each invariant set Uy. Let’s start with U, which corresponds
to the cycle [1, 2]. Starting with either 1 or 2 (we’ll take 2) on the bottom level (As;) of U,
we label all the levels of U, as in Diagram 2.

Diagram 2.

N = D= D=

Similarly we label the levels of U; and Us; according to the cycles [1] and [1, 2, 3]
respectively, obtaining Diagram 3.

Diagram 3.

o e
DN = D= D=
OON W N

We now demonstrate that if S is the partition given by Diagram 3 then the distribution
of the partition {S;} is given by the matrix R. Observe that an interval A, belongs to S,
if and only if it has label i and the interval above it (or five below it, if it’s on top) has label
J. By construction, the relative (conditional) distribution of {S;} on U; (the left column)

is given by
100
0 0 Of.
000

Similarly the relative distribution of {S;} on U, and Us is given by

0% 0
% 0 0
0 00

0 s O
[ 0o o0 l/3]
/s 0 O

and
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respectively. Since by construction we have u(U;) = %, u(U,) = %, and u(Us) = %, the
absolute distribution of {S;} is given by R because of (2). It follows that p; = r;/v; is given
by (1), so that P is represented by (%, S) with ((S1), u(Sz), u(Ss)) = v.

3. Decomposition into cycles. In this section we give the theoretical justification of
line (2) of the algorithm presented in the last section. Observe that the matrix R of (2)
satisfies the following two properties.

3) Siire=Yj1ry foreach k=1, ....n
) Srmiri=1

We will call any n X n nonnegative matrix satisfying (3) and (4) “equi-summed”. An
important class of equi-summed matrices is the class of “cycle” matrices, as illustrated by

the three matrices on the right hand side in (2). If [a;, a3, - - -, ax] is a sequence of distinct
integers chosen from 1, - - -, n, then we define the cycle matrix of [a;, - - -, a] as the n X
n matrix C given by Cae, = Caja; = **+ = Ca,_,a, = Ca,a, = 1/m and c;; = 0 otherwise. We say
that m is the length of C.

LEMMA 1. Every equi-summed matrix is a convex combination of cycle matrices.
Furthermore, if R is any equisummed n X n matrix then for some N, N <n*— n + 1, some
probability vector (21, - - -, zn) and some cycle matrices C*, k=1, ..., N, we have

R = 22’_1 Zka.

PROOF. A short proof may be based on the observation that the extreme points of the
compact convex set of equi-summed matrices are the cycle matrices. Since the set of n X
n equi-summed matrices has dimension n®> — n (one may specify all but the last row) the
estimate on N follows from Carathéodory’s extension of Minkowksi’s result on extreme
points.

We prefer however to give a combinatorial proof which constructs the z; and C* (and
incidentally verifies the above assertion about extreme points). For this proof it is necessary
to work with the larger class of matrices which satisfy (3)—but not necessarily (4). For the
proof we will call such matrices “normal” and consider the following sublemma: “A normal
matrix with no more than w nonzero entries is a nonnegative combination of cycle
matrices.” We prove the sublemma by induction on w. If w is zero then the result is
obvious since we may take z; = 0 and any cycle C'. Suppose the sublemma is true for w
and let R be a normal matrix with w + 1 nonzero entries. Since w + 1 is at least one, there
must exist indices a; and a; such that rq q, is positive. By property (3), or the normality of
R, there is an as such that ., is positive. (If not, the a; column has positive sum while the
a; row has zero sum, contradicting (3) for £ = a;.) Continuing in this manner we obtain a
sequence a1, Gz, - - - With o, positive. Since the a; are chosen from a finite set there must
be repetitions. Renumber the a; so that a1, - - - @ are distinct and @n+1 = a:. Let C be the
cycle matrix of [ai, -+, a»] and let z = mmin{r;: ¢; = 1/m}. Then R =R — z2Cis a
normal matrix with no more that w nonzero entries. Hence by the inductive hypothesis R’
is a nonnegative combination of cycle matrices, and so is R = R’ + zC. The sublemma is
thus established for all w. Now suppose R is equi-summed, so that (4) is satisfied also.
Since R is in particular normal, we can write R = ¥, 2z, C* with nonnegative z,. However
(4) ensures that the z; sum to one. '

4. Proof of Theorem 1. Let P and v be as stated in the Theorem. Define R = (ry) by
ry = pyv;. Observe that Y% ra = Y1 vipi = vz because vP = v by assumption. Also
observe that Y%-; ry = Y =1 Urprj = Ur 3 =1 D& = Ur because P is stochastic. Thus R
satisfies (3). Next compute Y\ j—1 iy = Y% j=1 Uspyj = D, t=1 Ui 3, =1 Pij = 1, demonstrating that
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R satisfies (4). Hence R is equi-summed and Lemma 1 ensures that we can write
(5) R=3,z.C*

where z is a probability vector and the C* are cycle matrices. Let m; denote the length of
the cycle matrix C, and let M be any multiple of m;, ms, ..., my. In particular we may
take M = n! (since mr = n) or M = l.c.m. (my, ---, my), where l.c.m. stands for least
common multiple. Let ¢ = 1/M and let f denote f;. Let {A:}, k=1, ---, N be a partition of
A = [0, 1/M) into N subintervals with relative distribution (z1, - - -, zn). That is, u(Az)/
u(A) = z;. Define Ay = 71 (A4) and U, = U, Apfork=1,...,Nand =1, ..., M. We
now define the partition S = {S;} =1 by S; = Unen-: Ax where h is the following labeling
of the intervals A, Fix % and suppose C* is the cycle matrix based on [a, - - +, an], where
m = m;. Define h(k, 1) = a1, h(k,2) = az, - -+, h(k,m) = am, hH(k,m + 1) = a1, - - -, h(k, M)
= a,. The fact that the last label is a,, follows from the choice of M as a multiple of m.
This process defines S on each invariant set U so that u(S; N U,)/u(Us) = c’fj where S;;
=8, N f74S)) and c%; is the i, j entry of C*. The measure of U, is 2z, because u(Ay) =
u(Ayg), u(Ar)/1/M) = z, and u(U;) = Mu(Ax). Finally we compute

u(Sy) = Th-1 u(Ur)u(Sy/ Us) = Th=1 zrchi=ry
by (5), and
()] u(S: N F7HS))/u(S:) = u(Sy)/u(S;) = ry/vi = py.

Thus we have shown that (1/M, S) is a rotational representation of P with u(S;) = Y}-1 ry
= v;, and that we may choose M = n!.

5. Complexity of the representation. We say that a partition S = {S;}i-; has type
L if the number of components of S; is less than or equal to L, i =1, ..., n. Let b = b(n)
be the least integer such that every n X n recurrent matrix has a representation of type b,
that is, a representation (¢, S) where S is of type b. To obtain a lower bound on b(n) we
will need the following:

LEmMMA 2. Letcy, k=1, --.,r bepositive integers and letn =1+ c1+cz+ --- + ¢,
Let @ = Q(ci, ---, ¢;) be an n X n permutation matrix with cycles of lengths 1, ci, ¢z,
««+, ¢. Then if @ is represented by (t, S) the type of S is at least l.cm. (c1, «- -, ¢;).

ProoF. Let 1 be the label of the 1-cycle of @ so that g1; = 1. Then if f denotes f; the
set S; is invariant under f. It follows from Weyl’s well-known result (see Halmos [4]) that
t is rational (irrational rotations are ergodic—have no nontrivial invariant sets). Let ¢ =
p/q in lowest terms, so that every point in [0, 1) has fperiod g. The invariant set S;
consequently consists of at least g intervals and hence the type of S is at least g. To
estimate g from below, observe that if a point x belongs to S; where the index i belongs to
a @-cycle of length c;, then the f-period of x must be a multiple of c.. But the f-period of
every x is g, so g is a multiple of c.. Hence ¢ = l.cm.(cy, - - -, ¢;).

THEOREM 2. There exist positive constants a and B8 such that for all n, exp(an*/?)
< b(n) < exp(fSn).

ProorF. We shall need the following notation and estimates ((7) and (8)) which can be
found on pages 89-91 of Landau [5]. Let p. denote the kth prime (p; = 2) and let #(n)
denote the number of primes less than or equal to n. A partial result in the direction of the
famous Prime Number Theorem (due to Chebyshev) asserts the existence of a positive
constant 8; such that

(7) w(n) < B1/log n.
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Let d(k, n) be the largest integer power d such that p§ < n. Then for any even n,
(8) 2"? = lem.(2, 3, - -, n) = [[IY pf®™ < n"™,

We can now proceed with the proof proper, beginning with the upper bound. The
algorithm presented in the proof of Theorem 1 represents any recurrent n X n matrix by
(¢, S) where S is composed of intervals Ay, k=1, -+, N,l=1, ..., M, where N<n® —
n+1land M=1lcm.(1,2,3, .., n). Consequently we have that ’

9 b(n) = NM < n’lem.(1,2, ---, n).
If we combine (9) with (8) and take logs we get,
log b(n) < 2 log n + w(n)log n

(10) =<logn (2 + Bin/log n) (by (7))
= log n (Bn/log n) for some 8 > B,
=fn yielding the upper bound.

To obtain the lower bound, fix any even m and define ¢, = p§*™ for k=1, - .., m(m).
Let n = nn, =1+ Y% ¢ < m? Then apply Lemma 2 to the permutation matrix @ =
Q(c1, +++, Cnim ), Obtaining

ay b(nm) = Leam.(c1, « -+, Caim) = [[FF pF*™ = 2™ by (8).

Since n., < m? and b(n) is nondecreasing, (11) implies

(12) b(m?) = 2™ and hence

(13) b(m) = 2"/ or

(14) b(m) = exp(am'?) where o = log 2'2
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